- Low Supply Voltage Range 1.8 V 3.6 V - Ultralow-Power Consumption: - Active Mode: 200 μA at 1 MHz, 2.2 V - Standby Mode: 0.7 μA - Off Mode (RAM Retention): 0.1 μ A - Five Power Saving Modes - Wake-Up From Standby Mode in less than 6 μs - 16-Bit RISC Architecture, 125 ns Instruction Cycle Time - Basic Clock Module Configurations: - Various Internal Resistors - Single External Resistor - 32 kHz Crystal - High Frequency Crystal - Resonator - External Clock Source - 16-Bit Timer_A With Three Capture/Compare Registers - On-Chip Comparator for Analog Signal Compare Function or Slope A/D Conversion - Serial Communication Interface (USART0) Software-Selects Asynchronous UART or Synchronous SPI - Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse - Family Members Include: MSP430F122: 4KB + 256B Flash Memory 256B RAM MSP430F123: 8KB + 256B Flash Memory **256B RAM** - Available in a 28-Pin Plastic Small-Outline Wide Body (SOWB) Package, 28-Pin Plastic Thin Shrink Small-Outline Package (TSSOP) and 32-Pin QFN Package - For Complete Module Descriptions, See the MSP430x1xx Family User's Guide, Literature Number SLAU049 # description The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs. The MSP430F12x series is an ultralow-power mixed signal microcontroller with a built-in 16-bit timer and twenty-two I/O pins. The MSP430F12x series also has a built-in communication capability using asynchronous (UART) and synchronous (SPI) protocols in addition to a versatile analog comparator. Typical applications include sensor systems that capture analog signals, convert them to digital values, and then process the data and display them or transmit them to a host system. Stand alone RF sensor front end is another area of application. The I/O port inputs provide single slope A/D conversion capability on resistive sensors. ### **AVAILABLE OPTIONS** | | PACKAGED DEVICES | | | | | | |---------------|---------------------|----------------------|--------------------|--|--|--| | TA | PLASTIC 28-PIN SOWB | PLASTIC 28-PIN TSSOP | PLASTIC 32-PIN QFN | | | | | | (DW) | (PW) | (RHB) | | | | | -40°C to 85°C | MSP430F122IDW | MSP430F122IPW | MSP430F122IRHB | | | | | | MSP430F123IDW | MSP430F123IPW | MSP430F123IRHB | | | | Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ### pin designation, MSP430x12x Note: Power pad and NC pins not internally connected ### functional block diagram # **Terminal Functions** | TERI | MINAL | | | | | |-----------------------|--------|------------------|-----|--|--| | | DW, PW | RHB | 1/0 | DESCRIPTION | | | NAME | NO. | NO. | | | | | P1.0/TACLK | 21 | 21 | I/O | General-purpose digital I/O pin/Timer_A, clock signal TACLK input | | | P1.1/TA0 | 22 | 22 | I/O | General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL Transmit | | | P1.2/TA1 | 23 | 23 | I/O | General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output | | | P1.3/TA2 | 24 | 24 | I/O | General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output | | | P1.4/SMCLK/TCK | 25 | 25 | I/O | General-purpose digital I/O pin/SMCLK signal output/test clock, input terminal for device programming and test | | | P1.5/TA0/TMS | 26 | 26 | I/O | General-purpose digital I/O pin/Timer_A, compare: Out0 output/test mode select, input terminal for device programming and test | | | P1.6/TA1/TDI/TCLK | 27 | 27 | I/O | General-purpose digital I/O pin/Timer_A, compare: Out1 output/test data input terminal or test clock input | | | P1.7/TA2/TDO/TDI† | 28 | 28 | I/O | General-purpose digital I/O pin/Timer_A, compare: Out2 output/test data output terminal or data input during programming | | | P2.0/ACLK | 8 | 6 | I/O | General-purpose digital I/O pin/ACLK output | | | P2.1/INCLK | 9 | 7 | I/O | General-purpose digital I/O pin/Timer_A, clock signal at INCLK | | | P2.2/CAOUT/TA0 | 10 | 8 | I/O | /O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/comparator_A, output/
Receive | | | P2.3/CA0/TA1 | 19 | 18 | I/O | General-purpose digital I/O pin/Timer_A, compare: Out1 output/comparator_A, input | | | P2.4/CA1/TA2 | 20 | 19 | I/O | General-purpose digital I/O pin/Timer_A, compare: Out2 output/comparator_A, input | | | P2.5/R _{OSC} | 3 | 32 | I/O | General-purpose digital I/O pin/Input for external resistor that defines the DCO nominal frequency | | | P3.0/STE0 | 11 | 9 | I/O | General-purpose digital I/O pin/slave transmit enable—USART0/SPI mode | | | P3.1/SIMO0 | 12 | 10 | I/O | General-purpose digital I/O pin/slave in/master out of USART0/SPI mode | | | P3.2/SOMI0 | 13 | 11 | I/O | General-purpose digital I/O pin/slave out/master in of USART0/SPI mode | | | P3.3/UCLK0 | 14 | 12 | I/O | General-purpose digital I/O pin/external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode clock input | | | P3.4/UTXD0 | 15 | 13 | I/O | General-purpose digital I/O pin/transmit data out—USART0/UART mode | | | P3.5/URXD0 | 16 | 14 | I/O | General-purpose digital I/O pin/receive data in—USART0/UART mode | | | P3.6 | 17 | 15 | I/O | General-purpose digital I/O pin | | | P3.7 | 18 | 16 | I/O | General-purpose digital I/O pin | | | RST/NMI | 7 | 5 | I | Reset or nonmaskable interrupt input | | | TEST | 1 | 29 | I | Selects test mode for JTAG pins on Port1 | | | Vcc | 2 | 30 | | Supply voltage | | | V _{SS} | 4 | 1 | | Ground reference | | | XIN | 6 | 3 | I | Input terminal of crystal oscillator | | | XOUT | 5 | 2 | 0 | Output terminal of crystal oscillator | | | NC | | 4, 17,
