

5 port 10/100 Mb/s Single Chip Ethernet Switch Controller

Data Sheet Version 1.0

ADMtek.com.tw

Information in this document is provided in connection with ADMtek products. ADMtek may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". ADMtek reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them

The products may contain design defects or errors know as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request. To obtain the latest documentation please contact your local ADMtek sales office or visit ADMtek's website at http://www.ADMtek.com.tw

*Third-party brands and names are the property of their respective owners.

©Copyright 2003 by ADMtek Incorporated All Rights Reserved.

ADMtek Inc.

About this Manual General Release

Intended Audience ADMtek's Customers

Structure

Chapter 1	Product Overview
Chapter 2	Interface Description
Chapter 3	Function Description
Chapter 4.	Register Description
Chapter 5.	Electrical Specification
Chapter 6.	Packaging

This Data sheet contains 6 chapters

Revision History

Date	Version	Change
13 Nov 2003	1.0	1. First release of ADM6995L

Customer Support

ADMtek Incorporated, 2F, No.2, Li-Hsin Rd., Science-based Industrial Park, Hsinchu, 300, Taiwan, R.O.C.

Sales Information

Tel + 886-3-5788879 Fax + 886-3-5788871

Table of Contents

Chapter	1 Product Overview
1.1	Overview1-1
1.2	Features
1.3	Block Diagram
1.4	Abbreviations
1.5 Co	nventions1-5
1.5.1	Data Lengths1-5
1.5.2	2 Pin Types
1.5.2	2 Register Types
Chapter	2 Interface Description
$2.\bar{1}$	Pin Diagram2-1
2.2	Pin Description by Function
2.2.1	Twisted Pair Interface
2.2.2	2-2 Setting
2.2.3	3 LED Interface
2.2.4	4 EEPROM/Management Interface
2.2.5	5 Power/Ground, 48 pins2-4
2.2.6	5 MISC
Chapter	3 Function Description
3.1	Functional Descriptions
3.2	10/100M PHY Block
3.3	100Base-X Module
3.4	100Base-X Receiver
3.4.1	A/D Converter
3.4.2	2 Adaptive Equalizer and timing Recovery Module
3.4.3	
3.4.4	
3.4.5	0
3.4.6	
3.4.7	
3.4.8	3 Receive Errors
3.4.9	<i>100Base-X Link Monitor</i>
3.4.1	10 Carrier Sense
3.4.1	1 Bad SSD Detection
3.4.1	12 Far-End Fault
3.5	100Base-TX Transceiver
3.5.1	Transmit Drivers
3.5.2	2 Twisted-Pair Receiver
3.6	10Base-T Module
3.6.1	Operation Modes
3.6.2	2 Manchester Encoder/Decoder
3.6.3	3-7 Transmit Driver and Receiver
3.6.4	4 Smart Squelch
3.7	Carrier Sense
3.8	Jabber Function

ADMtek Inc.

3.9	Link Test Function	
3.10	Automatic Link Polarity Detection	
3.11	Clock Synthesizer	
3.12	Auto Negotiation	
3.13	Memory Block	
3.14	Switch Functional Description	
3.15	Basic Operation	
3.15	.1 Address Learning	
3.15	.2 Address Recognition and Packet Forwarding	
3.15	.3 Address Aging	
3.15	.4 Back off Algorithm	
3.15	.5 Inter-Packet Gap (IPG)	
3.15	.6 Illegal Frames	
3.15	.7 Half Duplex Flow Control	
3.15	.8 Full Duplex Flow Control	
3.15	.9 Broadcast Storm filter	
3.16	Auto TP MDIX function	
3.17	Port Locking	
3.18	VLAN setting & Tag/Untag & port-base VLAN	
3.19	Priority Setting	
3.20	LED Display	
Chapter	4 Register Description	4-1
4.1	EEPROM Content	4-1
4.2	EEPROM Register Map	
4.3	EEPROM Register	
4.3.1		
4.3.2	2 Configuration Registers, offset: 0x01h ~ 0x09h	
4.3.3	8, 35	
4.3.4	4 Configuration Register, offset: 0x0bh	
4.3.5	5 Reserved Register, offset: 0x0ch~0x0dh	
4.3.6	5 VLAN priority Map Register, offset: 0x0eh	
4.3.7		
4.3.8	8 Packet with Priority: Normal packet content	
4.3.9		
4.3.1		
4.3.1	5 C C 7 55	
4.3.1	12 VLAN mode select Register, offset: 0x11h	
4.3.1	Miscellaneous Configuration register, offset: 0x12h	4-7
4.3.1	VLAN mapping table registers, offset: 0x22h ~ 0x13h	
4.3.1	0 / 55	
4.3.1	Port0 PVID bit 11 ~ 4 Configuration Register, offset: 0x28h	
4.3.1		
4.3.1		
4.3.1	19 Port3, 4 PVID bit 11~4 Configuration Register, offset: 0x2bh	
4.3.2	20 VLAN group shift bits Configuration Register, offset: 0x2ch	
4.3.2	21 Reserved Register, offset: 0x2dh	

V1.0

ADM6995L

4.3.22	Reserved Register, offset: 0x2eh	
4.3.23	PHY Restart, offset: 0x2fh	
4.3.24	Miscellaneous Configuration Register, offset: 0x30h	
4.3.25	Bandwidth Control Register0~3, offset: 0x31h	
4.3.26	Bandwidth Control Register 4~5, offset: 0x32h	
4.3.27	Bandwidth Control Enable Register, offset: 0x33h	
4.4 EEI	PROM Access	
4.5 Ser	al Register Map	
4.6 Ser	al Register Description	
4.6.1	Chip Identifier Register, offset: 0x00h	
4.6.2	Port Status 0 Register, offset: 0x01h	
4.6.3	Port Status 1 Register, offset: 0x02h	
4.6.4	Cable Broken Status Register, offset: 0x03h	
4.6.5	Over Flow Flag 0 Register, offset: 0x3ah	
4.6.6	Over Flow Flag 0: Register 0x3bh	
4.6.7	Over Flow Flag 2 Register, offset: 0x3ch	
17 Car		4.20
4.7 Seri	al Interface Timing	
	ectrical Specification	
Chapter 5 El		5-1
Chapter 5 El	ectrical Specification	5-1
Chapter 5 El 5.1 TX	ectrical Specification FX Interface	5-1 5-1 5-1
Chapter 5 El 5.1 TX/ 5.1.1 5.1.2	ectrical Specification /FX Interface <i>TP Interface</i>	5-1 5-1 5-1 .5-1
Chapter 5 El 5.1 TX/ 5.1.1 5.1.2	ectrical Specification FX Interface TP Interface FX Interface	5-1 5-1 5-1 5-1 5-2
Chapter 5 El 5.1 TX/ 5.1.1 5.1.2 5.2 DC	ectrical Specification FX Interface TP Interface FX Interface Characteristics	5-1 5-1 5-1 5-1 5-2 5-2
Chapter 5 El 5.1 TX/ 5.1.1 5.1.2 5.2 DC 5.2.1	ectrical Specification FX Interface <i>TP Interface</i> <i>FX Interface</i> Characteristics <i>Absolute Maximum Rating</i>	5-1 5-1 5-1 5-1 5-1 5-2 5-2 5-2 5-2
Chapter 5 El 5.1 TX/ 5.1.1 5.1.2 5.2 DC 5.2.1 5.2.2 5.2.3	ectrical Specification (FX Interface <i>TP Interface</i> <i>FX Interface</i> Characteristics <i>Absolute Maximum Rating</i> <i>Recommended Operating Conditions</i>	5-1 5-1 5-1 5-1 5-1 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5
Chapter 5 El 5.1 TX/ 5.1.1 5.1.2 5.2 DC 5.2.1 5.2.2 5.2.3 5.3 AC	ectrical Specification FX Interface TP Interface FX Interface Characteristics Absolute Maximum Rating Recommended Operating Conditions DC Electrical Characteristics for 3.3V Operation	5-1 5-1 5-1 5-1 5-2 5-2 5-2 5-2 5-2 5-2 5-3
Chapter 5 El 5.1 TX/ 5.1.1 5.1.2 5.2 DC 5.2.1 5.2.2 5.2.3 5.3 AC	ectrical Specification (FX Interface <i>TP Interface</i> <i>FX Interface</i> Characteristics <i>Absolute Maximum Rating</i> <i>Recommended Operating Conditions</i> <i>DC Electrical Characteristics for 3.3V Operation</i> Characteristics	5-1 5-1 5-1 5-1 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-2
Chapter 5 El 5.1 TX/ 5.1.1 5.1.2 5.2 DC 5.2.1 5.2.2 5.2.3 5.3 AC 5.3 AC	ectrical Specification FX Interface TP Interface FX Interface Characteristics Absolute Maximum Rating Recommended Operating Conditions DC Electrical Characteristics for 3.3V Operation Characteristics Characteristics	5-1 5-1 5-1 5-1 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-3 5-3 5-3
Chapter 5 El 5.1 TX/ 5.1.1 5.1.2 5.2 DC 5.2.1 5.2.2 5.2.3 5.3 AC 5.3 AC 5.3.1	ectrical Specification FX Interface TP Interface FX Interface Characteristics Absolute Maximum Rating Recommended Operating Conditions DC Electrical Characteristics for 3.3V Operation Characteristics Characteristics Power On Reset.	5-1
Chapter 5 El 5.1 TX/ 5.1.1 5.1.2 5.2 DC 5.2.1 5.2.2 5.2.3 5.3 AC 5.3 AC 5.3.1 5.3.2	ectrical Specification FX Interface TP Interface FX Interface Characteristics Absolute Maximum Rating Recommended Operating Conditions DC Electrical Characteristics for 3.3V Operation Characteristics Characteristics Power On Reset EEPROM Interface Timing	5-1 5-1 5-1 5-1 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-3 5-3 5-3 5-4
Chapter 5 El 5.1 TX/ 5.1.1 5.1.2 5.2 DC 5.2.1 5.2.2 5.2.3 5.3 AC 5.3 AC 5.3.1 5.3.2 5.3.3 5.3.4 Chapter 6 Pa	ectrical Specification FX Interface TP Interface FX Interface Characteristics Absolute Maximum Rating Recommended Operating Conditions DC Electrical Characteristics for 3.3V Operation Characteristics Characteristics Power On Reset EEPROM Interface Timing GPSI(7-wire) Input Timing	5-1 5-1 5-1 5-1 5-2 5-2 5-2 5-2 5-2 5-2 5-2 5-3 5-3 5-3 5-3 5-3 5-3 5-4 5 -4 6 -1

List of Figures

Figure 1-1 ADM6995L Block Diagram	1-	.3	
Figure 2-1 5 TP/FX PORT 128 Pin Diagram	2-	-1	

Chapter 1 Product Overview

1.1 Overview

The ADM6995L is a high performance, low cost, highly integrated (Controller, PHY and Memory) five-port 10/100 Mbps TX/FX Ethernet switch controller with all ports supporting 10/100 Mbps Full/Half duplex. The ADM6995L is intended for applications to stand alone bridge for the low cost SOHO market.

ADM6995L provides advanced functions such as: 802.1p(Q.O.S.), 802.1q(VLAN), Port MAC address Locking, Management, Port Status, TP Auto-MDIX & 25M Crystal functions to meet customer requests on Switch demands.

The ADM6995L also supports Back Pressure in Half-Duplex mode and the 802.3x Flow Control Pause packet in Full-Duplex mode to prevent packet loss when the buffer is full. When Back Pressure is enabled, and there is no receive buffer available for the incoming packet, the ADM6995L will issue a JAM pattern on the receiving port in Half Duplex mode and transmit the 802.3x Pause packet back to the receiving end in Full Duplex mode.

The built-in SRAM is used for packet buffering and the address-learning table is divided into 256 bytes/block to achieve the optimized memory utilization through complicated link lists on packets with various lengths.

ADM6995L also supports priority features such as Port-Based VLAN and IP TOS field checking. Users can easily set different priority modes in individual ports, through a small low-cost micro controller used to initialize or used on the fly to configure. Each output port supports four queues in the way of fixed N: 1 fairness queuing to fit the bandwidth demand on various types of packets such as Voice, Video and data. 802.1Q, Tag/Untag, and up to 16 groups of VLAN are also supported.

An intelligent address recognition algorithm gives ADM6995L the ability to recognize up to 2048 different MAC addresses and enables filtering and forwarding at full wire speed.

