

74VHC541 Octal Buffer/Line Driver with TRI-STATE® Outputs

General Description

The VHC541 is an advanced high-speed CMOS device fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The VHC541 is an octal buffer/line driver designed to be employed as memory and address drivers, clock drivers and bus oriented transmitter/receivers.

This device is similar in function to the VHC244 while providing flow-through architecture (inputs on opposite side from outputs). This pinout arrangement makes this device especially useful as an output port for microprocessors, allowing ease of layout and greater PC board density.

An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

- Low power dissipation:
 - $I_{CC} = 4 \mu A \text{ (max) at } T_A = 25^{\circ}C$
- \blacksquare High noise immunity: $V_{NIH} = V_{NIL} =$ 28% V_{CC} (min)
- All inputs are equipped with a power down protection function
- lacktriangle Balanced propagation delays: $t_{PLH} \cong t_{PHL}$
- Low noise: $V_{OLP} = 0.9V$ (typ)
- Pin and function compatible with 74HC541

Commercial	Package Number	Package Description					
74VHC541M	M20B	20-Lead Molded JEDEC SOIC					
74VHC541SJ	M20D	20-Lead Molded EIAJ SOIC					
74VHC541MTC	MTC20	20-Lead Molded JEDEC Type 1 TSSOP					
74VHC541N	N20A	20-Lead Molded DIP					

Note: Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

IEEE/IEC

FΝ

Connection Diagram

Pin Assignment for DIP,

Truth Table

	Outnuto					
OE ₁	OE ₂	I	Outputs			
L	L	Н	Н			
Н	Χ	X	Z			
Х	Н	X	Z			
L	L	L	L			

- H = HIGH Voltage Level
- L = LOW Voltage Level
- X = ImmaterialZ = High Impedance

TRI-STATE® is a registered trademark of National Semiconductor Corporation

TI /F/11639-1

Absolute Maximum Ratings (Note 1)

-0.5V to +7.0VSupply Voltage (V_{CC}) DC Input Voltage (V_{IN}) $-0.5\mbox{V}$ to $\,+\,7.0\mbox{V}$ DC Output Voltage (V_{OUT}) -0.5 V to $V_{\hbox{\footnotesize CC}}\,+\,0.5 V$ Input Diode Current (I_{IK}) $-20\ \text{mA}$ Output Diode Current (I_{OK}) $\pm\,20~mA$ DC Output Current (I_{OUT}) \pm 25 mA DC V_{CC}/GND Current (I_{CC}) $\pm 75\,\text{mA}$ Storage Temperature (T_{STG}) -65°C to +150°C Lead Temperature (T_L)

260°C (Soldering, 10 seconds)

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V_{CC}) 2.0V to +5.5V0V to +5.5VInput Voltage (V_{IN}) 0V to V_{CC} Output Voltage (V_{OUT}) Operating Temperature (T_{OPR}) -40°C to +85°C

Input Rise and Fall Time (t_r, t_f)

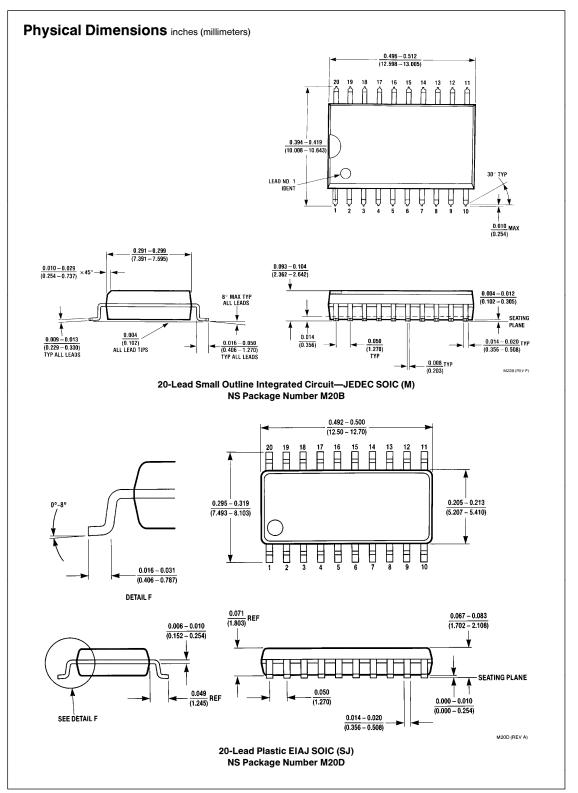
 $0 \sim 100 \, \text{ns/V}$ $V_{\text{CC}} = 3.3V \pm 0.3V$ $V_{\text{CC}} = 5.0V \pm 0.5V$ $0 \sim 20 \, \text{ns/V}$

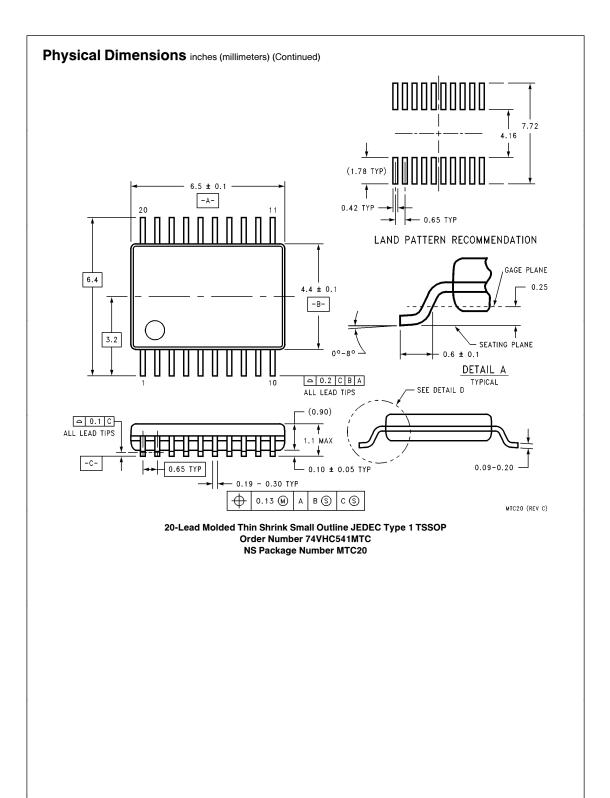
DC Characteristics for 'VHC Family Devices