20, 31 | | No internal connection | | [†]TDO or TDI is selected via JTAG instruction. # short-form description ### **CPU** The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. ### instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. **Table 1. Instruction Word Formats** | Dual operands, source-destination | e.g. ADD R4,R5 | R4 + R5> R5 | |-----------------------------------|----------------|-----------------------| | Single operands, destination only | e.g. CALL R8 | PC>(TOS), R8> PC | | Relative jump, un/conditional | e.g. JNE | Jump-on-equal bit = 0 | **Table 2. Address Mode Descriptions** | ADDRESS MODE | S | D | SYNTAX | EXAMPLE | OPERATION | |------------------------|---|---|-----------------|------------------|-----------------------------| | Register | • | • | MOV Rs,Rd | MOV R10,R11 | R10> R11 | | Indexed | • | • | MOV X(Rn),Y(Rm) | MOV 2(R5),6(R6) | M(2+R5)> M(6+R6) | | Symbolic (PC relative) | • | • | MOV EDE,TONI | | M(EDE)> M(TONI) | | Absolute | • | • | MOV &MEM,&TCDAT | | M(MEM)> M(TCDAT) | | Indirect | • | | MOV @Rn,Y(Rm) | MOV @R10,Tab(R6) | M(R10)> M(Tab+R6) | | Indirect autoincrement | • | | MOV @Rn+,Rm | MOV @R10+,R11 | M(R10)> R11
R10 + 2> R10 | | Immediate | • | | MOV #X,TONI | MOV #45,TONI | #45> M(TONI) | NOTE: S = source D = destination ### operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: - Active mode AM; - All clocks are active - Low-power mode 0 (LPM0); - CPU is disabled ACLK and SMCLK remain active. MCLK is disabled - Low-power mode 1 (LPM1); - CPU is disabled ACLK and SMCLK remain active. MCLK is disabled DCO's dc-generator is disabled if DCO not used in active mode - Low-power mode 2 (LPM2); - CPU is disabled MCLK and SMCLK are disabled DCO's dc-generator remains enabled ACLK remains active - Low-power mode 3 (LPM3); - CPU is disabled MCLK and SMCLK are disabled DCO's dc-generator is disabled ACLK remains active - Low-power mode 4 (LPM4); - CPU is disabled ACLK is disabled MCLK and SMCLK are disabled DCO's dc-generator is disabled Crystal oscillator is stopped # MSP430x12x MIXED SIGNAL MICROCONTROLLER SLAS312B - JULY 2001 - REVISED OCTOBER 2003 # interrupt vector addresses The interrupt vectors and the power-up starting address are located in the memory with an address range of 0FFFFh-0FFE0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence. | INTERRUPT SOURCE | INTERRUPT FLAG |
SYSTEM INTERRUPT | WORD ADDRESS | PRIORITY | |--|--|--|--------------|-------------| | Power-up, external reset, watchdog | WDTIFG (see Note1)
KEYV (see Note 1) | Reset | 0FFFEh | 15, highest | | NMI, oscillator fault, flash memory access violation | NMIIFG (see Notes 1 and 4)
OFIFG (see Notes 1 and 4)
ACCVIFG (see Notes 1 and 4) | (non)-maskable,
(non)-maskable,
(non)-maskable | 0FFFCh | 14 | | | | | 0FFFAh | 13 | | | | | 0FFF8h | 12 | | Comparator_A | CAIFG | maskable | 0FFF6h | 11 | | Watchdog timer | WDTIFG | maskable | 0FFF4h | 10 | | Timer_A | TACCR0 CCIFG (see Note 2) | maskable | 0FFF2h | 9 | | Timer_A | TACCR1 and TACCR2
CCIFGs, TAIFG
(see Notes 1 and 2) | maskable | 0FFF0h | 8 | | USART0 receive | URXIFG0 | maskable | 0FFEEh | 7 | | USART0 transmit | UTXIFG0 | maskable | 0FFECh | 6 | | | | | 0FFEAh | 5 | | | | | 0FFE8h | 4 | | I/O Port P2 (eight flags – see Note 3) | P2IFG.0 to P2IFG.7
(see Notes 1 and 2) | maskable | 0FFE6h | 3 | | I/O Port P1 (eight flags) | P1IFG.0 to P1IFG.7
(see Notes 1 and 2) | maskable | 0FFE4h | 2 | | | | | 0FFE2h | 1 | | | | | 0FFE0h | 0, lowest | NOTES: 1. Multiple source flags - 2. Interrupt flags are located in the module - 3. There are eight Port P2 interrupt flags, but only six Port P2 I/O pins (P2.0-5) are implemented on the '12x devices. - 4. (non)-maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot. # special function registers Most interrupt and module enable bits are collected into the lowest address space. Special function register bits that are not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement. ### interrupt enable 1 and 2 WDTIE: Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE: Oscillator-fault-interrupt enable NMIIE: Nonmaskable-interrupt enable ACCVIE: Flash access violation interrupt enable URXIE0: USARTO, UART, and SPI receive-interrupt enable UTXIE0: USARTO, UART, and SPI transmit-interrupt enable ### interrupt flag register 1 and 2 WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on V_{CC} power up or a reset condition at the RST/NMI pin in reset mode. OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin URXIFG0: USART0, UART, and SPI receive flag UTXIFG0: USART0, UART, and SPI transmit flag # MSP430x12x MIXED SIGNAL MICROCONTROLLER SLAS312B - JULY 2001 - REVISED OCTOBER 2003 # module enable registers 1 and 2 | Address | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---------|---|---|---|---|---|---|-------|-----------------| | 04h | Address | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 05h | | | | | | | UTXE0 | URXE0