The port MAC address Locking function is also supported by ADM6995L to use on Building Internet access to prevent multiple users sharing one port traffic.

1.2 Features

- Supports five 10M/100M auto-detect Half/Full duplex switch ports with **TX/FX** interfaces.
- Supports 2048 MAC addresses table.
- Supports four queue for QoS
- Supports priority features by Port-Based, 802.1p VLAN & IP TOS of packets.
- Supports Store & Forward architecture and performs forwarding and filtering at nonblocking full wire speed.
- Supports buffer allocation with 256 bytes per block
- Supports Aging function Enable/Disable.
- Supports per port Single/Dual color mode with Power On auto diagnostic.
- Supports 802.3x Flow Control pause packet for Full Duplex in case buffer is full.
- Supports Back Pressure function for Half Duplex operation in case buffer is full.
- Supports packet length up to 1522 bytes.
- Broadcast Storming Filter function.
- Supports 802.1Q VLAN. Up to 16 VLAN groups is implemented by the last four bits of VLAN ID.
- 2bit MAC clone to support multiple WAN application
- Supports TP interface Auto MDIX function for auto TX/RX swap by strapping-pin.
- Easy Management 32bits smart counter for per port RX/TX byte/packet count, error count and collision count.
- Support PHY status output for management system.
- 25M Crystal only for the whole system.
- 128 QFP package with 0.18um technology. 1.8V/3.3V power supply.

1.3 Block Diagram

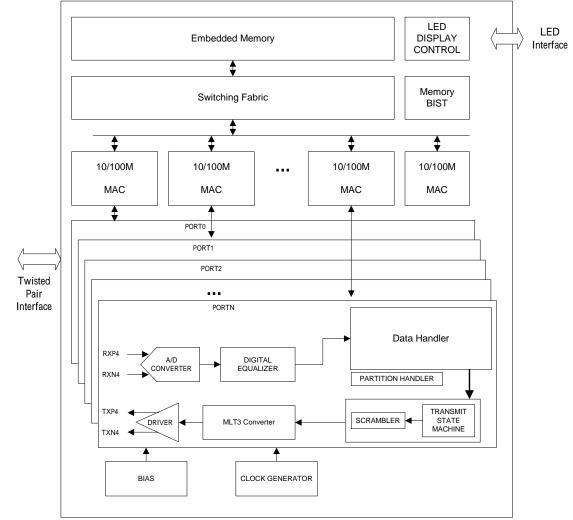


Figure 1-1 ADM6995L Block Diagram

1.4 Abbreviations

BER	Bit Error Rate
CFI	Canonical Format Indicator
COL	Collision
CRC	Cyclic Redundancy Check
CRS	Carrier Sense
CS	Chip Select
DA	Destination Address
DI	Data Input
DO	Data Output
EDI	EEPROM Data Input
EDO	EEPROM Data Output
EECS	EEPROM Chip Select

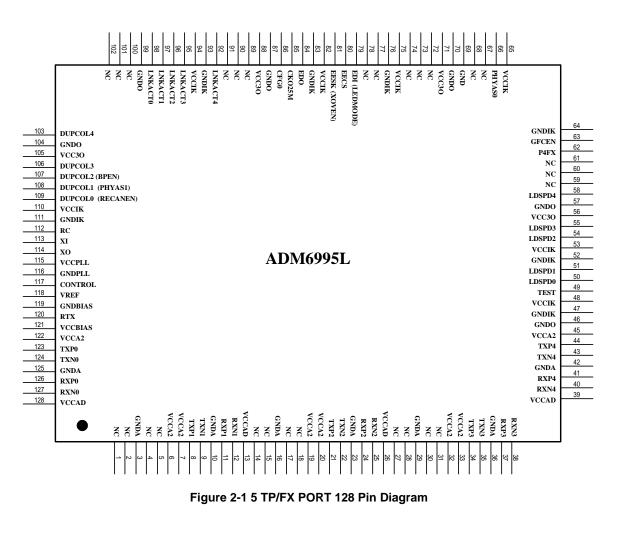
EESK	EEPROM Clock
ESD	End of Stream Delimiter
FEFI	Far End Fault Indication
FET	Field Effect Transistor
FLP	Fast Link Pulse
GND	Ground
GPSI	General Purpose Serial Interface
IPG	Inter-Packet Gap
LFSR	Linear Feedback Shift Register
MAC	Media Access Controller
MDIX	MDI Crossover
MII	Media Independent Interface
NRZI	Non Return to Zero Inverter
NRZ	Non Return to Zero
PCS	Physical Coding Sub-layer
PHY	Physical Layer
PLL	Phase Lock Loop
PMA	Physical Medium Attachment
PMD	Physical Medium Dependent
QoS	Quality of Service
QFP	Quad Flat Package
RST	Reset
RXCLK	Receive Clock
RXD	Receive Data
RXDV	Receive Data Valid
RXER	Receive Data Errors
RXN	Receive Negative (Analog receive differential signal)
RXP	Receive Positive (Analog receive differential signal)
SA	Source Address
SOHO	Small Office Home Office
SSD	Start of Stream Delimiter
SQE	Signal Quality Error
TOS	Type of Service
TP	Twisted Pair
TTL	Transistor Transistor Logic
TXCLK	Transmission Clock
TXD	Transmission Data
TXEN	Transmission Enable
TXN	Transmission Negative
TXP	Transmission Positive

1.5 Conventions

1.5.1 Data Lengths

qword	64-bits
dword	32-bits
word	16-bits
byte	8 bits
nibble	4 bits

1.5.2 Pin Types


Pin Type	Description
Ι	Input
0	Output
I/O	Bi-directional
OD	Open drain
SCHE	Schmitt Trigger
PD	internal pull-down
PU	internal pull-up

1.5.2 Register Types

Register Type	Description
RO	Read-only
WO	Write-only
RW	Read/Write

Chapter 2 Interface Description

2.1 Pin Diagram

2.2 Pin Description by Function

ADM6995L pins are categorized into one of the following groups:

- Section 2.2.1 Twisted Pair Interface
- Section 2.2.2 Settings
- Section 2.2.3 LED Interface
- Section 2.2.4 EEPROM/Management Interface
- Section 2.2.5 Power/Ground, 48 pins
- Section 2.2.6 MISC

Note:

"Section 1.5.2 Pin Types" can be used for reference.

2.2.1 Twisted Pair Interface

Pin Name	Pin#	Туре	Descriptions	
RXP[0:4]	126, 11, 24, 37, 41	I/O,	Twisted Pair Receive Input Positive.	
		Analog		
RXN[0:4]	127, 12, 25, 38, 40	I/O,	Twisted Pair Receive Input Negative.	
		Analog		
TXP[0:4]	123, 8, 21, 34, 44	I/O,	Twisted Pair Transmit Output Positive.	
		Analog		
TXN[0:4]	124, 9, 22, 35, 43	I/O,	Twisted Pair Transmit Output Negative.	
		Analog		

2.2.2 Setting

Pin Name	Pin#	Туре	Descriptions
GFCEN	63	I/O, 8mA PU	Setting GFCEN: Global Flow Control Enable. At power-on-reset, latched as Full Duplex Flow control setting "1" to enable flow-control (default), "0" to disable flow- control.
P4FX	62	I PD	Port4 FX/TX mode select. Internal pull down. 1: Port4 as FX port. 0: Port4 as TX port.
PHYAS0	66	I/O 8mA PD	Setting PHYAS0: Chip physical address for multiple chip application on read EEPROM data. Internal pull down. Power on reset value PHYAS0 combines with PHYAS1 PHYAS1 PHYAS0 0 0 Master(93C46) If there is no EEPROM then user must use 93C66 timing to write chip's register. If user put 93C46 with correct Signature then user writes chip register by 93C46 timing.

Pin Name	Pin#	Туре	Descriptions
			If user put 93C66 then data put in Bank0. User can write chip register by 93C66 timing. User must assert one SK cycle when CS at idle stage when write chip internal register.

2.2.3 LED Interface

Pin Name	Pin#	Туре	Descriptions
LNKACT[4:0]	92, 95, 96, 97, 98	О,	LINK/Activity LED[4:0]. Active low
		8mA	"1" indicates no link activity on cable
			"0" indicates link okay on cable, but no activity and signals
			on idle stage.
			"Blinking" indicates link activity on cable.
DUPCOL[4:3]	103, 106	О,	Duplex/Collision LED[4:3]. Active low
		8mA	"1" for half-duplex and "blinking" for collision indication
			"0" for full-duplex indication
DUPCOL2	107	О,	Duplex/Collision LED2. Active low
		8mA,	"1" for half-duplex and "blinking" for collision indication
		PU	"0" for full-duplex indication
Setting			Setting
BPEN			BPEN: At power-on-reset, latched as Back Pressure setting
			"1" to enable Back-Pressure (defaulted), "0" to disable Back
			Pressure.
			At power-on-reset, latched as Back Pressure setting "1" to
			enable Back-Pressure (defaulted), "0" to disable Back
			Pressure.
DUPCOL1	108	О,	Duplex/Collision LED1. Active low
		8mA,	"1" for half-duplex and "blinking" for collision indication
Setting		PD	"0" for full-duplex indication
PHYAS1			Setting
			PHYAS1: Power on Reset latch value combine with TXEN.
			Internal pull down. Check pin 66.
DUPCOL0	109	О,	Duplex/Collision LED0. Active low
		8mÅ,	"1" for half-duplex and "blinking" for collision indication
Setting ANEN		PU	"0" for full-duplex indication
			Setting
			ANEN: On power-on-reset, latched as Auto Negotiation
			capability for all ports.
			"1" to enable Auto Negotiation (defaulted by pulled up
			internally),
			"0" to disable Auto Negotiation.
LDSPD[4:0]	58, 55, 54, 51, 50	О,	Speed LED[4:0]. Used to indicate corresponding port's
		8mA	speed status. "0" for 100Mb/s, "1" for 10Mb/s

Pin Name	Pin#	Туре	Descriptions
EDO	84	Туре	
EDO	04		EEPROM Data Output. Serial data input from EEPROM.
		-	This pin is internally pull-up.
EECS	80	О,	EEPROM Chip Select. This pin is active high chip enable
		4mA,PD	for EEPROM. When RESETL is low, it will be Tri-state.
			Internally Pull-down
EECK	81	I/O,	Serial Clock. This pin is clock source for EEPROM. When
		4mA	RESETL is low, it will be tri-state.
		PD	
Setting			Setting
XOVEN			XOVEN: This pin is internal pull-down. On power-on-reset,
			latched as P4~0 Auto MDIX enable or not.
			"0" to disable MDIX (defaulted), "1" to enable MDIX.
			Suggest externally pull up to enable MDIX for all ports.
EDI	79	I/O,	EEPROM Serial Data Input. This pin is output for serial
	15	4mA	data transfer. When RESETL is low, it will be tri-state.
		PD	
Cottin a		FD	Cotting
Setting			Setting
LEDMODE			LEDMODE: This pin is internal pull-down. On power-on-
			reset, latched as Dual Color mode or not.
			"0" to set Single color mode for LED.
			"1" to set Dual Color mode for LED.

2.2.4 EEPROM/Management Interface

2.2.5 Power/Ground, 48 pins

Pin Name	Pin#	Туре	Descriptions	
GNDA	3, 10, 16, 23, 29, 36, 42, 125	I	Ground Used by AD Block.	
VCCA2	6, 7, 19, 20, 32, 33, 45, 122	I	1.8V, Power Used by TX Line Driver.	
VCCAD	13, 26, 39, 128	Ι	3.3V, Power Used by AD Block.	
GNDBIAS	119	I	Ground Used by Bias Block	
VCCBIAS	121	I	3.3V, Power Used by Bias Block.	
GNDPLL	116	I	Ground used by PLL	
VCCPLL	115	I	1.8V, Power used by PLL	
GNDIK	47, 52, 64, 76, 93, 83, 111	I	Ground Used by Digital Core	
VCCIK	48, 53, 65, 75, 82, 94, 110	Ι	1.8V, Power Used by Digital Core	
GNDO	46, 57, 70, 87, 99, 104	I	Ground Used by Digital Pad	
VCC3O	56, 71, 88, 105	Ι	3.3V, Power Used by Digital Pad.	
GND	69		Ground Used by Digital Pad.	