Symbol	Parameter		74VHC								
		V _{CC} (V)	T _A = 25°C			T _A = -40°C to +85°C		Units	Conditions		
			Min	Тур	Max	Min	Max				
V_{IH}	High Level Input Voltage	2.0 3.0-5.5	1.50 0.7 V _{CC}			1.50 0.7 V _{CC}		V			
V_{IL}	Low Level Input Voltage	2.0 3.0-5.5			0.50 0.3 V _{CC}		0.50 0.3 V _{CC}	٧			
V _{OH}	High Level Output Voltage	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		V	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -50 \mu A$	
		3.0 4.5	2.58 3.94			2.48 3.80		V		$I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	
V _{OL}	Low Level Output Voltage	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	V	$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 50 μA	
		3.0 4.5			0.36 0.36		0.44 0.44	٧		$I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	
l _{OZ}	TRI-STATE Output Off-State Current	5.5			±0.25		±2.5	μΑ	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$		
I _{IN}	Input Leakage Current	0-5.5			±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND		
I _{CC}	Quiescent Supply Current	5.5			4.0		40.0	μΑ	$V_{IN} = V_{CC}$ or GND		

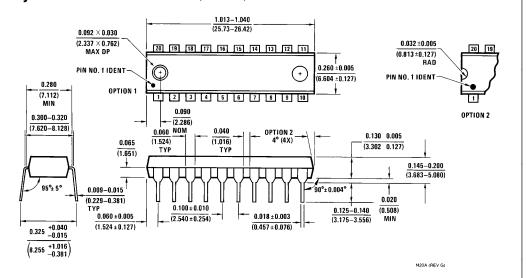
DC Characteristics for 'VHC Family Devices								
		V _{CC} (V)	74	VHC				
Symbol	Parameter		T _A =	= 25°C	Units	Conditions		
			Тур	Limits				
V _{OLP} **	Quiet Output Maximum Dynamic V _{OL}	5.0	0.9	1.2	V	$C_L = 50 pF$		
V _{OLV} **	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.8	-1.0	V	$C_L = 50 pF$		
V _{IHD} **	Minimum High Level Dynamic Input Voltage	5.0		3.5	V	$C_L = 50 pF$		
V _{ILD} **	Maximum High Level Dynamic Input Voltage	5.0		1.5	V	C _L = 50 pF		

^{**}Parameter guaranteed by design.


AC Electrical Characteristics for 'VHC Family Devices:


			74VHC		74VHC		Units	Conditions		
Symbol	Parameter	V _{CC} (V)	T _A = 25°C		$T_{A} = -40^{\circ}C$ to $+85^{\circ}C$					
			Min	Тур	Max	Min	Max			
t _{PLH} ,	Propagation Delay Time	3.3 ±0.3		5.0	7.0	1.0	8.5	ne		$C_L = 15 pF$
t _{PHL}		3.3 ± 0.3		7.5	10.5	1.0	12.0	ns		$C_L = 50 pF$
		5.0 ±0.5		3.5	5.0	1.0	6.0	ns		$C_L = 15 pF$
				5.0	7.0	1.0	8.0			C _L = 50 pF
t _{PZL} ,	TRI-STATE Output Enable	3.3 ±0.3		6.8	10.5	1.0	12.5	ns	$R_L = 1 k\Omega$	$C_L = 15 pF$
t _{PZH}	Time	0.0 ± 0.0		9.3	14.0	1.0	16.0			$C_L = 50 pF$
		5.0 ±0.5		4.7	7.2	1.0	8.5	no.		$C_L = 15 pF$
		0.0 ± 0.0		6.2	9.2	1.0	10.5	ns		C _L = 50 pF
t _{PLZ} ,	TRI-STATE	3.3 ±0.3		11.2	15.4	1.0	17.5		$R_L = 1 k\Omega$	$C_L = 50 pF$
t _{PHZ}	Output Disable Time	5.0 ±0.5		6.0	8.8	1.0	10.0	ns		C _L = 50 pF
toslh,	Output to Output Skew	3.3 ± 0.3			1.5		1.5	ns	(Note 1)	$C_L = 50 pF$
toshl		5.0 ±0.5			1.0		1.0	ris		C _L = 50 pF
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Open	
C _{OUT}	Output Capacitance			6				pF	V _{CC} = 5.0V	
C _{PD}	Power Dissipation Capacitance			18				pF	(Note 2)	

Note 1: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHmax} - t_{PLHmin}|; t_{OSHL} = |t_{PHLmax} - t_{PHLmin}|.$


Note 2: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (OPR.) = CPD * V_{CC} * f_{IN} + I_{CC}/8 (per bit).

Ordering Information 74VHC 541 M — Special Variations "X" = Tape and Reel " " = Rail/Tube Temperature Range Family -74VHC = Commercial Device Type -Package Code -M = Small Outline JEDEC SOIC SJ = Small Outline EIAJ SOIC MTC = Thin Shrink Small Outline JEDEC TSSOP Type 1 N = Molded Plastic DIP TL/F/11639-3

Physical Dimensions millimeters (Continued)

20-Lead (0.300" Wide) Molded Dual-In-Line Package Order Number 74VHC541N NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Europe Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408