USPIE0 | | | | | | | | | rw-0 | rw-0 | URXE0: USART0, UART receive enable UTXE0: USART0, UART transmit enable USPIE0: USARTO, SPI (synchronous peripheral interface) transmit and receive enable **Legend rw:** Bit can be read and written. Bit can be read and written. It is reset by PUC SFR bit is not present in device. # memory organization rw-0: # bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report *Features of the MSP430 Bootstrap Loader*, Literature Number SLAA089. | BSL Function | DW & PW Package Pins | RHB Package Pins | |---------------|----------------------|------------------| | Data Transmit | 22 - P1.1 | 22 - P1.1 | | Data Receive | 10 - P2.2 | 8 - P2.2 | ### flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: - Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. - Segments 0 to n may be erased in one step, or each segment may be individually erased. - Segments A and B can be erased individually, or as a group with segments 0-n. Segments A and B are also called *information memory*. - New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. ### peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, see the MSP430x1xx Family User's Guide, literature number SLAU049. ### oscillator and system clock The clock system in the MSP430x12x devices is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the following clock signals: - Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal. - Main clock (MCLK), the system clock used by the CPU. - Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. ### digital I/O There are three 8-bit I/O ports implemented—ports P1, P2, and P3 (only six port P2 I/O signals are available on external pins): - All individual I/O bits are independently programmable. - Any combination of input, output, and interrupt conditions is possible. - Edge-selectable interrupt input capability for all the eight bits of ports P1 and six bits of port P2. - Read/write access to port-control registers is supported by all instructions. ### NOTE: Six bits of port P2, P2.0 to P2.5, are available on external pins – but all control and data bits for port P2 are implemented. Port P3 has no interrupt capability. # watchdog timer The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. ### **USARTO** The MSP430x12x devices have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. ### timer A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. | | | | Timer_A3 Signa | I Connections | | | | | |-----------|-----------|----------------------|--------------------|---------------|--------------------------|-------------------|-----------|--| | Input Pir | Number | Davis a Innut Cinnal | Madeda Issued Name | Madala Black | Marketa Contract Classes | Output Pin Number | | | | DW, PW | RHB | Device Input Signal | Module Input Name | Module Block | Module Output Signal | DW, PW | RHB | | | 21 - P1.0 | 21 - P1.0 | TACLK | TACLK | | | | | | | | | ACLK | ACLK | - | | | | | | | | SMCLK | SMCLK | Timer | NA | | | | | 9 - P2.1 | 7 - P2.1 | INCLK | INCLK | | | | | | | 22 - P1.1 | 22 - P1.1 | TA0 | CCI0A | | | 22 - P1.1 | 22 - P1.1 | | | 10 - P2.2 | 8 - P2.2 | TA0 | CCI0B | 0000 | TAO | 26 - P1.5 | 26 - P1.5 | | | | | DVSS | GND | CCR0 | | | | | | | | DVCC | VCC | | | | | | | 23 - P1.2 | 23 - P1.2 | TA1 | CCI1A | | | 19 - P2.3 | 18 - P2.3 | | | | | CAOUT (internal) | CCI1B | 0004 | | 23 - P1.2 | 23 - P1.2 | | | | | DVSS | GND | CCR1 | TA1 | 27 - P1.6 | 27 - P1.6 | | | | | DV _{CC} | V _{CC} | | | | | | | 24 - P1.3 | 24 - P1.3 | TA2 | CCI2A | | | 20 - P2.4 | 19 - P2.4 | | | | | ACLK (internal) | CCI2B | 0000 | TAG | 24 - P1.3 | 24 - P1.3 | | | | | DVSS | GND | CCR2 | TA2 | 28 - P1.7 | 28 - P1.7 | | | | | DVCC | VCC | | | | | | # comparator_A The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. # peripheral file map | PER | IPHERALS WITH WORD ACCES | S | | |--------------|--|--|--| | Timer_A | Reserved Reserved Reserved Reserved Capture/compare register Capture/compare register Capture/compare register Timer_A register Reserved Reserved Reserved Reserved Capture/compare control Capture/compare control Capture/compare control Timer_A control Timer_A interrupt vector | TACCR2 TACCR1 TACCR0 TAR TACCTL2 TACCTL1 TACCTL0 TACTL TAIV |
017Eh
017Ch
017Ch
017Ah
0178h
0176h
0174h
0172h
016Eh
016Ch
016Ah
0168h
0166h
0164h
0162h
0162h | | Flash Memory | Flash control 3
Flash control 2
Flash control 1 | FCTL3
FCTL2
FCTL1 | 012Ch
012Ah
0128h | | Watchdog | Watchdog/timer control | WDTCTL | 0120h | | PEF | RIPHERALS WITH BYTE ACCES | S | | | USARTO | Transmit buffer Receive buffer Baud rate Baud rate Modulation control Receive control Transmit control USART control | UOTXBUF UORXBUF UOBR1 UOBR0 UOMCTL UORCTL UOTCTL UOTCTL | 077h
076h
075h
074h
073h
072h
071h
070h | | Comparator_A | Comparator_A port disable
Comparator_A control2
Comparator_A control1 | CAPD
CACTL2
CACTL1 | 05Bh
05Ah
059h | | Basic Clock | Basic clock sys. control2
Basic clock sys. control1
DCO clock freq. control | BCSCTL2
BCSCTL1
DCOCTL | 058h
057h
056h | | Port P3 | Port P3 selection Port P3 direction Port P3 output Port P3 input | P3SEL