2.2.6 MISC

Pin Name	Pin#	Туре	Descriptions
CKO25M	85	<u> </u>	25M Clock Output.
01102011		8mA	
Control	117	0	FET Control Signal.
			The pin is used to control FET for 3.3V to 1.8V regulator.
RTX	120	Analog	TX Resistor. Add 1.1K %1 resister to GND.
VREF	118	Analog	Analog Reference Voltage.
RC	112	I,	RC Input for Power On reset. Reset input pin.
		SCHE	
XI	113	I,	25M Crystal Input. 25M Crystal Input. Variation is limited
		Analog	to +/- 50ppm.
ХО	114	О,	25M Crystal Output. When connected to oscillator, this pin
		Analog	should left unconnected.
CFG0	86	I,	Must Connected to GND.
		TTL	
TEST	49	I,	TEST Value.
		TTL	At normal application connect to GND.
NC	1, 2, 4,5, 14, 15,17,		NC
	18, 27,28,		
NC	61, 59, 60	I/O,	NC.
		8mA	
		PD	
NC	74, 102, 101,		NC
	100, 73, 68, 78, 77,	PD	
	72, 67, 91, 90, 89		

Chapter 3 Function Description

3.1 Functional Descriptions

The ADM6995L integrates five 100Base-X physical sub-layer (PHY), 100Base-TX physical medium dependent (PMD) transceivers, five complete 10Base-T modules and memory into a single chip for both 10Mbits/s, 100Mbits/s Ethernet switch operation. It also supports 100Base-FX operation through external fiber-optic transceivers. The device is capable of operating in either Full Duplex mode or Half-Duplex mode in 10Mbits/s and 100Mbits/s. Operational modes can be selected by hardware configuration pins, software settings of management registers, or determined by the on-chip auto negotiation logic.

The ADM6995L consists of three major blocks:

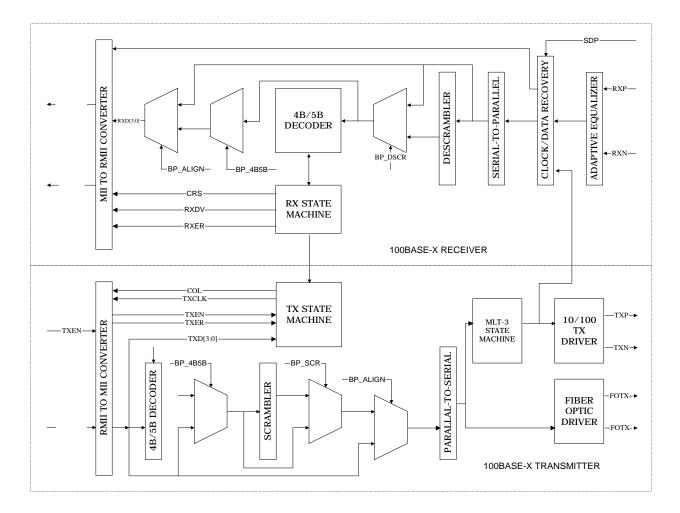
- 10/100M PHY Block
- Switch Controller Block
- Built-in SSRAM

3.2 10/100M PHY Block

The 100Base-X section of the device implements the following functional blocks:

- 100Base-X physical coding sub-layer (PCS)
- 100Base-X physical medium attachment (PMA)
- Twisted-pair transceiver (PMD)
- The 100Base-X and 10Base-T sections share the following functional blocks.
- Clock synthesizer module
- IEEE 802.3u auto negotiation

3.3 100Base-X Module


The ADM6995L implements 100Base-X compliant PCS and PMA and 100Base-TX compliant TP-PMD as illustrated in Figure 2. Bypass options for each of the major functional blocks within the 100Base-X PCS provides flexibility for various applications. 100Mbits/s PHY loop back is included for diagnostic purpose.

3.4 100Base-X Receiver

The 100Base-X receiver consists of functional blocks required to recover and condition the 125Mbits/s receive data stream. The ADM6995L implements the 100Base-X receiving state machine diagram as given in ANSI/IEEE Standard 802.3u, Clause 24. The 125Mbits/s receive data stream may originate from the on-chip twisted-pair transceiver in a 100Base-TX application. Alternatively, the receive data stream may be generated by an external optical receiver as in a 100Base-FX application.

The receiver block consists of the following functional sub-blocks :

- A/D Converter
- Adaptive Equalizer and timing recovery module
- NRZI/NRZ and serial/parallel decoder
- De-scrambler
- Symbol alignment block
- Symbol Decoder
- Collision Detect Block
- Carrier sense Block
- Stream decoder block

3.4.1 A/D Converter

High performance A/D converter with 125Mhz sampling rate converts signals received on RXP/RXN pins to 6 bits data streams; besides it possess auto-gain-control capability that will further improve receive performance especially under long cable or harsh detrimental signal integrity. Due to high pass characteristic on transformer, built in baseline-wander correcting circuit will cancel it out and restore its DC level.

3.4.2 Adaptive Equalizer and timing Recovery Module

All digital design is especial immune from noise environments and achieves better correlation between production and system testing. Baud rate Adaptive Equalizer/Timing Recovery compensates line loss induced from twisted pair and tracks far end clock at 125M samples per second. Adaptive Equalizer implemented with Feed forward and Decision Feedback techniques meet the requirement of BER less than 10-12 for transmission on CAT5 twisted pair cable ranging from 0 to 120 meters.

3.4.3 NRZI/NRZ and Serial/Parallel Decoder

The recovered data is converted from NRZI to NRZ. The data is not necessarily aligned to 4B/5B code group's boundary.

3.4.4 Data De-scrambling

The de-scrambler acquires synchronization with the data stream by recognizing idle bursts of 40 or more bits and locking its deciphering Linear Feedback Shift Register (LFSR) to the state of the scrambling LFSR. Upon achieving synchronization, the incoming data is XORed by the deciphering LFSR and de-scrambled.

In order to maintain synchronization, the de-scrambler continuously monitors the validity of the unscrambled data that it generates. To ensure this, a link state monitor and a hold timer are used to constantly monitor the synchronization status. Upon synchronization of the de-scrambler the hold timer starts a 722 us countdown. Upon detection of sufficient idle symbols within the 722 us period, the hold timer will reset and begin a new countdown. This monitoring operation will continue indefinitely given a properly operating network connection with good signal integrity. If the link state monitor does not recognize sufficient unscrambled idle symbols within 722 us period, the de-scrambler will be forced out of the current state of synchronization and reset in order to re-acquire synchronization.

3.4.5 Symbol Alignment

The symbol alignment circuit in the ADM6995L determines code word alignment by recognizing the /J/K delimiter pair. This circuit operates on unaligned data from the descrambler. Once the /J/K symbol pair (11000 10001) is detected, subsequent data is aligned on a fixed boundary.

3.4.6 Symbol Decoding

The symbol decoder functions as a look-up table that translates incoming 5B symbols into 4B nibbles as shown in Table 1. The symbol decoder first detects the /J/K symbol pair preceded by idle symbols and replaces the symbol with MAC preamble. All subsequent 5B symbols are converted to the corresponding 4B nibbles for the duration of the entire packet. This conversion ceases upon the detection of the /T/R symbol pair

denoting the end of stream delimiter (ESD). The translated data is presented on the internal RXD[3:0] signal lines with RXD[0] represents the least significant bit of the translated nibble.

3.4.7 Valid Data Signal

The valid data signal (RXDV) indicates that recovered and decoded nibbles are being presented on the internal RXD[3:0] synchronous to receive clock, RXCLK. RXDV is asserted when the first nibble of translated /J/K is ready for transfer over the internal MII. It remains active until either the /T/R delimiter is recognized, link test indicates failure, or no signal is detected. On any of these conditions, RXDV is de-asserted.

3.4.8 Receive Errors

The RXER signal is used to communicate receiver error conditions. While the receiver is in a state of holding RXDV asserted, the RXER will be asserted for each code word that does not map to a valid code-group.

3.4.9 100Base-X Link Monitor

The 100Base-X link monitor function allows the receiver to ensure that reliable data is being received. Without reliable data reception, the link monitor will halt both transmit and receive operations until such time that a valid link is detected.

The ADM6995L performs the link integrity test as outlined in IEEE 100Base-X (Clause 24) link monitor state diagram. The link status is multiplexed with 10Mbits/s link status to form the reportable link status bit in serial management register 1h, and driven to the LNKACT pin.

When persistent signal energy is detected on the network, the logic moves into a Link-Ready state after approximately 500 us, and waits for an enable from the auto negotiation module. When received, the link-up state is entered, and the transmission and reception logic blocks become active. Should auto negotiation be disabled, the link integrity logic moves immediately to the link-up state after entering the link-ready state.

3.4.10 Carrier Sense

Carrier sense (CRS) for 100Mbits/s operation is asserted upon the detection of two noncontiguous zeros occurring within any 10-bit boundary of the received data stream.

The carrier sense function is independent of symbol alignment. In switch mode, CRS is asserted during either packet transmission or reception. For repeater mode, CRS is asserted only during packet reception. When the idle symbol pair is detected in the received data stream, CRS is de-asserted. In repeater mode, CRS is only asserted due to receive activity. CRS is intended to encapsulate RXDV.

3.4.11 Bad SSD Detection

A bad start of stream delimiter (Bad SSD) is an error condition that occurs in the 100Base-X receiver if carrier is detected (CRS asserted) and a valid /J/K set of codegroup (SSD) is not received.

If this condition is detected, then the ADM6995L will assert RXER and present RXD[3:0] = 1110 to the internal MII for the cycles hat correspond to received 5B codegroups until at least two idle code-groups are detected. Once at least two idle code groups are detected, RXER and CRS become de-asserted.

3.4.12 Far-End Fault

Auto negotiation provides a mechanism for transferring information from the Local Station to the link Partner that a remote fault has occurred for 100Base-TX. As auto negotiation is not currently specified for operation over fiber, the far end fault indication function (FEFI) provides this capability for 100Base-FX applications.

A remote fault is an error in the link that one station can detect while the other cannot. An example of this is a disconnected wire at a station's transmitter. This station will be receiving valid data and detect that the link is good via the link integrity monitor, but will not be able to detect that its transmission is not propagating to the other station.

A 100Base-FX station that detects such a remote fault may modify its transmitted idle stream from all ones to a group of 84 ones followed by a single 0. This is referred to as the FEFI idle pattern.

3.5 100Base-TX Transceiver

ADM6995L implements a TP-PMD compliant transceiver for 100Base-TX operation. The differential transmit driver is shared by the 10Base-T and 100Base-TX subsystems. This arrangement results in one device that uses the same external magnetic for both the 10Base-T and the 100Base-TX transmission with simple RC component connections. The individually wave-shaped 10Base-T and 100Base-TX transmit signals are multiplexed in the transmission output driver selection.

3.5.1 Transmit Drivers

The ADM6995L 100Base-TX transmission driver implements MLT-3 translation and wave-shaping functions. The rise/fall time of the output signal is closely controlled to conform to the target range specified in the ANSI TP-PMD standard.

3.5.2 Twisted-Pair Receiver

For 100Base-TX operation, the incoming signal is detected by the on-chip twisted-pair receiver that consists of a differential line receiver, an adaptive equalizer and a base-line wander compensation circuits.

The ADM6995L uses an adaptive equalizer that changes filter frequency response in accordance with cable length. The cable length is estimated based on the incoming signal strength. The equalizer tunes itself automatically for any cable length to compensate for the amplitude and phase distortions incurred from the cable.

3.6 10Base-T Module

The 10Base-T Transceiver Module is IEEE 802.3 compliant. It includes the receiver, transmitter, collision, heartbeat, loop back, jabber, wave shaper, and link integrity functions, as defined in the standard. Figure 3 provides an overview for the 10Base-T module.

The ADM6995L 10Base-T module is comprised of the following functional blocks:

- Manchester encoder and decoder
- Collision detector
- Link test function
- Transmit driver and receiver
- Serial and parallel interface
- Jabber and SQE test functions
- Polarity detection and correction

3.6.1 Operation Modes

The ADM6995L 10Base-T module is capable of operating in either half-duplex mode or full-duplex mode. In half-duplex mode, the ADM6995L functions as an IEEE 802.3 compliant transceiver with fully integrated filtering. The COL signal is asserted during collisions or jabber events, and the CRS signal is asserted during transmit and receive. In full duplex mode the ADM6995L can simultaneously transmit and receive data.

