Power MOSFET

30 V, 35 A, Single N–Channel, SO–8 Flat Lead Package

Features

- Thermally and Electrically Enhanced Packaging Compatible with Standard SO–8 Package Footprint
- New Package Provides Capability of Inspection and Probe After Board Mounting
- Ultra Low R_{DS(on)} (at 4.5 V_{GS}), Low Gate Resistance and Low Q_G
- Optimized for Low Side Synchronous Applications
- High Speed Switching Capability

Applications

- Notebook Computer Vcore Applications
- Network Applications
- DC–DC Converters

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise noted)

Rat	Symbol	Value	Unit		
Drain-to-Source Voltag	V _{DSS}	30	V		
Gate-to-Source Voltag	e		V _{GS}	±20	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	22	А
Current (Note 1)	State	$T_A = 85^{\circ}C$		16	
	t ≤10 s	T _A = 25°C		35	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	PD	2.4	W
	t ≤10 s			6.25	
Continuous Drain		$T_A = 25^{\circ}C$	I _D	13.5	А
Current (Note 2)	Steady	T _A = 85°C		10	
Power Dissipation (Note 2)	State	$T_A = 25^{\circ}C$	P _D	0.91	W
Pulsed Drain Current	tp = 1	10 μs	I _{DM}	106	А
Operating Junction and	Storage Ten	nperature	T _J , T _{stg}	–55 to 150	°C
Continuous Source Cur	I _S	6.0	А		
Single Pulse Drain-to-S Energy ($V_{DD} = 25 V$, V_{C} L = 1 mH, $R_{G} = 25 \Omega$)	E _{AS}	450	mJ		
Lead Temperature for S (1/8" from case for 10 s		poses	ΤL	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using 1" sq. pad size
- (Cu area = 1.127" sq. [1 oz] including traces).

2. Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.412'' sq.).

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
30 V	1.8 mΩ @ 10 V	35 A	
30 V	2.7 mΩ @ 4.5 V	55 A	

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4108NT1G	SO–8 FL (Pb–Free)	1500 Tape / Reel
NTMFS4108NT3G	SO–8 FL (Pb–Free)	5000 Tape / Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Rating	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	53	°C/W
Junction-to-Ambient – t \leq 10 s (Note 3)	$R_{ hetaJA}$	20	
Junction-to-Ambient - Steady State (Note 4)	R_{\thetaJA}	138	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						

Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				21		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	y = 0 y y = -24 y	$T_J = 25^{\circ}C$			1.0	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = 24 \text{ V}$	T _J = 125°C			25	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = 20 V$				100	nA

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	1.0		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J			7.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 4.5 V, I _D = 19 A		2.7	3.4	mΩ
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 21 \text{ A}$		1.8	2.2	
Forward Transconductance	9 _{FS}	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 10 \text{ A}$		25		S

CHARGES, CAPACITANCES AND GATE RESISTANCE

Input Capacitance	C _{ISS}		6	000	pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V}, \text{ f} = 1.0 \text{ MHz}, V_{DS} = 15 \text{ V}$	1	200	
Reverse Transfer Capacitance	C _{RSS}]	-	700	
Total Gate Charge	Q _{G(TOT)}			54	nC
Threshold Gate Charge	Q _{G(TH)}			11	
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 24 \text{ V}, I_D = 21 \text{ A}$		16	
Gate-to-Drain Charge	Q _{GD}			23	
Gate Resistance	R _G			0.7	Ω

SWITCHING CHARACTERISTICS, V_{GS} = 10 V (Note 6)

Turn–On Delay Time	t _{d(ON)}		45	ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,	60	
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D}$ = 1.0 A, R _G = 6.0 Ω	70	
Fall Time	t _f		140	

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}		$T_J = 25^{\circ}C$	0.72	1.1	V
		$V_{GS} = 0 V, I_{S} = 6.0 A$	T _J = 125°C	0.65		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 V, d_{IS}/d_t = 100 A/\mu s,$ $I_S = 6.0 A$		41		ns
Charge Time	ta			20		
Discharge Time	t _b			21		
Reverse Recovery Charge	Q _{RR}			45		nC

3. Surface-mounted on FR4 board using 1" sq. pad size (Cu area = 1.127" sq. [1 oz] including traces). 4. Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.412" sq.). 5. Pulse Test: Pulse Width $\leq 300 \,\mu$ s, Duty Cycle $\leq 2\%$.

6. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

Variation vs. Gate Resistance

http://onsemi.com 4

PACKAGE DIMENSIONS

SO-8 FLAT LEAD (DFN6) CASE 488AA-01 **ISSUE B**

SIDE VIEW DETAIL A

 NOTES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETER. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. 								
		м	LLIMETE	RS				
	DIM	MIN	NOM	MAX				
	Α	0.90	0.99	1.20				
	A1	0.00		0.05				
	b	0.33	0.41	0.51				
	с	0.23	0.28	0.33				
	D		5.15 BSC	;				
	D1	4.50	4.90	5.10				
	D2	3.50		4.22				
	E		6.15 BSC					
	E1	5.50	5.80	6.10				
	E2	3.45		4.30				
	е							
	G	0.51	0.61	0.71				
	ĸ	0.51						
	L	0.51	0.61	0.71				
	L1	0.05	0.17	0.20				
	M	3.00	3.40	3.80				
	θ	0 °		12 °				

STYLE 1: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN

1

 \bigcirc

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product canditor is on the solution of the SCILLC product canditor is officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use pay stat SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.