TOSHIBA

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC TC74AC125P, TC74AC125F, TC74AC125FN, TC74AC125FT TC74AC126P, TC74AC126F, TC74AC126FN TC74AC125P/F/FN/FT QUAD BUS BUFFER (Note) The JEDEC SOP (FN) is not

TC74AC126P/F/FN QUAD BUS BUFFER

(Note) The JEDEC SOP (FN) is not available in Japan.

The TC74AC125/126 are advanced high speed CMOS QUAD BUS BUFFERs fabricated with silicon gate and double - layer metal wiring C²MOS technology.

They achieve the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The TC74AC125 requires the 3-state control input \overline{G} to be set high to place the output into the high impedance state, whereas the TC74AC126 requires the control input to be set low to place the output into high impedance.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

FEATURES:

- High Speed------t_{pd} = 4.0ns(typ.) at V_{CC} = 5V
- High Noise Immunity $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)

• Symmetrical Output Impedance… $|I_{OH}| = I_{OL} = 24$ mA(Min.)

Capability of driving 50Ω transmission lines.

- Balanced Propagation Delays…… $t_{pLH} \simeq t_{pHL}$
- Wide Operating Voltage Range $\sim V_{CC}$ (opr) = 2V ~ 5.5V
- \bullet Pin and Function Compatible with 74F125/126

IEC LOGIC SYMBOL

TRUTH TABLE

TC74A0	2125
--------	------

INP	UTS	OUTPUTS
G	А	Y
Н	Х	Z
L	L	L
L	Н	н

X: Don't Care Z: High Impedance

TC74AC126

INP	UTS	OUTPUTS			
G	А	Y			
L	Х	Z			
Н	L	L			
Н	Н	Н			

X: Don't Care Z: High Impedance

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V _{cc}	-0.5~7.0	V
DC Input Voltage	VIN	-0.5~V _{CC} +0.5	V
DC Output Voltage	V _{OUT}	$-0.5 \sim V_{CC} + 0.5$	V
Input Diode Current	Ι _{ικ}	± 20	mA
Output Diode Current	Ι _{οκ}	± 50	mA
DC Output Current	I _{OUT}	± 50	mA
DC V _{CC} /Ground Current	I _{cc}	± 100	mA
Power Dissipation	P _D	500 (DIP)* /180 (SOP/TSSOP)	mW
Storage Temperature	T _{stg}	-65~150	°C

*500mW in the range of Ta = -40°C~65°C. From Ta = 65°C to 85°C a derating factor of -10mW/°C should be applied up to 300mW.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V _{cc}	2.0~5.5	V
Input Voltage	VIN	0~V _{cc}	V
Output Voltage	V _{OUT}	0~V _{cc}	V
Operating Temperature	T _{opr}	-40~85	°C
Input Rise and Fall Time	dt/dV	0~ 100 (Vcc = 3.3 ± 0.3V) 0~ 20 (Vcc = 5±0.5V)	ns / V

DC ELECTRICAL CHARACTERISTICS										
PARAMETER SYMBOL TEST CONDITION				V _{cc}	Г	Ta = 25°C			Ta = −40~85°C	
		(V)	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT		
High - Level Input Voltage	VIH		2.0 3.0 5.5	1.50 2.10 3.85			1.50 2.10 3.85	=	v	
Low - Level Input Voltage	VIL						0.50 0.90 1.65		0.50 0.90 1.65	v
High - Level Output Voltage	V _{OH}	V _{IH} or V _{IL}	$I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		v
			$I_{OH} = -4mA$ $I_{OH} = -24mA$ $I_{OH} = -75mA*$	3.0 4.5 5.5	2.58 3.94 			2.48 3.80 3.85		
Low - Level Output Voltage			I _{OL} = 50μA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	V
	V _{OL}	V _{OL} V _{IH} or V _{IL}	I _{OL} = 12mA I _{OL} = 24mA I _{OL} = 75mA*	3.0 4.5 5.5			0.36 0.36 —		0.44 0.44 1.65	V
3 - State Output Off - State Current	I _{oz}	$V_{1N} = V_{1H} \text{ or } V_{1L}$ $V_{OUT} = V_{CC} \text{ or } GND$		5.5	_	_	±0.5	_	± 5.0	_
Input Leakage Current	I _{IN}	$V_{IN} = V_{CC}$ or GND		5.5	—	_	±0.1	—	± 1.0	μΑ
Quiescent Supply Current	I _{CC}	$V_{IN} = V_{CC} \text{ or } GN$	5.5	—	—	8.0	—	80.0		

DC ELECTRICAL CHARACTERISTICS

* : This spec indicates the capability of driving 50Ω transmission lines.

One output should be tested at a time for a 10ms maximum duration.

PARAMETER	SYMBOL	TEST CONDITION		-	Ta = 25°C	2	Ta = - 4	UNIT	
FARAIVIETER	STIVIBOL		V _{cc} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	
Propagation Delay Time	t _{pLH} t _{pHL}		3.3 ± 0.3 5.0 ± 0.5		6.4 4.7	10.5 7.0	1.0 1.0	12.0 8.0	
Output Enable Time	t _{pZL} t _{pZH}		3.3 ± 0.3 5.0 ± 0.5		7.1 5.0	12.3 7.9	1.0 1.0	14.0 9.0	ns
Output Disable Time	t _{pLZ} t _{pHZ}		3.3±0.3 5.0±0.5		5.1 4.6	8.8 6.6	1.0 1.0	10.0 7.5	
Input Capacitance	C _{IN}			_	5	10	—	10	
Output Capacitance	C _{OUT}			—	10	—	—	—	pF
Power Dissipation Capacitance	C _{PD} (1)			—	24	—	—	—	

AC ELECTRICAL CHARACTERISTICS (C_L = 50pF, R_L = 500 $\Omega,$ Input $\,t_r$ = t_f = 3ns)

Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

$$I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 4 (per Gate)$$

DIP 14PIN PACKAGE DIMENSIONS (DIP14-P-300-2.54)

Unit in mm

SOP 14PIN (200mil BODY) PACKAGE DIMENSIONS (SOP14-P-300-1.27)

070

0.45~0.75

0.25

+0.025

0.17

0.24^{+0.08} -0.07 0.13 (M)

.0±0.05

0.1±0.05

2MAX

0.65

5.25MAX

 5.0 ± 0.1

- 🗌 0.1

0.55TYF

Weight: 0.06g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

● TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

• The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.