3.6.2 Manchester Encoder/Decoder

Data encoding and transmission begins when the transmission enable input (TXEN) goes high and continues as long as the transceiver is in good link state. Transmission ends when the transmission enable input goes low. The last transition occurs at the center of the bit cell if the last bit is a 1, or at the boundary of the bit cell if the last bit is 0.

Decoding is accomplished by a differential input receiver circuit and a phase-locked loop that separate the Manchester-encoded data stream into clock signals and NRZ data. The decoder detects the end of a frame when no more mid bit transitions are detected. Within one and half bit times after the last bit, carrier sense is de-asserted.

3.6.3 Transmit Driver and Receiver

The ADM6995L integrates all the required signal conditioning functions in its 10Base-T block such that external filters are not required. Only one isolation transformer and impedance matching resistors are needed for the 10Base-T transmit and receive interface. The internal transmit filtering ensures that all the harmonics in the transmission signal are attenuated properly.

3.6.4 Smart Squelch

The smart squelch circuit is responsible for determining when valid data is present on the differential receive. The ADM6995L implements an intelligent receive squelch on the RXP/RXN differential inputs to ensure that impulse noise on the receive inputs will not be mistaken for a valid signal. The squelch circuitry employs a combination of amplitude and timing measurements (as specified in the IEEE 802.3 10Base-T standard) to determine the validity of data on the twisted-pair inputs.

The signal at the start of the packet is checked by the analog squelch circuit and any pulses not exceeding the squelch level (either positive or negative, depending upon polarity) will be rejected. Once this first squelch level is overcome correctly, the opposite squelch level must then be exceeded within 150ns. Finally, the signal must exceed the original squelch level within an additional 150ns to ensure that the input waveform will not be rejected.

Only after all these conditions have been satisfied will a control signal be generated to indicate to the remainder of the circuitry that valid data is present.

Valid data is considered to be present until the squelch level has not been generated for a time longer than 200 ns, indicating end of packet. Once good data has been detected, the squelch levels are reduced to minimize the effect of noise, causing premature end-of-packet detection. The receive squelch threshold level can be lowered for use in longer cable applications. This is achieved by setting bit 10 of register address 11h.

3.7 Carrier Sense

Carrier Sense (CRS) is asserted due to receive activity once valid data is detected via the smart squelch function. For 10 Mbits/s half duplex operation, CRS is asserted during either packet transmission or reception. For 10 Mbits/s full duplex and repeater mode operations, the CRS is asserted only due to receive activity.

3.8 Jabber Function

The jabber function monitors the ADM6995L output and disables the transmitter if it attempts to transmit a longer than legal sized packet. If TXEN is high for greater than

24ms, the 10Base-T transmitter will be disabled. Once disabled by the jabber function, the transmitter stays disabled for the entire time that the TXEN signal is asserted. This signal has to be de-asserted for approximately 256 ms (The un-jab time) before the jabber function re-enables the transmit outputs. The jabber function can be disabled by programming bit 4 of register address 10h to high.

3.9 Link Test Function

A link pulse is used to check he integrity of the connection with the remote end. If valid link pulses are not received, the link detector disables the 10Base-T twisted-pair transmitter, receiver, and collision detection functions.

The link pulse generator produces pulses as defined in IEEE 802.3 10Base-T standard. Each link pulse is nominally 100ns in duration and is transmitted every 16 ms, in the absence of transmit data.

3.10 Automatic Link Polarity Detection

ADM6995L's 10Base-T transceiver module incorporates an "automatic link polarity detection circuit". The inverted polarity is determined when seven consecutive link pulses of inverted polarity or three consecutive packets are received with inverted end-of-packet pulses. If the input polarity is reversed, the error condition will be automatically corrected and reported in bit 5 of register 10h.

3.11 Clock Synthesizer

The ADM6995L implements a clock synthesizer that generates all the reference clocks needed from a single external frequency source. The clock source must be a TTL level signal at 25 MHz +/- 50ppm

3.12 Auto Negotiation

The Auto Negotiation function provides a mechanism for exchanging configuration information between two ends of a link segment and automatically selecting the highest performance mode of operation supported by both devices. Fast Link Pulse (FLP) Bursts provide the signaling used to communicate auto negotiation abilities between two devices at each end of a link segment. For further detail regarding auto negotiation, refer to Clause 28 of the IEEE 802.3u specification. The ADM6995L supports four different Ethernet protocols, so the inclusion of auto negotiation ensures that the highest performance protocol will be selected based on the ability of the link partner.

Highest priority relative to the following list:

- 100Base-TX full duplex (highest priority)
- 100Base-TX half duplex
- 10Base-T full duplex
- 10Base-T half duplex (lowest priority)

3.13 Memory Block

ADM6995L build in memory is divided as two blocks. One is MAC addressing table and another one is data buffer.

MAC address Learning Table size is 2048 entry with each entry occupy eight bytes length. These eight bytes data include 6 bytes source address, VLAN information, Port information and Aging counter.

Data buffer is divided to 256 bytes/block. ADM6995L buffer management is per port fixed block number and all port share one global buffer. This architecture can get better memory utilization and network balance on different speed and duplex test condition.

Received packet will separate as several 256 bytes/block and chain together. If packet size more than 256 bytes then ADM6995L will chain two or more block to store receiving packet.

3.14 Switch Functional Description

The ADM6995L uses a "store & forward" switching approach for the following reason: Store & forward switches allow switching between different speed media (e.g. 10BaseX and 100BaseX). Such switches require the large elastic buffer especially bridging between a server on a 100Mbps network and clients on a 10Mbps segment.

Store & forward switches improve overall network performance by acting as a "network cache"

Store & forward switches prevent the forwarding of corrupted packets by the frame check sequence (FCS) before forwarding to the destination port.

3.15 Basic Operation

The ADM6995L receives incoming packets from one of its ports, searches in the Address Table for the Destination MAC Address and then forwards the packet to the other port within same VLAN group, if appropriate. If the destination address is not found in the address table, the ADM6995L treats the packet as a broadcast packet and forwards the packet to the other ports which in same VLAN group.

The ADM6995L automatically learns the port number of attached network devices by examining the Source MAC Address of all incoming packets at wire speed. If the Source Address is not found in the Address Table, the device adds it to the table.

3.15.1 Address Learning

The ADM6995L uses a hash algorithm to learn the MAC address and can learn up to 2K MAC addresses. Address is stored in the Address Table. The ADM6995L searches for the Source Address (SA) of an incoming packet in the Address Table and acts as below:

If the SA was not found in the Address Table (a new address), the ADM6995L waits until the end of the packet (non-error packet) and updates the Address Table. If the SA was found in the Address Table, then aging value of each corresponding entry will be reset to 0.

When the DA is PAUSE command, then the learning process will be disabled automatically by ADM6995L.

3.15.2 Address Recognition and Packet Forwarding

The ADM6995L forwards the incoming packets between bridged ports according to the Destination Address (DA) as below. All the packet forwarding will check VLAN first. Forwarding port must same VLAN with source port.

- 1) If the DA is an UNICAST address and the address was found in the Address Table, the ADM6995L will check the port number and acts as follows:
 - If the port number is equal to the port on which the packet was received, the packet is discarded.
 - If the port number is different, the packet is forwarded across the bridge.
- 2) If the DA is an UNICAST address and the address was not found, the ADM6995L treats it as a multicast packet and forwards across the bridge.
- 3) If the DA is a Multicast address, the packet is forwarded across the bridge.
- 4) If the DA is PAUSE Command (01-80-C2-00-00-01), then this packet will be dropped by ADM6995L. ADM6995L can issue and learn PAUSE command.
- 5) ADM6995L will forward the packet with DA of (01-80-C2-00-00-00), filter out the packet with DA of (01-80-C2-00-00-01), and forward the packet with DA of (01-80-C2-00-00-02 ~ 01-80-C2-00-00-0F)

3.15.3 Address Aging

Address aging is supported for topology changes such as an address moving from one port to the other. When this happens, the ADM6995L internally has a 300 seconds timer will aged out (remove) the address from the address table. Aging function can enable/disable by user. Normally, disabling aging function is for security purpose.

3.15.4 Back off Algorithm

The ADM6995L implements the truncated exponential back off algorithm compliant to the 802.3 CSMA-CD standard. ADM6995L will restart the back off algorithm by choosing 0-9 collision counts. The ADM6995L resets the collision counter after 16 consecutive retransmit trials.

3.15.5 Inter-Packet Gap (IPG)

IPG is the idle time between any two successive packets from the same port. The typical number is 96 bits time. The value is 9.6us for 10Mbps ETHERNET, 960ns for 100Mbps fast ETHERNET and 96ns for 1000M. ADM6995L provide option of 92 bit gap in EEPROM to prevent packet lost when turn off Flow Control and clock P.P.M. value difference.

3.15.6 Illegal Frames

The ADM6995L will discard all illegal frames such as runt packet (less than 64 bytes), oversize packet (greater than 1518 or 1522 bytes) and bad CRC. Dribbling packing with good CRC value will accept by ADM6995L. In case of bypass mode enabled, ADM6995L will support tag and untagged packets with size up to 1522 bytes. In case of non-bypass mode, ADM6995L will support tag packets up to 1526bytes, untagged packets up to 1522bytes.

3.15.7 Half Duplex Flow Control

Back Pressure function is supported for half-duplex operation. When the ADM6995L cannot allocate a receive buffer for an incoming packet (buffer full), the device will transmit a jam pattern on the port, thus forcing a collision. Back Pressure is enabled by the BPEN set during RESET asserting. An ADMtek proprietary algorithm is implemented inside the ADM6995L to prevent back pressure function cause HUB partitioned under heavy traffic environment and reduce the packet lost rate to increase the whole system performance.

3.15.8 Full Duplex Flow Control

When full duplex port run out of its receive buffer, a PAUSE packet command will be issued by ADM6995L to notice the packet sender to pause transmission. This frame based flow control is totally compliant to IEEE 802.3x. ADM6995L can issue or receive pause packet.

3.15.9 Broadcast Storm filter

If Broadcast Storming filter is enable, the broadcast packets over the rising threshold

within 50 ms will be discarded by the threshold setting. See EEPROM Reg.10h. Broadcast storm mode after initial:

- time interval : 50ms

the max. packet number = 7490 in 100Base, 749 in 10Base

Per Port Rising Threshold				Per Port Fallin	g Thresho	ld			
	00	01	10	11		00	01	10	11
All 100TX	Disable		20%	40%	All 100TX	Disable	5%	10%	20%
	Disable	1%		4%		Disable	0.5%	1%	2%
100TX					100TX				

3.16 Auto TP MDIX function

At normal application which Switch connect to NIC card is by one by one TP cable. If Switch connect other device such as another Switch must by two way. First one is Cross Over TP cable. Second way is use extra RJ45 which crossover internal TX+- and RX+signal. By second way customer can use one by one cable to connect two Switch devices. All these effort need extra cost and not good solution. ADM6995L provide Auto MDIX function which can adjust TX+- and RX+- at correct pin. User can use one by one cable between ADM6995L and other device. This function can be Enable/Disable by hardware pin and EEPROM configuration register 0x01h~0x09h bit 15. If hardware pin set all port at Auto MDIX mode then EEPROM setting is useless. If hardware pin set all port at non Auto MDIX mode then EEPROM can set each port this function enable or disable.

3.17 Port Locking

Port locking function will provide customer simple way to limit per port user number to one. If this function is turn on then ADM6995L will lock first MAC address in learning table. After this MAC address locking will never age out except Reset signal. Another MAC address which not same as locking one will be dropped. ADM6995L provide one MAC address per port. This function is per port setting. When turn on Port Locking function, recommend customer turn off aging function. See EEPROM register 0x12h bit 0~8.

3.18 VLAN setting & Tag/Untag & port-base VLAN

ADM6995L supports bypass mode and untagged port as default setting while the chip is power-on. Thus, every packet with or without tag will be forwarding to the destination port without any modification by ADM6995L. Meanwhile port-base VLAN could be enabled according to the PVID value (user define 4bits to map 16 groups written at register 13 to register 22) of the configuration content of each port.

ADM6995L also supports 16 802.1Q VLAN groups. In VLAN four bytes tag include twelve VLAN ID. ADM6995L learn user define four bits of VID. If user need to use this

function, two EEPROM registers are needed to be programmed first :

* Port VID number at EEPROM register 0x01h~0x09h bit 13~10, register 0x28h~0x2bh and register 0x2ch bit 7~0: ADM6995L will check coming packet. If coming packet is non VLAN packet then ADM6995L will use PVID as VLAN group reference. ADM6995L will use packet's VLAN value when receive tagged packet.