P3DIR
P3OUT
P3IN | 01Bh
01Ah
019h
018h | | Port P2 | Port P2 selection Port P2 interrupt enable Port P2 interrupt edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input | P2SEL
P2IE
P2IES
P2IFG
P2DIR
P2OUT
P2IN | 02Eh
02Dh
02Ch
02Bh
02Ah
029h
028h | | Port P1 | Port P1 selection Port P1 interrupt enable Port P1 interrupt edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input | P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN | 026h
025h
024h
023h
022h
021h
020h | # peripheral file map (continued) | PERIPHERALS WITH BYTE ACCESS (CONTINUED) | | | | | | | | |--|-----------------------|------|------|--|--|--|--| | Special FunctionModule enable2ME2005h | | | | | | | | | | Module enable1 | ME1 | 004h | | | | | | | SFR interrupt flag2 | IFG2 | 003h | | | | | | | SFR interrupt flag1 | IFG1 | 002h | | | | | | | SFR interrupt enable2 | IE2 | 001h | | | | | | | SFR interrupt enable1 | IE1 | 000h | | | | | # absolute maximum ratings† | Voltage applied at V _{CC} to V _{SS} | | |---|----------------| | Voltage applied to any pin (see Note) | | | Diode current at any device terminal | ±2 mA | | Storage temperature, T _{sta} (unprogrammed device) | –55°C to 150°C | | Storage temperature, T _{stq} (programmed device) | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltages referenced to V_{SS}. The JTAG fuse-blow voltage, V_{FB}, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse. # recommended operating conditions | | | | MIN | NOM | MAX | UNITS | |--|--------------------------|-----------------------------|--------|-------|----------------------|--------| | Supply voltage during program execution, VCC | ; (see Note 1) | MSP430F12x | 1.8 | | 3.6 | V | | Supply voltage during program/erase flash memory, V _{CC} | | MSP430F12x | 2.7 | | 3.6 | V | | Supply voltage, VSS | | • | | 0 | | V | | Operating free-air temperature range, TA | MSP430F12x | -40 | | 85 | °C | | | LFXT1 crystal frequency, f(LFXT1) (see Note 2) | LF mode selected, XTS=0 | Watch crystal | | 32768 | | Hz | | | | Ceramic resonator | 450 | | 8000 | | | (366 14016 2) | XT1 selected mode, XTS=1 | MSP430F12x 2.7 3.6 V | KHZ | | | | | Draces from the Mark (MOLV simple) | • | | dc | | 4.15 | NAL I- | | Processor frequency f _(system) (MCLK signal) | | | dc | | 8 | IVIMZ | | Low-level input voltage (TEST, RST/NMI), V _{IL} (excluding XIN) | | V _{CC} = 2.2 V/3 V | VSS | | V _{SS} +0.6 | V | | High-level input voltage (TEST, RST/NMI), VIH | (excluding XIN) | V _{CC} = 2.2 V/3 V | 0.8VCC | | Vcc | V | NOTES: 1. The LFXT1 oscillator in LF-mode requires a resistor of 5.1 M Ω from XOUT to VSS when V_{CC} <2.5 V. The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal frequency of 4 MHz at V_{CC} \geq 2.2 V. The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal frequency of 8 MHz at V_{CC} \geq 2.8 V. 2. The LFXT1 oscillator in LF-mode requires a watch crystal. The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal. # recommended operating conditions (continued) NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V_{CC} of 2.7 V. Figure 1. Maximum Frequency vs Supply Voltage electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) supply current (into V_{CC}) excluding external current | | PARAMETER | TEST CONDITIONS | | | TYP | MAX | UNIT | |-----------|------------------------|--|-----------------------------|--|-----|-----|------| | | | $T_A = -40^{\circ}\text{C} + 85^{\circ}\text{C},$
$f_{MCLK} = f_{(SMCLK)} = 1 \text{ MHz},$ | V _{CC} = 2.2 V | | 200 | 250 | μА | | I(AM) | Active mode | f(ACLK) = 32,768 Hz,
Program executes in Flash | V _{CC} = 3 V | | 300 | 350 | μΑ | | , | | $T_A = -40^{\circ}\text{C} + 85^{\circ}\text{C},$ | V _{CC} = 2.2 V | | 3 | 5 | ^ | | | | f(MCLK) = f(SMCLK) = f(ACLK) = 4096 Hz,
Program executes in Flash | V _{CC} = 3 V | | 11 | 18 | μΑ | | 1 | Law rawar mada (LDMO) | $T_A = -40^{\circ}C + 85^{\circ}C,$ | V _{CC} = 2.2 V | | 32 | 45 | A | | I(CPUOff) | Low-power mode, (LPM0) | f(MCLK) = 0, $f(SMCLK) = 1$ MHz,
f(ACLK) = 32,768 Hz | VCC = 3 V | | 55 | 70 | μΑ | | | Low-power mode, (LPM2) | $T_A = -40^{\circ}C + 85^{\circ}C,$ | V _{CC} = 2.2 V | | 11 | 14 | A | | I(LPM2) | | f(MCLK) = f(SMCLK) = 0 MHz,
f(ACLK) = 32,768 Hz, SCG0 = 0 | VCC = 3 V | | 17 | 22 | μΑ | | | | T _A = -40°C | | | 0.8 | 1.2 | μА | | | | T _A = 25°C | V _{CC} = 2.2 V | | 0.7 | 1 | | | In accord | Low navier made (LDM2) | T _A = 85°C | 1 | | 1.6 | 2.3 | | | (LPM3) | Low-power mode, (LPM3) | T _A = −40°C | | | 1.8 | 2.2 | | | | | T _A = 25°C | VCC = 3 V | | 1.6 | 1.9 | μΑ | | | | T _A = 85°C | 1 | | 2.3 | 3.4 | 1 | | | | T _A = -40°C | | | 0.1 | 0.5 | | | I(LPM4) | Low-power mode, (LPM4) | T _A = 25°C | V _{CC} = 2.2 V/3 V | | 0.1 | 0.5 | μΑ | | • | | T _A = 85°C |] | | 0.8 | 1.9 | | NOTE: All inputs are tied to 0 V or $V_{\hbox{\footnotesize{CC}}}$. Outputs do not source or sink any current. electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) current consumption of active mode versus system frequency $I_{AM} = I_{AM[1 \text{ MHz}]} \times f_{system} [MHz]$ current consumption of active mode versus supply voltage $I_{AM} = I_{AM[3\ V]} + 120\ \mu