* VLAN Group Mapping Register. EEPROM register 013h~022h define VLAN grouping value. User use these register to define VLAN group.

User can define each port as Tag port or Untag port by Configuration register Bit 4. The operation of packet between Tag port and Untag port can explain by follow example:

Example1: Port receives Untag packet and send to Untag port.

ADM6995L will check the port user define four bits of VLAN ID first then check VLAN group resister. If destination port same VLAN as receiving port then this packet will forward to destination port without any change. If destination port not same VLAN as receiving port then this packet will be dropped.

Example2: Port receives Untag packet and send to Tag port.

ADM6995L will check the port user define fours bits of VLAN ID first then check VLAN group resister. If destination port same VLAN as receiving port than this packet will forward to destination port with four byte VLAN Tag and new CRC. If destination port not same VLAN as receiving port then this packet will be dropped.

Example3: Port receives Tag packet and send to Untag port.

ADM6995L will check the packet VLAN ID first then check VLAN group resister. If destination port same VLAN as receiving port than this packet will forward to destination port after remove four bytes with new CRC error. If destination port not same VLAN as receiving port then this packet will be dropped.

Example4: Port receives Tag packet and send to Tag port.

ADM6995L will check the user define packet VLAN ID first then check VLAN group resister. If destination port same VLAN as receiving port than this packet will forward to destination port without any change. If destination port not same VLAN as receiving port then this packet will be dropped.

3.19 Priority Setting

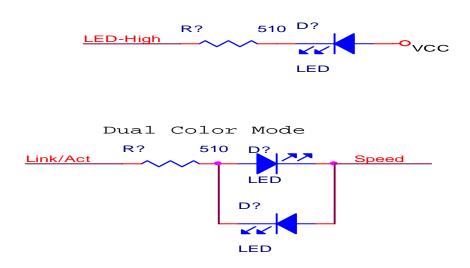
It is a trend that data, voice and video will be put on networking, Switch not only deal data packet but also provide service of multimedia data. ADM6995L provides two priority queues on each port with N:1 rate. See EEPROM Reg.0x10h.

This priority function can set three ways as below:

* By Port Base: Set specific port at specific queue. ADM6995L only check the port priority and not check packet's content VLAN and TOS.

* By VLAN first: ADM6995L check VLAN three priority bit first then IP TOS priority bits.

* By IP TOS first: ADM6995L check IP TOS three priority bit first then VLAN three priority bits.


If port set at VLAN/TOS priority but receiving packet without VLAN or TOS information then port base priority will be used .

3.20 LED Display

Three LED per port are provided by ADM6995L. Link/Act, Duplex/Col & Speed are three LED display of ADM6995L. Dual color LED mode also supported by ADM6995L. For easy production purpose ADM6995L will send test signal to each LED at power on reset stage. EEPROM register 0x12h define LED configuration table.

ADM6995L LED is active Low signal. Dupcol0 & Dupcol1 will check external signal at Reset time. If external signal add pull high then LED will active Low. If external signal add pull down resister then LED will drive high.

Single Color Mode

Chapter 4 Register Description

4.1 **EEPROM** Content

EEPROM provides ADM6995L many options setting such as:

- Port Configuration: Speed, Duplex, Flow Control Capability and Tag/ Untag.
- VLAN & TOS Priority Mapping
- Broadcast Storming rate and Trunk.
- Fiber Select, Auto MDIX select
- VLAN Mapping
- Per Port Buffer number

Register]	Bit 15- 8	Bit 7 - 0	Default Value
0x00h	9	Signature	Signature	0x4154h
0x01h	Port 0	Configuration	Port 0 Configuration	0x040fh
0x02h	H	Reserved	Reserved	0x040fh
0x03h	Port 1	Configuration	Port 1 Configuration	0x040fh
0x04h	H	Reserved	Reserved	0x040fh
0x05h	Port 2	Configuration	Port 2 Configuration	0x040fh
0x06h	H	Reserved	Reserved	0x040fh
0x07h	Port 3	Configuration	Port 3 Configuration	0x040fh
0x08h	Port 4	Configuration	Port 4 Configuration	0x040fh
0x09h	I	Reserved	Reserved	0x040fh
0x0ah	VID 0, 1 Reserved		Reserved	0x5902h
0x0bh	Configu	ration Register	Configuration Register	0x8000h
0x0ch		Reserved	Reserved	0xfa50h
0x0dh	I	Reserved	Reserved	0xfa50h
0x0eh	VLAN p	riority Map High	VLAN priority Map Low	0x5500h
0x0fh	TOS pri	ority Map High	TOS priority Map Low	0x5500h
0x10h	Miscellaneo	ous Configuration 0	Miscellaneous Configuration 0	0x0040h
0x11h	Miscellaneo	ous Configuration 1	Miscellaneous Configuration 1	0xff00h
0x12h	Miscellaneo	ous Configuration 2	Miscellaneous Configuration 2	0x3600h
0x13h	VLAN 0 o	utbound Port Map	VLAN 0 outbound Port Map	0xffffh
0x14h	VLAN 1 o	utbound Port Map	VLAN 1 outbound Port Map	0xffffh
0x15h	VLAN 2 o	utbound Port Map	VLAN 2 outbound Port Map	0xffffh
0x16h	VLAN 3 o	utbound Port Map	VLAN 3 outbound Port Map	0xffffh
0x17h	VLAN 4 o	utbound Port Map	VLAN 4 outbound Port Map	0xffffh
0x18h	VLAN 5 o	utbound Port Map	VLAN 5 outbound Port Map	0xffffh
0x19h	VLAN 6 o	utbound Port Map	VLAN 6 outbound Port Map	Oxffffh

4.2 EEPROM Register Map

Register	Bit 15- 8	Bit 7 - 0	Default Value
0x1ah	VLAN 7 outbound Port Map	VLAN 7 outbound Port Map	0xffffh
0x1bh	VLAN 8 outbound Port Map	VLAN 8 outbound Port Map	Oxffffh
0x1ch	VLAN 9 outbound Port Map	VLAN 9 outbound Port Map	Oxffffh
0x1dh	VLAN 10 outbound Port Map	VLAN 10 outbound Port Map	Oxffffh
0x1eh	VLAN 11 outbound Port Map	VLAN 11 outbound Port Map	0xffffh
0x1fh	VLAN 12 outbound Port Map	VLAN 12 outbound Port Map	0xffffh
0x20h	VLAN 13 outbound Port Map	VLAN 13 outbound Port Map	0xffffh
0x21h	VLAN 14 outbound Port Map	VLAN 14 outbound Port Map	0xffffh
0x22h	VLAN 15 outbound Port Map	VLAN 15 outbound Port Map	0xffffh
0x23h	Reserved	Reserved	0x0000h
0x24h	Reserved	Reserved	0x0000h
0x25h	Reserved	Reserved	0x0000h
0x26h	Reserved	Reserved	0x0000h
0x27h	Reserved	Reserved	0x0000h
0x28h	Reserved	P0 PVID [11:4]	0x0000h
0x29h	Reserved	P1 PVID [11:4]	0x0000h
0x2ah	Reserved	P2 PVID [11:4]	0x0000h
0x2bh	P4 PVID [11:4]	P3 PVID [11:4]	0x0000h
0x2ch	VLAN Group Configuration	P5 PVID [11:4]	0xd000h
0x2dh	Res	erved	0x4442h
0x2eh	Res	erved	0x0000h
0x2fh	PHY	0x0000h	
0x30h	Miscellaneous Configuration 3	Miscellaneous Configuration 3	0x0987h
0x31h	Bandwidth Control Register 3,2	Bandwidth Control Register 1,0	0x0000h
0x32h	Reserved	Bandwidth Control Register 5,4	0x0000h
0x33h	Bandwidth Control Enable	Bandwidth Control Enable	0x0000h

4.3 EEPROM Register

4.3.1 Signature Register, offset: 0x00h

Bits	Туре	Description	Initial value
15:0	RO	The value must be 4154h(AT)	0x4154h

Note:

ADM6995L will check register 0 value before read all EEPROM content. If this value does not match with 0x4154h then he other values in EEPROM will be useless. ADM6995L will use internal default value. User cannot write Signature register when programming ADM6995L internal register.

Bits	Туре	Description	Initial value
0	R/W	802.3x Flow control command ability. 1: enable.	0x1h
		0: disable.	
1	R/W	Auto negotiation Enable. 1: enable, 0: disable.	0x1h
2	R/W	Speed. 1: 100M, 0: 10M.	0x1h
3	R/W	Duplex. 1: Full Duplex, 0: Half Duplex.	0x1h
4	R/W	Output Packet Tagging. 1: Tag. 0:UnTag.	0x0h
5	R/W	Port Disable. 1: disable port. 0: enable port.	0x0h
6	R/W	TOS over VLAN priority. 1: Check TOS first, 0: Check VLAN.	0x0h
7	R/W	Enable port-base priority. 1: Port Base Priority. 0: VLAN or TOS. If	0x0h
		packet without VLAN or TOS then port priority turn on.	
		Note:	
		If this bit turn on then ADM6995L will not check TOS or VLAN as	
		priority reference. ADM6995L will check port base priority only.	
		ADM6995L default is bypass mode which checks port base priority only.	
		If user want check VLAN tag priority then must set chip at Tag mode.	
9:8	R/W	Port-base priority.	0x0h
13:10	R/W	PVID. Port VLAN ID. Check Register 0x28h~0x2ch for other	0x1h
		PVID[11:4]	
14	R/W	Select FX. 1: FX mode. 0: TP mode.	0x0h
		Note:	
		Port7 TX/FX can set by hardware Reset latch value P7FX. If hardware	
		pin set Port7 as FX then this bit is useless. If hardware pin set Port7 as	
		TX then this pin can set Port7 as FX or TX.	
15	R/W	Crossover Auto MDIX enable. 1: enable. 0: disable.	0x0h
		Note:	
		Hardware Reset latch value EECK can set global Auto MDIX function. If	
		hardware pin set all port at Auto MDIX then this bit is useless. If	
		hardware pin set chip at non Auto MDIX then this bit can set each port at	
		Auto MDIX.	

4.3.2 Configuration Registers, offset: 0x01h ~ 0x09h

4.3.3 Reserved Register, offset: 0x0ah

Bits	Туре	Description	Initial value
8:0	RO	Reserved	0x102h
9	R/W	Replaced packet VID 0, 1 by PVID. 1: enable, 0: disable.	0x0h
15:10	RO	Reserved	0x16h

4.3.4 Configuration Register, offset: 0x0bh

Bits	Туре	Description	Initial value
5:0	RO	Reserved	0x0h
6	R/W	Enable IPG leveling. 1/92 bit. 0/96 bit.	0x0h
		Note:	
		When this bit is enabled ADM6995L will transmit packet out at 92 bit	
		IPG to clean buffer. If user disables this function then ADM6995L will	
		transmit packet at 96 bit.	
7	R/W	Enable Trunk. 1: enable Port3, 4 as Trunk port. 0: disable.	0x0h
14:8	RO	Reserved	0x0h
15	R/W	Disable Far_End_Fault detection. 1: disable. 0: enable.	0x1h

4.3.5 Reserved Register, offset: 0x0ch~0x0dh

Bits	Туре	Description	Initial value
15:0	RO	Reserved	0xfa5h

4.3.6 VLAN priority Map Register, offset: 0x0eh

Bits	Туре	Description	Initial value
1:0	R/W	Mapped priority of tag value (VLAN) 0.	0x0h
3:2	R/W	Mapped priority of tag value (VLAN) 1.	0x0h
5:4	R/W	Mapped priority of tag value (VLAN) 2.	0x1h
7:6	R/W	Mapped priority of tag value (VLAN) 3.	0x1h
9:8	R/W	Mapped priority of tag value (VLAN) 4.	0x2h
11:10	R/W	Mapped priority of tag value (VLAN) 5.	0x2h
13:12	R/W	Mapped priority of tag value (VLAN) 6.	0x3h
15:14	R/W	Mapped priority of tag value (VLAN) 7.	0x3h

Note:

Value $3 \sim 0$ are for priority queue Q3~Q0 respectively. The Weight ratio is Q3 : Q2 : Q1: Q0 = 8 : 4 : 2 : 1. The default is port-base priority for un-tag packet and non_IP frame.

4.3.7 TOS priority Map Register, offset: 0x0fh

Bits	Туре	Description	Initial value
1:0	R/W	Mapped priority of tag value (TOS) 0.	0x0h
3:2	R/W	Mapped priority of tag value (TOS) 1.	0x0h
5:4	R/W	Mapped priority of tag value (TOS) 2.	0x1h
7:6	R/W	Mapped priority of tag value (TOS) 3.	0x1h
9:8	R/W	Mapped priority of tag value (TOS) 4.	0x2h
11:10	R/W	Mapped priority of tag value (TOS) 5.	0x2h

Bits	Туре	Description	Initial value
13:12	R/W	Mapped priority of tag value (TOS) 6.	0x3h
15:14	R/W	Mapped priority of tag value (TOS) 7.	0x3h

Note:

Value 3 ~ 0 are for priority queue Q3~Q0 respectively.

The Weight ratio is Q3 : Q2 : Q1 : Q0 = 8 : 4 : 2 : 1.

The default is port-base priority for un-tag packet and non_IP frame.

4.3.8 Packet with Priority: Normal packet content

Ethernet Packet from Layer 2

Destination (6 bytes)	× 5 /	Packet length (2 bytes)	Data (46-1500 bytes)	CRC (4 bytes)
 Byte 0~5	Byte 6~11	Byte 12~13	Byte 14~	

4.3.9 VLAN Packet

ADM6995L will check packet byte 12 &13. If byte[12:13]=8100h then this packet is a VLAN packet

Tag Protocol TD 8100	Tag Control Information TCI	LEN Length	Routing Information		
Byte 12~13	Byte14~15	Byte 16~17	Byte 18		
Byte 14~15: Tag Control Information TCI					

Bit[15:13]: User Priority 7~0

Bit 12: Canonical Format Indicator (CFI)

Bit[11~0]: VLAN ID. The ADM6995L will use bit[3:0] as VLAN group.

4.3.10 TOS IP Packet

ADM6995L check byte 12 &13 if this value is 0800h then ADM6995L knows this is a TOP priority packet.

Туре 0800	IP Header
Byte 12~13	Byte 14~15

IP header define

Byte 14

Bit[7:0]: IP protocol version number & header length.

Byte 15: Service type

Bit[7~5]: IP Priority (Precedence) from 7~0 Bit 4: No Delay (D)

Bit 3: High Throughput

Bit 2: High Reliability (R)

Bit[1:0]: Reserved

4.3.11 Miscellaneous Configuration Register, offset: 0x10h

Bits	Туре	Description	Initial value
1:0	R/W	Broadcast Storming Threshold [1:0]. See below table.	0x0h
2	R/W	Broadcast Storming Enable. 1/ enable, 0/disable. Default 0.	0x0h
3	R/W	Reserved. Default 0.	0x0h
4	R/W	XCRC. 1/disable CRC check, 0/enable CRC Check. Default 0.	0x0h
5	RO	Reserved	0x0h
6	RO	Reserved	0x1h
7	R/W	Aging Disable. 1/disable aging, 0/enable aging. Default 0.	0x0h
9:8	R/W	Discard mode (drop scheme for Q0)	0x0h
11:10	R/W	Discard mode (drop scheme for Q1)	0x0h
13:12	R/W	Discard mode (drop scheme for Q2)	0x0h
15:14	R/W	Discard mode (drop scheme for Q3)	0x0h

Note:

Bit[1:0]: Broadcast Storming threshold.

Broadcast storm mode after initial:

- time interval : 50ms

the max. packet number = 7490 in 100Base, 749 in 10Base

Note (Continued):

- per port rising threshold

	00	01	10	11
All	Disable	10%	20%	40%
100TX				
Not All	Disable	1%	2%	4%
100TX				

- per port falling threshold

	00	01	10	11	
All	Disable	5%	10%	20%	
100TX					
Not All	Disable	0.5%	1%	2%	
100TX					

Bit 2: Broadcast Storming Enable. 0/Disable. 1/Enable.

Bit 4: CRC check disable. 1/ Disable. 0/Enable.

Bit 7: Aging Disable. 1/Disable. 0/Enable.

- Drop Scheme for each queue

Discard Mode Utilization	00	01	10	11
TBD	0%	0%	25%	50%

4.3.12 VLAN mode select Register, offset: 0x11h.

Bits	Туре	Description	Initial value
3:0	RO	Reserved	0x0h
4	RO	Reserved	0x0h
5	RO	Reserved	0x0h
7:6	RO	Reserved	0x0h
15:8	RO	Reserved	0xffh

4.3.13 Miscellaneous Configuration register, offset: 0x12h

Bits	Туре	Description	Initial value
0	R/W	Port0 MAC Lock. 1: Lock first MAC source address, 0: disable.	0x0h
1	R/W	Reserved	0x0h
2	R/W	Port1 MAC Lock. 1: Lock first MAC source address, 0: disable.	0x0h
3	R/W	Reserved	0x0h
4	R/W	Port2 MAC Lock. 1: Lock first MAC source address, 0: disable.	0x0h
5	R/W	Reserved	0x0h
6	R/W	Port3 MAC Lock. 1: Lock first MAC source address, 0: disable.	0x0h
7	R/W	Port4 MAC Lock. 1: Lock first MAC source address, 0: disable.	0x0h
8	R/W	Port5 MAC Lock. 1: Lock first MAC source address, 0: disable.	0x0h
10:9	R/W	Reserved	0x3h

Bits	Туре	Description	Initial value
11	R/W	Reserved	0x0h
13:12	R/W	Reserved	0x3h
14	R/W	Reserved	0x0h
15	R/W	Drop packet when excessive collision happen enable. 1: enable, 0: disable.	0x0h

4.3.14 VLAN mapping table registers, offset: 0x22h ~ 0x13h

Bits	Туре	Description	Initial value
8:0	R/W	VLAN mapping table.	0x1ffh
15:9	RO	Reserved	0x7fh

Note:

16 VLAN Group: See Register 0x2ch bit 11=0

Bit0: Port0	Bit2: Port1	Bit4: Port2
Bit6: Port3	Bit7: Port4	Bit8: Port5.

Select the VLAN group ports is to set the corresponding bits to 1.

4.3.15 Reserved Register, offset: 0x27h ~ 0x23h

Bits	Туре	Description	Initial value
15:0	R/W	Reserved	0x0h

4.3.16 Port0 PVID bit 11 ~ 4 Configuration Register, offset: 0x28h

Bits	Туре	Description	Initial value
7:0	R/W	Port0 PVID bit 11~4. These 8 bits combine with register 0x01h Bit	0x0h
		[13~10] as full 12 bit VID.	
15:8	RO	Reserved	0x0h

4.3.17 Port1 PVID bit 11 ~ 4 Configuration Register, offset: 0x29h

Bits	Туре	Description	Initial value
7:0	R/W	Port1 PVID bit 11~4. These 8 bits combine with register 0x03h	0x0h
		Bit[13~10] as full 12 bit VID.	
15:8	RO	Reserved	0x0h

Register Description

ADM6995L

Bits	Туре	Description	Initial value
7:0		Port2 PVID bit 11~4. These 8 bits combine with register 0x05h Bit[13~10] as full 12 bit VID.	0x0h
15:8	RO	Reserved	0x0h

4.3.18 Port2 PVID bit 11~4 Configuration Register, offset: 0x2ah

4.3.19 Port3, 4 PVID bit 11~4 Configuration Register, offset: 0x2bh

Bits	Туре	Description	Initial value
7:0		Port3 PVID bit 11~4. These 8 bits combine with register 0x07h	0x0h
		Bit[13~10] as full 12 bit VID.	
15:8	RO	Port4 PVID bit 11~4. These 8 bits combine with register 0x08h Bit[13~10] as full 12 bit VID.	0x0h

4.3.20 VLAN group shift bits Configuration Register, offset: 0x2ch

Bits	Туре	Description	Initial value
7:0	RO	Reserved.	0x0h
10:8	R/W	Tag shift for VLAN grouping. Default 000. 0: VID[3:0] 1: VID[4:1] 2: VID[5:2] 3: VID[6:3] 4: VID[7:4] 5: VID[8:5] 6: VID[9:6] 7: VID[10:7]	0x0h
11	R/W	Reserved	0x0h
12	R/W	Control reserved MAC (0180C2000010-0180C20000FF) 1: Forward, 0: Discard.	0x1h
13	R/W	Control reserved MAC (0180C2000002- 0180C200000F) 1: Forward, 0: Discard.	0x1h
14	R/W	Control reserved MAC (0180C2000001) 1: Forward, 0: Discard.	0x0h
15	R/W	Control reserved MAC (0180C2000000) 1: Forward, 0: Discard.	0x1h

Note:

Bit[10:8]: VLAN Tag shift register. ADM6995L will select 4 bit from total 12 bit VID as VLAN group reference.

Bit[15:12]: IEEE 802.3 reserved DA forward or drop police.

4.3.21 Reserved Register, offset: 0x2dh

Bits	Type Description	Initial value
15:0	R/W Reserved	0x4442h

4.3.22 Reserved Register, offset: 0x2eh

Bits	Type Description	Initial value
15:0	R/W Reserved	0x0000h

4.3.23 PHY Restart, offset: 0x2fh

Bits	Туре	Description	Initial value
15:0	R/W	Write 0x0000h to this register will restart internal PHYs.	0x0000h

4.3.24 Miscellaneous Configuration Register, offset: 0x30h

Bits	Туре	Description	Initial value
0	R/W	Reserved	0x1h
1	R/W	Reserved	0x1h
2	R/W	Reserved	0x1h
4:3	R/W	Reserved	0x0h
5	R/W	MAC Clone Enable Bit[1].	0x0h
6	R/W	Reserved	0x0h
7	R/W	Reserved	0x1h
8	R/W	Reserved	0x1h
9	R/W	Dual Speed Hub COL_LED Enable.	0x0h
		1: Dual Speed Hub LED display.	
		Port0 Col LED: 10M Col LED.	
		Port1 Col LED: 100M Col LED.	
		0: Normal LED display.	
10	R/W	Reserved	0x0h
11	R/W	Reserved	0x1h
12	R/W	Port 4 LED Mode.	0x0h
		1:Link/Act/Speed	
		0:LinkAct/DupCol/Speed	
15:13	R/W	Reserved	0x0h

4.3.25 Bandwidth Control Register0~3, offset: 0x31h

Bits	Туре	Description	Initial value
2:0	R/W	Port 0 Meter Threshold Control. <i>Reference table below</i> .	0x0h
3	R/W	Receive Packet Length Counted on the Source Port 0.	0x0h
		0 = The switch will add length to the P0 counter.	
6:4	R/W	Port 1 Meter Threshold Control, default 000. Reference table below.	0x0h
7	R/W	Receive Packet Length Counted on the Source Port 1.	0x0h
		0 = The switch will add length to the P1 counter.	
10:8	R/W	Port 2 Meter Threshold Control, default 000. Reference table below.	0x0h
11	R/W	Receive Packet Length Counted on the Source Port 2.	0x0h

Register Description

Bits	Туре	Description	Initial value
		0 = The switch will add length to the P2 counter.	
14:12	R/W	Port 3 Meter Threshold Control. <i>Reference table below</i> .	0x0h
15	R/W	Receive Packet Length Counted on the Source Port 3.	0x0h
		0 = The switch will add length to the P3 counter.	

Note: Reference Table

000	001	010	011	100	101	110	111
256K	512K	1M	2M	5M	10M	20M	50M

4.3.26 Bandwidth Control Register 4~5, offset: 0x32h

Bits	Туре	Description	Initial value
2:0	R/W	Port 4 Meter Threshold Control. <i>Reference table below</i> .	0x0h
3	R/W	Receive Packet Length Counted on the Source Port 4	0x0h
		0 = The switch will add length to the P4 counter.	
6:4	RO	Reserved	0x0h
7	RO	Reserved	0x0h
15:8	RO	Reserved	0x0h

Note: Reference Table

000	001	010	011	100	101	110	111
256K	512K	1M	2M	5M	10M	20M	50M

4.3.27 Bandwidth Control Enable Register, offset: 0x33h

Bits	Туре	Description	Initial value
0	R/W	Bandwidth Control Enable for Port 0.	0x0h
		1 = Port 0 enables the bandwidth control.	
		0 = Port 0 disables the bandwidth control.	
1	R/W	Reserved	0x0h
2	R/W	Bandwidth Control Enable for Port 1.	0x0h
3	R/W	Reserved	0x0h
4	R/W	Bandwidth Control Enable for Port 2.	0x0h
5	R/W	Reserved	0x0h
6	R/W	Bandwidth Control Enable for Port 3.	0x0h
7	R/W	Bandwidth Control Enable for Port 4.	0x0h
8	RO	Reserved.	0x0h
15:9	RO	Reserved	0x0h

4.4 EEPROM Access

Customer can select ADM6995L read EEPROM contents as chip setting or not. ADM6995L will check the signature of

EEPROM to decide read content of EEPROM or not.