A/V \times (V_{CC} - 3\ V)$ # Schmitt-trigger inputs Port P1 to Port P3; P1.0 to P1.7, P2.0 to P2.5, P3.0 to P3.7 | | PARAMETER | TEST CONDITIONS | MIN | TYP MAX | UNIT | |------------------|--|-------------------------|-----|---------|----------------| | ., | | V _{CC} = 2.2 V | 1.1 | 1.5 | ., | | V _{IT+} | Positive-going input threshold voltage | VCC = 3 V | 1.5 | 1.9 | V | | ., | Name Commercial Count through all configure | V _{CC} = 2.2 V | 0.4 | 0.9 | .,, | | V_{IT-} | Negative-going input threshold voltage | V _{CC} = 3 V | 0.9 | 1.3 | V | | \/. | Innut voltage hyptoresis (V/ | V _{CC} = 2.2 V | 0.3 | 1.1 | V | | V_{hys} | Input voltage hysteresis, (V _{IT+} – V _{IT-}) | V _{CC} = 3 V | 0.5 | 1 | 1 ^v | ### inputs Px.x, TAx | PARAMETER | | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |--------------------|---------------------------|---|-----------|-----|-----|-----|-------| | | | | 2.2 V/3 V | 1.5 | | | cycle | | t(int) | External interrupt timing | Port P1, P2: P1.x to P2.x, External trigger signal for the interrupt flag, (see Note 1) | 2.2 V | 62 | | | ns | | , , | | Tor the interrupt mag, (see Note 1) | 3 V | 50 | | | | | | Timer_A, capture timing | TA0, TA1, TA2 | 2.2 V | 62 | | | | | ^t (cap) | | | 3 V | 50 | | | ns | | 4 | Timer_A clock frequency | TACLK INCLKT T | 2.2 V | | | 8 | MHz | | f(TAext) | externally applied to pin | TACLK, INCLK T _(H) = T _(L) | 3 V | | | 10 | IVITZ | | , | Timer A cleak fraguency | | 2.2 V | | | 8 | MII | | f(TAint) | Timer_A clock frequency | SMCLK or ACLK signal selected | 3 V | | | 10 | MHz | NOTES: 1. The external signal sets the interrupt flag every time the minimum t_(int) cycle and time parameters are met. It may be set even with trigger signals shorter than t_(int). Both the cycle and timing specifications must be met to ensure the flag is set. t_(int) is measured in MCLK cycles. # leakage current (see Notes 1 and 2) | | PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |------------|--------------------------------|-------------------------------------|-----------|-----|-----|-----|------| | | | Port P1: P1.x, $0 \le x \le 7$ | 2.2 V/3 V | | | ±50 | | | Ilkg(Px.x) | High-impedance leakage current | Port P2: P2.x, $0 \le \times \le 5$ | 2.2 V/3 V | | | ±50 | nA | NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The leakage of the digital port pins is measured individually. The port pin must be selected for input and there must be no optional pullup or pulldown resistor. electrical characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted) (continued) outputs Port 1 to Port 3; P1.0 to P1.7, P2.0 to P2.5, P3.0 to P3.7 | | PARAMETER | TEST | CONDITIONS | | MIN | TYP MAX | UNIT | |--|---------------------------|---------------------------------|-------------------------|------------|-----------------------|-----------------------|------| | | | $I_{(OHmax)} = -1.5 \text{ mA}$ | V 00V | See Note 1 | V _{CC} -0.25 | Vcc | | | \/ | High lavel output valtage | $I_{(OHmax)} = -6 \text{ mA}$ | V _{CC} = 2.2 V | See Note 2 | VCC-0.6 | Vcc | V | | V _{OH} High-level output voltaç | High-level output voltage | $I_{(OHmax)} = -1.5 \text{ mA}$ | | See Note 1 | V _{CC} -0.25 | Vcc | V | | | | $I_{(OHmax)} = -6 \text{ mA}$ | $V_{CC} = 3 V$ | See Note 2 | VCC-0.6 | Vcc | | | | | $I_{(OLmax)} = 1.5 \text{ mA}$ | V 00V | See Note 1 | VSS | V _{SS} +0.25 | | | \/ - · | Laurana autoriturata na | I _(OLmax) = 6 mA | V _{CC} = 2.2 V | See Note 2 | V _{SS} | V _{SS} +0.6 | ., | | VOL | Low-level output voltage | $I_{(OLmax)} = 1.5 \text{ mA}$ | V 2.V | See Note 1 | VSS | V _{SS} +0.25 | V | | | | I _(OLmax) = 6 mA | VCC = 3 V | See Note 2 | VSS | V _{SS} +0.6 | | - NOTES: 1. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified. - 2. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. ### outputs - Ports P1, P2, and P3 # TYPICAL LOW-LEVEL OUTPUT CURRENT **LOW-LEVEL OUTPUT VOLTAGE** NOTE: Only one output is loaded at a time. # TYPICAL LOW-LEVEL OUTPUT CURRENT **LOW-LEVEL OUTPUT VOLTAGE** Figure 3 ### outputs - Ports P1, P2, and P3 (continued) # TYPICAL HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT HIGH-LEVEL OUTPUT VOLTAGE NOTE: Only one output is loaded at a time. ### outputs P1.x, P2.x, P3.x, TAx | F | PARAMETER | TEST | CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |---------|---|--|--|-----------|---------------|-----|---------------|------| | f(P20) | | P2.0/ACLK; C _L = 20 pF | | 2.2 V/3 V | | | fSystem | | | f(TAx) | Output frequency | TA0, TA1, TA2; C _L = 20 pF,
Internal clock source, SMCLK signal applied (see Note 1) | | 2.2 V/3 V | dc | | fSystem | MHz | | | | P1.4/SMCLK,
C _L = 20 pF | fSMCLK = fLFXT1 = fXT1 | 2.2 V/3 V | 40% | | 60% | | | | | | fSMCLK = fLFXT1 = fLF | | 35% | | 65% | | | \ | | | fSMCLK = fLFXT1/n | | 50%–
15 ns | 50% | 50%+
15 ns | | | | Duty cycle of O/P frequency | | fSMCLK = fDCOCLK | 2.2 V/3 V | 50%–
15 ns | 50% | 50%+
15 ns | | | | | | f _{P20} = f _{LFXT1} = f _{XT1} | | 40% | | 60% | | | | P2.0/ACLK,