RESETL & EEPROM c	content relationship
-------------------	----------------------

RESETL	CS	SK	DI	DO
0	High Impedance	High Impedance	High Impedance	High Impedance
Rising edge $0 \rightarrow 1$ (30ms)	Output	Output	Output	Input
1 (after 30ms)	Input	Input	Output	Input

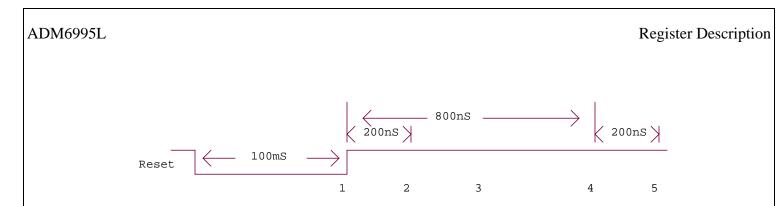
Keep at least 30ms after RESETL from $0 \rightarrow 1$. ADM6995L will read data from EEPROM. After RESETL if CPU update EEPROM that ADM6995L will update configuration registers too.

When CPU programming EEPROM & ADM6995L, ADM6995L recognizes the EEPROM WRITE instruction only. If there is any Protection instruction before or after the EEPROM WRITE instruction, CPU needs to generate separated CS signal cycle for each Protection & WRITE instruction.

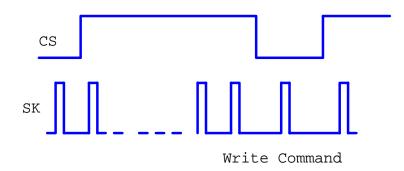
CPU can directly program ADM6995L after 30ms of Reset signal rising edge with or without EEPROM

ADM6995L serial chips will latch hardware-reset value as recommend value. It includes EEPROM interface:

EECS: Internal Pull down 40K resister.


EESK: TP port Auto-MDIX select. Internal pull down 40K resister as non Auto-MDIX mode.

EDI: Dual Color Select. Internal pull down 40K resister as Single Color Mode. EDO: EEPROM enable. Internal pull up 40K resister as EEPROM enable.


Below Figure is ADM6995L serial chips EEPROM pins operation at different stage. Reset signal is control by CPU with at least 100ms low. Point1 is Reset rising edge. CPU must prepare proper value on EECS(0), EESK, EDI, EDO(1) before this rising edge. ADM6995L will read this value into chip at Point2. CPU must keep these values over point2. Point2 is 200ns after Reset rising edge.

ADM6995L serial chips will read EEPROM content at Point4 which 800ns far away from the rising edge of Reset. CPU must turn EEPROM pins EECS, EESK, EDI and EDO to High-Z or pull high before Point4.

If user want change state to High-Z or pull high on EEPROM pins, the order is CS-> DI - > DO -> SK is better.

A little bit different with the timing on writing EEPROM. See below graph. Must be carefully is when CS go down after write a command, SK must issue at least one clock. This is a difference between ADM6995L with EEPROM write timing. If system without EEPROM then user must write ADM6995L internal register by 93C66 timing. If user uses EEPROM then the writing timing is depend on EEPROM type.

4.5 Serial Register Map

Register	Bit 31- 0	MODE	Default
0x00h	Chip Identifier	RO	0x00071010h
0x01h	Port Status 0	RO	0x0000000h
0x02h	Port Status 1	RO	0x0000000h
0x03h	Cable Broken Status	RO	0x0000000h
0x04h	Port 0 Receive Packet Count	RO	0x0000000h
0x05h	Reserved	RO	0x0000000h
0x06h	Port 1 Receive Packet Count	RO	0x0000000h
0x07h	Reserved	RO	0x0000000h
0x08h	Port 2 Receive Packet Count	RO	0x0000000h
0x09h	Reserved	RO	0x0000000h
0x0ah	Port 3 Receive Packet Count	RO	0x0000000h

Register	Bit 31- 0	MODE	Default
0x0bh	Port 4 Receive Packet Count	RO	0x0000000h
0x0ch	Reserved	RO	0x0000000h
0x0dh	Port 0 Receive Packet Byte Count	RO	0x0000000h
0x0eh	Reserved	RO	0x0000000h
0x0fh	Port 1 Receive Packet Byte Count	RO	0x0000000h
0x10h	Reserved	RO	0x0000000h
0x11h	Port 2 Receive Packet Byte Count	RO	0x0000000h
0x12h	Reserved	RO	0x0000000h
0x13h	Port 3 Receive Packet Byte Count	RO	0x0000000h
0x14h	Port 4 Receive Packet Byte Count	RO	0x0000000h
0x15h	Reserved	RO	0x0000000h
0x16h	Port 0 Transmit Packet Count	RO	0x0000000h
0x17h	Reserved	RO	0x0000000h
0x18h	Port 1 Transmit Packet Count	RO	0x0000000h
0x19h	Reserved	RO	0x0000000h
0x1ah	Port 2 Transmit Packet Count	RO	0x0000000h
0x1bh	Reserved	RO	0x0000000h
0x1ch	Port 3 Transmit Packet Count	RO	0x0000000h
0x1dh	Port 4 Transmit Packet Count	RO	0x0000000h
0x1eh	Reserved	RO	0x0000000h
0x1fh	Port 0 Transmit Packet Byte Count	RO	0x0000000h
0x20h	Reserved	RO	0x0000000h
0x21h	Port 1 Transmit Packet Byte Count	RO	0x0000000h
0x22h	Reserved	RO	0x0000000h
0x23h	Port 2 Transmit Packet Byte Count	RO	0x0000000h
0x24h	Reserved	RO	0x0000000h
0x25h	Port 3 Transmit Packet Byte Count	RO	0x0000000h
0x26h	Port 4 Transmit Packet Byte Count	RO	0x0000000h
0x27h	Reserved	RO	0x0000000h
0x28h	Port 0 Collision Count	RO	0x0000000h
0x29h	Reserved	RO	0x0000000h
0x2ah	Port 1 Collision Count	RO	0x0000000h
0x2bh	Reserved	RO	0x0000000h
0x2ch	Port 2 Collision Count	RO	0x0000000h
0x2dh	Reserved	RO	0x0000000h
0x2eh	Port 3 Collision Count	RO	0x0000000h
0x2fh	Port 4 Collision Count	RO	0x0000000h
0x30h	Reserved	RO	0x0000000h
0x31h	Port 0 Error Count	RO	0x0000000h
0x32h	Reserved	RO	0x0000000h
0x33h	Port 1 Error Count	RO	0x0000000h
0x34h	Reserved	RO	0x0000000h
0x35h	Port 2 Error Count	RO	0x0000000h
0x36h	Reserved	RO	0x0000000h

Register	Bit 31- 0	MODE	Default
0x37h	Port 3 Error Count	RO	0x0000000h
0x38h	Port 4 Error Count	RO	0x0000000h
0x39h	Reserved	RO	0x0000000h
0x3ah	Over Flow Flag 0	LH/COR	0x0000000h
0x3bh	Over Flow Flag 1	LH/COR	0x0000000h
0x3ch	Over Flow Flag 2	LH/COR	0x0000000h

4.6 Serial Register Description

4.6.1 Chip Identifier Register, offset: 0x00h

Bits	Туре	Description	Initial value
3:0	RO	0000 (Version number)	0x0h
31:4	RO	0x0007101h	0x7101h

4.6.2 Port Status 0 Register, offset: 0x01h

Bits	Туре	Description	Initial value
0	RO	Port 0 Linkup Status:	0x0h
		1: Link is established.	
		0: Link is not established.	
1	RO	Port 0 Speed Status:	0x0h
		1: 100Mb/s	
		0: 10 Mb/s	
2	RO	Port 0 Duplex Status	0x0h
		1: Full Duplex.	
		0: Half Duplex.	
3	RO	Port 0 Flow Control Enable	0x0h
		1: 802.3X on for full duplex or back pressure on for half duplex.	
		0: Flow Control Disable	
4	RO	Reserved	0x0h
5	RO	Reserved	0x0h
6	RO	Reserved	0x0h
7	RO	Reserved	0x0h
8	RO	Port 1 Linkup Status:	0x0h
		1: Link is established.	
		0: Link is not established.	
9	RO	Port 1 Speed Status:	0x0h
		1: 100Mb/s	
		0: 10 Mb/s	
10	RO	Port 1 Duplex Status	0x0h
		1: Full Duplex.	
		0: Half Duplex.	
11	RO	Port 1 Flow Control Enable	0x0h

Bits	Туре	Description	Initial value
		1: 802.3X on for full duplex or back pressure on for half duplex.	
		0: Flow Control Disable	
12	RO	Reserved	0x0h
13	RO	Reserved	0x0h
14	RO	Reserved	0x0h
15	RO	Reserved	0x0h
16	RO	Port 2 Linkup Status:	0x0h
		1: Link is established.	
		0: Link is not established.	
17	RO	Port 2 Speed Status:	0x0h
		1: 100Mb/s	
		0: 10 Mb/s	
18	RO	Port 2 Duplex Status	0x0h
		1: Full Duplex.	
		0: Half Duplex.	
19	RO	Port 2 Flow Control Enable	0x0h
		1: 802.3X on for full duplex or back pressure on for half duplex.	
		0: Flow Control Disable	
20	RO	Reserved	0x0h
21	RO	Reserved	0x0h
22	RO	Reserved	0x0h
23	RO	Reserved	0x0h
24	RO	Port 3 Linkup Status:	0x0h
		1: Link is established.	
		0: Link is not established.	
25	RO	Port 3 Speed Status:	0x0h
		1: 100Mb/s	
		0: 10 Mb/s	
26	RO	Port 3 Duplex Status	0x0h
		1: Full Duplex.	
		0: Half Duplex.	
27	RO	Port 3 Flow Control Enable	0x0h
		1: 802.3X on for full duplex or back pressure on for half duplex.	
		0: Flow Control Disable	
28	RO	Port 4 Linkup Status:	0x0h
		1: Link is established.	
		0: Link is not established.	
29	RO	Port 4 Speed Status:	0x0h
		1: 100Mb/s	
		0: 10 Mb/s	
30	RO	Port 4 Duplex Status	0x0h
		1: Full Duplex.	
		0: Half Duplex.	
31	RO	Port 4 Flow Control Enable	0x0h
		1: 802.3X on for full duplex or back pressure on for half duplex.	