$C_1 = 20 \text{ pF}$ $f_{P20} = f_{LFX}$ | f _{P20} = f _{LFXT1} = f _{LF} | 2.2 V/3 V | 30% | | 70% | | | | | | f _{P20} = f _L FXT1/n | | | 50% | | | | | t(TAdc) | 7 | TA0, TA1, TA2; C _L = 20 | pF, Duty cycle = 50% | 2.2 V/3 V | | 0 | ±50 | ns | NOTE 1: The limits of the system clock MCLK has to be met. MCLK and SMCLK can have different frequencies. ### **USART** (see Note 1) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------|----------------------|-------------------------|-----|-----|-----|------| | $t_{(au)}$ US. | USART: deglitch time | V _{CC} = 2.2 V | 200 | 430 | 800 | 20 | | | USART: degition time | V _{CC} = 3 V | 150 | 280 | 500 | ns | NOTE 1: The signal applied to the USART receive signal/terminal (URXD) should meet the timing requirements of $t_{(\tau)}$ to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of $t_{(\tau)}$. The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD line. # electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) ### **RAM** | | PARAMETER | MIN | NOM | MAX | UNIT | |---------|-------------------------|-----|-----|-----|------| | V(RAMh) | CPU halted (see Note 1) | 1.6 | | | V | NOTE 1: This parameter defines the minimum supply voltage V_{CC} when the data in the program memory RAM remains unchanged. No program execution should happen during this supply voltage condition. ### Comparator_A (see Note 1) | | PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |---------------------------|--------------------------------------|---|-----------|------|------|--------------------|------| | Lon | | CAON=1, CARSEL=0, CAREF=0 | 2.2 V | | 25 | 40 | μΑ | | I(DD) | | CAON=1, CARSEL=0, CAREF=0 | 3 V | | 45 | 60 | μΑ | | I(Refladder/ | | CAON=1, CARSEL=0, | 2.2 V | | 30 | 50 | | | RefDiode) | | CAREF=1/2/3, No load at P2.3/CA0/TA1 and P2.4/CA1/TA2 | 3 V | | 45 | 71 | μΑ | | V _(IC) | Common-mode input voltage | CAON =1 | 2.2 V/3 V | 0 | | V _{CC} -1 | V | | V(Ref025) | Voltage at 0.25 V _{CC} node | PCA0=1, CARSEL=1, CAREF=1,
No load at P2.3/CA0/TA1 and
P2.4/CA1/TA2 | 2.2 V/3 V | 0.23 | 0.24 | 0.25 | | | V(Ref050) | Voltage at 0.5V _{CC} node | PCA0=1, CARSEL=1, CAREF=2,
No load at P2.3/CA0/TA1 and
P2.4/CA1/TA2 | 2.2 V/3 V | 0.47 | 0.48 | 0.5 | | | | (= | PCA0=1, CARSEL=1, CAREF=3, | 2.2 V | 390 | 480 | 540 | ., | | V(RefVT) | (see Figure 6 and Figure 7) | No load at P2.3/CA0/TA1 and P2.4/CA1/TA2, $T_A = 85^{\circ}C$ | 3 V | 400 | 490 | 550 | mV | | V(offset) | Offset voltage | See Note 2 | 2.2 V/3 V | -30 | | 30 | mV | | V _{hys} | Input hysteresis | CAON=1 | 2.2 V/3 V | 0 | 0.7 | 1.4 | mV | | | | T _A = 25°C, Overdrive 10 mV, | 2.2 V | 160 | 210 | 300 | ns | | | | Without filter: CAF=0 | 3 V | 80 | 150 | 240 | 115 | | ^t (response LH |) | T _A = 25°C, Overdrive 10 mV, | 2.2 V | 1.4 | 1.9 | 3.4 | | | | | With filter: CAF=1 | 3 V | 0.9 | 1.5 | 2.6 | μs | | | | T _A = 25°C, | 2.2 V | 130 | 210 | 300 | | | 4 | | Overdrive 10 mV, without filter: CAF=0 | 3 V | 80 | 150 | 240 | ns | | ^t (response HL | .) | T _A = 25°C, | 2.2 V | 1.4 | 1.9 | 3.4 | | | | | Overdrive 10 mV, with filter: CAF=1 | 3 V | 0.9 | 1.5 | 2.6 | μs | NOTES: 1. The leakage current for the Comparator_A terminals is identical to I_{Ikg(Px.x)} specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 650 V_{CC} = 2.2 V 600 V(REFVT) - Reference Volts -mV **Typical** 550 500 450 400 75 -45 -25 -5 15 35 55 95 T_A – Free-Air Temperature – $^{\circ}C$ Figure 6. $V_{(RefVT)}$ vs Temperature, $V_{CC} = 3 V$ Figure 7. $V_{(RefVT)}$ vs Temperature, $V_{CC} = 2.2 \text{ V}$ Figure 8. Block Diagram of Comparator_A Module Figure 9. Overdrive Definition electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) ### **PUC/POR** | PARAMETER | | TEST CONDIT | TEST CONDITIONS | | TYP | MAX | UNIT | |--------------------|---------|------------------------------|-----------------------------|-----|-----|-----|------| | t(POR_Delay) | | | | | 150 | 250 | μs | | | 7 | $T_A = -40^{\circ}C$ | 1.4 | | 1.8 | V | | | [∨] POR | POR | T _A = 25°C | V _{CC} = 2.2 V/3 V | 1.1 | | 1.5 | V | | | | T _A = 85°C | | 0.8 | | 1.2 | V | | V _(min) | | | | 0 | | 0.4 | V | | t(reset) | PUC/POR | Reset is accepted internally | | 2 | | | μs | Figure 10. Power-On Reset (POR) vs Supply Voltage Figure 11. V_{POR} vs Temperature # electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) ### crystal oscillator,LFXT1 | P | ARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |------------------|---------------------------|---------------------------------------|-------------|---------------------|-----|-------------------|------| | | D'a la ada a sa sita a sa | XTS=0; LF mode selected | 2.2 V / 3 V | | 12 | | . [| | C _{XIN} | Pin load capacitance | XTS=1; XT1 mode selected (see Note 1) | 2.2 V / 3 V | | 2 | | pF | | 0 | Die land consistence | XTS=0; LF mode selected | 2.2 V / 3 V | | 12 | | | | CXOUT | Pin load capacitance | XTS=1; XT1 mode selected (see Note 1) | 2.2 V / 3 V | | 2 | | pF | | V _{IL} | Input levels at XIN | | 2.2 V / 3 V | VSS | 0. | 2×V _{CC} | V | | V_{IH} | input levels at Aliv | | | $0.8 \times V_{CC}$ | | VCC | V | NOTES: 1. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. 2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator. ### **DCO** | PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |---------------------|--|-----------|-------------------------|----------------|----------------|---------| | fracces | B - 0 DCO - 2 MOD - 0 DCOB - 0 To - 250C | 2.2 V | 0.08 | 0.12 | 0.15 | MUZ | | f(DCO03) | $R_{Sel} = 0$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25^{\circ}C$ | 3 V | 0.08 | 0.13 | 0.16 | MHz | | f(DOO40) | $R_{Sel} = 1$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C | 2.2 V | 0.14 | 0.19 | 0.23 | MHz | | f(DCO13) | N _{Sel} = 1, DCO = 3, MOD = 0, DCOR = 0, 1A = 23 C | 3 V | 0.14 | 0.18 | 0.22 | IVII IZ | | f(DCO23) | $R_{Sel} = 2$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25^{\circ}C$ | 2.2 V | 0.22 | 0.30 | 0.36 | MHz | | (DCO23) | 1. Sej = 2, 200 = 0, 1102 = 0, 2001 = 0, 1, 4 = 20 0 | 3 V | 0.22 | 0.28 | 0.34 | | | f(DCO33) | $R_{Sel} = 3$, DCO = 3, MOD = 0, DCOR = 0, $T_A =
25^{\circ}C$ | 2.2 V | 0.37 | 0.49 | 0.59 | MHz | | (DCO33) | Tryel = 0, 200 = 0, MOD = 0, 200 (= 0, TA = 20 0 | 3 V | 0.37 | 0.47 | 0.56 | 1711 12 | | f(DCC42) | $R_{SO} = 4$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25^{\circ}$ C | 2.2 V | 0.61 | 0.77 | 0.93 | MHz | | f(DCO43) | N _{Sel} = 4, DCC = 3, MCD = 0, DCCN = 0, 1 _A = 23 C | 3 V | 0.61 | 0.75 | 0.9 | IVII IZ | | f(DOOSO) | R _{Sel} = 5, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C | 2.2 V | 1 | 1.2 | 1.5 | MHz | | f(DCO53) | N _{Sel} = 3, Dec = 3, MoD = 0, Dec(N = 0, 1 _A = 23 c | 3 V | 1 | 1.3 | 1.5 | IVII IZ | | f(DOOO) | P 1-6 DCO-2 MOD-0 DCOP-0 Tx-25°C | 2.2 V | 1.6 | 1.9 | 2.2 | MHz | | f(DCO63) | $R_{Sel} = 6$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C | 3 V | 1.69 | 2 | 2.29 | IVII IZ | | f(DOOTO) | D . 7 DCO 2 MOD 0 DCOD 0 T. 25°C | 2.2 V | 2.4 | 2.9 | 3.4 | MHz | | f(DCO73) | $R_{Sel} = 7$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C | 3 V | 2.7 | 3.2 | 3.65 | IVII IZ | | | D 7 DOO 7 MOD 0 DOOD 0 T 0500 | 2.2 V | 4 | 4.5 | 4.9 | N41.1- | | f(DCO77) | $R_{Sel} = 7$, DCO = 7, MOD = 0, DCOR = 0, $T_A = 25$ °C | 3 V | 4.4 | 4.9 | 5.4 | MHz | | f(DCO47) | R _{Sel} = 4, DCO = 7, MOD = 0, DCOR = 0, T _A = 25°C | 2.2 V/3 V | F _{DCO40} x1.7 | FDCO40
x2.1 | FDCO40
x2.5 | MHz | | S _(Rsel) | S _R = f _{Rsel+1} /f _{Rsel} | 2.2 V/3 V | 1.35 | 1.65 | 2 | | | ` , | S _{DCO} = f _{DCO+1} /f _{DCO} | 2.2 V/3 V | 1.07 | 1.12 | 1.16 | ratio | | S _(DCO) | טטט+1ייטטט – ישטט+1ייטטט | 2.2 V/3 V | -0.31 | -0.36 | -0.40 | | | Dt | Temperature drift, R _{Sel} = 4, DCO = 3, MOD = 0 (see Note 1) | | | | | %/°C | | | Drift with Vala variation D 4 DCC 2 MCD C | 3 V | -0.33 | -0.38 | -0.43 | | | DV | Drift with V_{CC} variation, $R_{Sel} = 4$, DCO = 3, MOD = 0 (see Note 1) | 2.2 V/3 V | 0 | 5 | 10 | %/V | NOTES: 1. These parameters are not production tested. electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Figure 12. DCO Characteristics ### principle characteristics of the DCO - Individual devices have a minimum and maximum operation frequency. The specified parameters for fDCOx0 to fDCOx7 are valid for all devices - The DCO control bits DCO0, DCO1 and DCO2 have a step size as defined in parameter S_{DCO}. - The modulation control bits MOD0 to MOD4 select how often f_{DCO+1} is used within the period of 32 DCOCLK cycles. f_{DCO} is used for the remaining cycles. The frequency is an average = $f_{DCO} \times (2^{MOD/32})$. - All ranges selected by R_{sel(n)} overlap with R_{sel(n+1)}: R_{sel0} overlaps with R_{sel1}, ... R_{sel6} overlaps with R_{sel7}. ### wake-up from lower power modes (LPMx) | | PARAMETER | TEST COI | NDITIONS | MIN | TYP | MAX | UNIT | |---------|-------------------------|-----------------------------|------------------------------|-----|-----|-----|------| | t(LPM0) | | V _{CC} = 2.2 V/3 V | | | 100 | | | | t(LPM2) | | V _{CC} = 2.2 V/3 V | | | 100 | | ns | | | | f(MCLK) = 1 MHz, | V _{CC} = 2.2 V/3 V | | | 6 | | | t(LPM3) | Delevitime (and Note 4) | f(MCLK) = 2 MHz, | V _{CC} = 2.2 V/3 V | | | 6 | μs | | | Delay time (see Note 1) | f(MCLK) = 3 MHz, | $V_{CC} = 2.2 \text{ V/3 V}$ | | | 6 | | | | | $f_{(MCLK)} = 1 MHz,$ | $V_{CC} = 2.2 \text{ V/3 V}$ | | | 6 | | | t(LPM4) | | $f_{(MCLK)} = 2 MHz,$ | $V_{CC} = 2.2 \text{ V/3 V}$ | | | 6 | μs | | | | f(MCLK) = 3 MHz, | $V_{CC} = 2.2 \text{ V/3 V}$ | | | 6 | | NOTE 1: Parameter applicable only if DCOCLK is used for MCLK. electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) ### Flash Memory | | PARAMETER | TEST
CONDITIONS | VCC | MIN | NOM | MAX | UNIT | |--------------------------|---|-----------------------|--------------|-----|-----------------|-----|------------------| | VCC(PGM/