Register Description

Bits	Туре	Description	Initial value
		0: Flow Control Disable	

4.6.3 Port Status 1 Register, offset: 0x02h

Bits	Туре	Description	Initial value
0	RO	Reserved	0x0h
2:1	RO	Reserved	0x0h
3	RO	Reserved	0x0h
4	RO	Reserved	0x0h
31:5	RO	Reserved	0x0h

4.6.4 Cable Broken Status Register, offset: 0x03h

Bits	Туре	Description	Initial value
1:0	RO	Port 0 Cable Broken Length	0x0h
2	RO	Port 0 Cable Broken	0x0h
4:3	RO	Reserved	0x0h
5	RO	Reserved	0x0h
7:6	RO	Port 1 Cable Broken Length	0x0h
8	RO	Port 1 Cable Broken	0x0h
10:9	RO	Reserved	0x0h
11	RO	Reserved	0x0h
3:12	RO	Port 2 Cable Broken Length	0x0h
14	RO	Port 2 Cable Broken	0x0h
16:15	RO	Reserved	0x0h
17	RO	Reserved	0x0h
19:18	RO	Port 3 Cable Broken Length	0x0h
20	RO	Port 3 Cable Broken	0x0h
22:21	RO	Port 4 Cable Broken Length	0x0h
23	RO	Port 4 Cable Broken	0x0h
31:24	RO	Reserved	0x0h

4.6.5 Over Flow Flag 0 Register, offset: 0x3ah

Bits	Туре	Description	Initial value
0	RO	Overflow of Port 0 Receive Packet Count	0x0h
1	RO	Reserved	0x0h
2	RO	Overflow of Port 1 Receive Packet Count	0x0h
3	RO	Reserved	0x0h
4	RO	Overflow of Port 2 Receive Packet Count	0x0h
5	RO	Reserved	0x0h

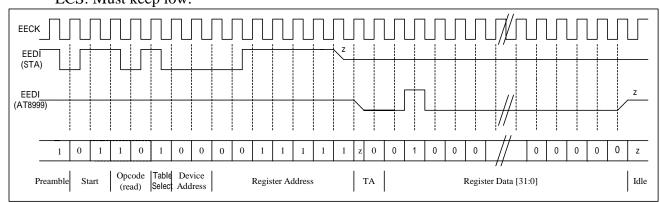
Register Description

Bits	Туре	Description	Initial value
6	RO	Overflow of Port 3 Receive Packet Count	0x0h
7	RO	Overflow of Port 4 Receive Packet Count	0x0h
8	RO	Reserved	0x0h
9	RO	Overflow of Port 0 Receive Packet Byte Count	0x0h
10	RO	Reserved	0x0h
11	RO	Overflow of Port 1 Receive Packet Byte Count	0x0h
12	RO	Reserved	0x0h
13	RO	Overflow of Port 2 Receive Packet Byte Count	0x0h
14	RO	Reserved	0x0h
15	RO	Overflow of Port 3 Receive Packet Byte Count	0x0h
16	RO	Overflow of Port 4 Receive Packet Byte Count	0x0h
17	RO	Reserved	0x0h
31:18	RO	Reserved	0x0h

4.6.6 Over Flow Flag 0: Register 0x3bh

Bits	Туре	Description	Initial value
0	RO	Overflow of Port 0 Transmit Packet Count	0x0h
1	RO	Reserved	0x0h
2	RO	Overflow of Port 1 Transmit Packet Count	0x0h
3	RO	Reserved	0x0h
4	RO	Overflow of Port 2 Transmit Packet Count	0x0h
5	RO	Reserved	0x0h
6	RO	Overflow of Port 3 Transmit Packet Count	0x0h
7	RO	Overflow of Port 4 Transmit Packet Count	0x0h
8	RO	Reserved	0x0h
9	RO	Overflow of Port 0 Transmit Packet Byte Count	0x0h
10	RO	Reserved	0x0h
11	RO	Overflow of Port 1 Transmit Packet Byte Count	0x0h
12	RO	Reserved	0x0h
13	RO	Overflow of Port 2 Transmit Packet Byte Count	0x0h
14	RO	Reserved	0x0h
15	RO	Overflow of Port 3 Transmit Packet Byte Count	0x0h
16	RO	Overflow of Port 4 Transmit Packet Byte Count	0x0h
17	RO	Reserved	0x0h
31:18	RO	Reserved	0x0h

4.6.7 Over Flow Flag 2 Register, offset: 0x3ch


Bits	Туре	Description	Initial value
0	RO	Overflow of Port 0 Collision Count	0x0h
1	RO	Reserved	0x0h
2	RO	Overflow of Port 1 Collision Count	0x0h

Register Description

Bits	Туре	Description	Initial value
3	RO	Reserved	0x0h
4	RO	Overflow of Port 2 Collision Count	0x0h
5	RO	O Reserved	
6	RO	Overflow of Port 3 Collision Count	
7	RO	Overflow of Port 4 Collision Count	0x0h
8	RO	Reserved	0x0h
9	RO	Overflow of Port 0 Error Count	0x0h
10	RO	Reserved	0x0h
11	RO	Overflow of Port 1 Error Count	0x0h
12	RO	Reserved	0x0h
13	RO	Overflow of Port 2 Error Count	0x0h
14	RO	Reserved	0x0h
15	RO	Overflow of Port 3 Error Count	0x0h
16	RO	Overflow of Port 4 Error Count	0x0h
17	RO	Reserved	0x0h
31:18	RO	Reserved	0x0h

4.7 Serial Interface Timing

ADM6995L serial chip internal counter or EEPROM access timing. EESK: Similar as MDC signal. EDI: Similar as MDIO. ECS: Must keep low.

Preamble: At least 32 continuous "1".

Start: 01(2 bits)

Opcode: 10 (2 bits, Only supports read command)

Table select: 1/Counter, 0/ EEPROM (1 bit)

Register Address: Read Target register address. (7 bits)

TA: Turn Around.

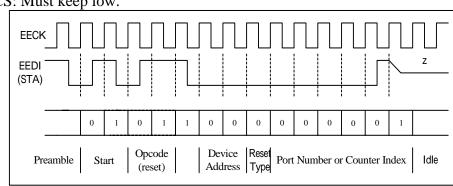
Register Data: 32 bit data.

Counter output bit sequence is bit 31 to bit 0.

If user read EEPROM then 32 bits data will separate as two EEPROM registers. The sequence is:

Register +1, Register (Register is even number).

Register, Register-1(Register is Odd number).


Example: Read Register 00h then ADM6995L will drive 0x01h & 0x00h.

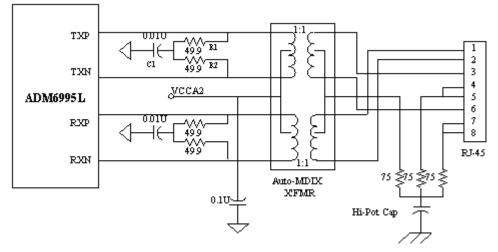
Read Register 03h then ADM6995L will drive 0x03h & 0x02h.

Idle: EESK must send at least one clock at idle time.

ADM6995L issue Reset internal counter command

EESK: Similar as MDC signal. EDI: Similar as MDIO. ECS: Must keep low.

Preamble: At least 32 continuous "1". Start: 01(2 bits) Opcode: 01 (2 bits, Reset command) Device Address: Chip physical address as PHYAS[1:0]. Reset_type: Reset counter by port number or by counter index. 1: Clear dedicate port's all counters.

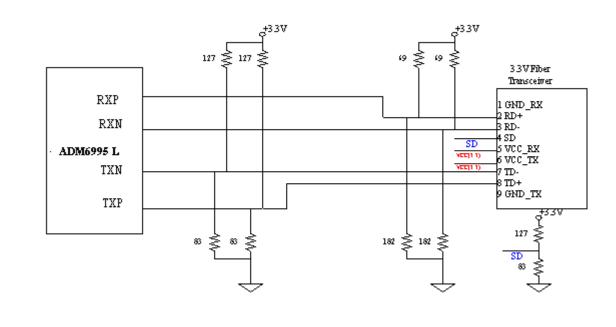

0: Clear dedicate port's an cou

Port_number or counter index: User define clear port or counter. Idle: EECK must send at least one clock at idle time.

Chapter 5 Electrical Specification

5.1 TX/FX Interface

5.1.1 TP Interface


Transformer requirement:

. TX/RX rate 1:1

. TX/RX central tap connect together to VCCA2.

User can change TX/RX pin for easy layout but do not change polarity. ADM6995L supports auto polarity on receiving side.

5.1.2 FX Interface

5.2 DC Characteristics

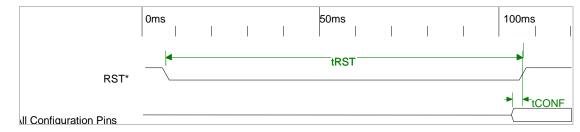
5.2.1 Absolute Maximum Rating

Symbol	Parameter	Rating	Units
V _{CC}	Power Supply	-0.3 to 3.63	V
Vcca2	TX line driver	1.8	V
Vccpll	PLL voltage	1.8	V
Vccik	Digital core voltage	1.8	V
V _{IN}	Input Voltage	-0.3 to V_{CC} + 0.3	V
Vout	Output Voltage	-0.3 to Vcc + 0.3	V
TSTG	Storage Temperature	-55 to 155	°C
PD	Power Dissipation	1.3W	W
ESD	ESD Rating	2KV	V

5.2.2 Recommended Operating Conditions

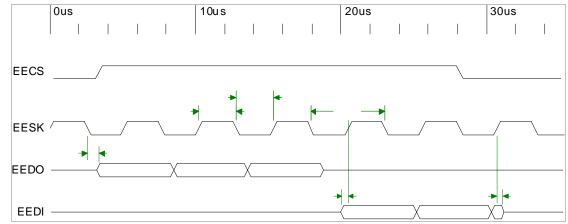
Symbol	Parameter	Min	Тур	Max	Units
Vcc	Power Supply	2.8	3.3	3.465	V
Vcca2	TX line driver	1.7	1.8	1.9	V
Vccpll	PLL voltage	1.7	1.8	1.9	V
Vccik	Digital core voltage	1.7	1.8	1.9	V
Vin	Input Voltage	0	-	Vcc	V
PC	Power consumption		1.3		W
Tj	Junction Operating Temperature	0	25	115	°C

5.2.3 DC Electrical Characteristics for 3.3V Operation


Under Vcc= $3.0V \sim 3.6V$, Tj= $0 \circ C \sim 115 \circ C$)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VIL	Input Low Voltage	CMOS			0.3 * Vcc	V
VIH	Input High Voltage	CMOS	0.7 * Vcc			V
VOL	Output Low Voltage	CMOS			0.4	V
VOH	Output High Voltage	CMOS	0.7 * Vcc			V
RI	Input Pull_up/down	VIL=0V or		100		KΩ
	Resistance	VIH = Vcc				

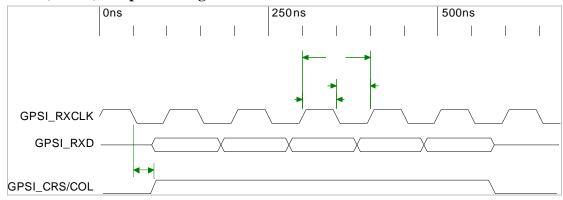
5.3 AC Characteristics


5.3 AC Characteristics

5.3.1 Power On Reset


Symbol	Parameter	Conditions	Min	Тур	Max	Units
TRST	RST Low Period		100			ms
TCONF	Start of Idle Pulse Width		100			ns

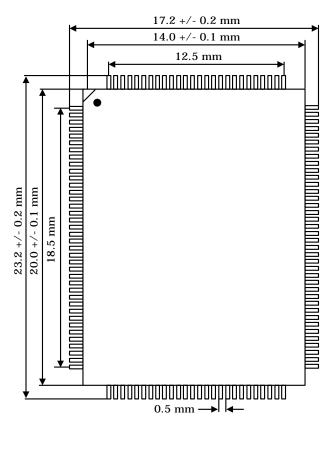
5.3.2 EEPROM Interface Timing

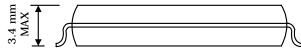

Symbol	Parameter	Conditions	Min	Тур	Max	Units
TESK	EESK Period			5120		ns
TESKL	EESK Low Period		2550		2570	ns
TESKH	EESK High Period		2550		2570	ns
TERDS	EEDI to EESK Rising Setup		10			ns
	Time					
TERDH	EEDI to EESK Rising Hold		10			ns
	Time					
TEWDD	EESK Falling to EEDO				20	ns
	Output Delay Time					

Electrical Specification

Symbol	Parameter	Conditions	Min	Typical	Max	Units
TCK	GPSI_TXCLK Period			100		ns
TCKL	GPSI_TXCLK Low Period		40		60	ns
ТСКН	GPSI_TXCLK High Period		40		60	ns
TTXS	GPSI_TXD, GPSI_TXEN to GPSI_TXCLK Rising Setup Time		10			ns
TTXH	GPSI_TXD, GPSI_TXEN to GPSI_TXCLK Rising Hold Time		10			ns

5.3.4 GPSI(7-wire) Output Timing


Symbol	Parameter	Conditions	Min	Typical	Max	Units
TCK	GPSI_RXCLK Period			100		ns
TCKL	GPSI_RXCLK Low Period		40		60	ns
ТСКН	GPSI_RXCLK High Period		40		60	ns
TOD	GPSI_RXCLK Rising to GPSI CRS/GPSI COL		50		70	ns


Electrical Specification

Symbol	Parameter	Conditions	Min	Typical	Max	Units
	Output Delay					

Chapter 6 Packaging

6.1 128 Pin PQFP Outside Dimension