ERASE) | Program and Erase supply voltage | | | 2.7 | | 3.6 | V | | fFTG | Flash Timing Generator frequency | | | 257 | | 476 | kHz | | IPGM | Supply current from V _{CC} during program | | 2.7 V/ 3.6 V | | 3 | 5 | mA | | IERASE | Supply current from V _{CC} during erase | | 2.7 V/ 3.6 V | | 3 | 7 | mA | | t _{CPT} | Cumulative program time | see Note 1 | 2.7 V/ 3.6 V | | | 4 | ms | | ^t CMErase | Cumulative mass erase time | see Note 2 | 2.7 V/ 3.6 V | 200 | | | ms | | | Program/Erase endurance | | | 104 | 10 ⁵ | | cycles | | ^t Retention | Data retention duration | T _J = 25°C | | 100 | | | years | | t _{Word} | Word or byte program time | | | | 35 | | | | ^t Block, 0 | Block program time for 1St byte or word |] | | | 30 | | | | ^t Block, 1-63 | Block program time for each additional byte or word | and Maria O | | | 21 | | | | ^t Block, End | Block program end-sequence wait time | see Note 3 | | | 6 | | ^t FTG | | t _{Mass} Erase | Mass erase time | | | | 5297 | | | | tSeg Erase | Segment erase time | | | | 4819 | · | | - NOTES: 1. The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if the block write feature is used. - 2. The mass erase duration generated by the flash timing generator is at least 11.1ms (= 5297x1/fFTG,max = 5297x1/476kHz). To achieve the required cumulative mass erase time the Flash Controller's mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required). - 3. These values are hardwired into the Flash Controller's state machine; $t_{FTG} = 1/f_{FTG}$. ### JTAG Interface, F-Device | | PARAMETER | TEST
CONDITIONS | vcc | MIN | NOM | MAX | UNIT | |-----------------------|---|--------------------|------------|-----|-----|-----|------| | , | TOK: | and National | 2.2 V | 0 | | 5 | MHz | | TCK | TCK input frequency | see Note 1 | 3 V | 0 | | 10 | MHz | | R _{Internal} | Internal pull-up resistance on TMS, TCK, TDI/TCLK | see Note 2 | 2.2 V/ 3 V | 25 | 60 | 90 | kΩ | NOTES: 1. f_{TCK} may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all Flash versions. # JTAG Fuse, F-Device (see Note 1) | | PARAMETER | TEST
CONDITIONS | vcc | MIN | NOM | MAX | UNIT | |---------------------|---|-----------------------|-----|-----|-----|-----|------| | V _{CC(FB)} | Supply voltage during fuse-blow condition | T _A = 25°C | | 2.5 | | | V | | V_{FB} | Voltage level on TDI/TCLK for fuse-blow | | | 6 | | 7 | V | | I _{FB} | Supply current into TDI/TCLK during fuse blow | | | | | 100 | mA | | t _{FB} | Time to blow fuse | | | | | 1 | ms | NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. # Port P1, P1.0 to P1.3, input/output with Schmitt-trigger NOTE: x = Bit/identifier, 0 to 3 for port P1 | P1Sel.0 | P1DIR.0 | P1DIR.0 | P1OUT.0 | Vss | P1IN.0 | TACLK [†] | P1IE.0 | P1IFG.0 | P1IES.0 | |---------|---------|---------|---------|--------------|--------|--------------------|--------|---------|---------| | P1Sel.1 | P1DIR.1 | P1DIR.1 | P1OUT.1 | Out0 signal† | P1IN.1 | CCI0A† | P1IE.1 | P1IFG.1 | P1IES.1 | | P1Sel.2 | P1DIR.2 | P1DIR.2 | P1OUT.2 | Out1 signal† | P1IN.2 | CCI1A [†] | P1IE.2 | P1IFG.2 | P1IES.2 | | P1Sel.3 | P1DIR.3 | P1DIR.3 | P1OUT.3 | Out2 signal† | P1IN.3 | CCI2A [†] | P1IE.3 | P1IFG.3 | P1IES.3 | [†] Signal from or to Timer_A Port P1, P1.4 to P1.7, input/output with Schmitt-trigger and in-system access features | P1Sel.4 | P1DIR.4 | P1DIR.4 | P1OUT.4 | SMCLK | P1IN.4 | unused | P1IE.4 | P1IFG.4 | P1IES.4 | |---------|---------|---------|---------|--------------------------|--------|--------|--------|---------|---------| | P1Sel.5 | P1DIR.5 | P1DIR.5 | P1OUT.5 | Out0 signal† | P1IN.5 | unused | P1IE.5 | P1IFG.5 | P1IES.5 | | P1Sel.6 | P1DIR.6 | P1DIR.6 | P1OUT.6 | Out1 signal [†] | P1IN.6 | unused | P1IE.6 | P1IFG.6 | P1IES.6 | | P1Sel.7 | P1DIR.7 | P1DIR.7 | P1OUT.7 | Out2 signal† | P1IN.7 | unused | P1IE.7 | P1IFG.7 | P1IES.7 | [†] Signal from or to Timer_A # Port P2, P2.0 to P2.2, input/output with Schmitt-trigger | PnSel.x | PnDIR.x | DIRECTION
CONTROL
FROM MODULE | PnOUT.x | MODULE X OUT | PnIN.x | MODULE X IN | PnIE.x | PnIFG.x | PnIES.x | |---------|---------|-------------------------------------|---------|-----------------|--------|--------------------|--------|---------|---------| | P2Sel.0 | P2DIR.0 | P2DIR.0 | P2OUT.0 | ACLK | P2IN.0 | unused | P2IE.0 | P2IFG.0 | P1IES.0 | | P2Sel.1 | P2DIR.1 | P2DIR.1 | P2OUT.1 | V _{SS} | P2IN.1 | INCLK [†] | P2IE.1 | P2IFG.1 | P1IES.1 | | P2Sel.2 | P2DIR.2 | P2DIR.2 | P2OUT.2 | CAOUT | P2IN.2 | CCI0B† | P2IE.2 | P2IFG.2 | P1IES.2 | [†] Signal from or to Timer_A # Port P2, P2.3 to P2.4, input/output with Schmitt-trigger | PnSel.x | PnDIR.x | DIRECTION
CONTROL
FROM MODULE | PnOUT.x | MODULE X OUT | PnIN.x | MODULE X IN | PnIE.x | PnIFG.x | PnIES.x | |---------|---------|-------------------------------------|---------|--------------|--------|-------------|--------|---------|---------| | P2Sel.3 | P2DIR.3 | P2DIR.3 | P2OUT.3 | Out1 signal† | P2IN.3 | unused | P2IE.3 | P2IFG.3 | P1IES.3 | | P2Sel.4 | P2DIR.4 | P2DIR.4 | P2OUT.4 | Out2 signal† | P2IN.4 | unused | P2IE.4 | P2IFG.4 | P1IES.4 | [†] Signal from Timer_A # Port P2, P2.5, input/output with Schmitt-trigger and R_{OSC} function for the Basic Clock module | PnSel.x | PnDIR.x | DIRECTION
CONTROL
FROM MODULE | PnOUT.x | MODULE X OUT | PnIN.x | MODULE X IN | PnIE.x | PnIFG.x | PnIES.x | |---------|---------|-------------------------------------|---------|-----------------|--------|-------------|--------|---------|---------| | P2Sel.5 | P2DIR.5 | P2DIR.5 | P2OUT.5 | V _{SS} | P2IN.5 | unused | P2IE.5 | P2IFG.5 | P2IES.5 | ### Port P2, unbonded bits P2.6 and P2.7 NOTE: x = Bit/identifier, 6 to 7 for port P2 without external pins | P2Sel.x | P2DIR.x |
DIRECTION-
CONTROL
FROM MODULE | P2OUT.x | MODULE X OUT | P2IN.x | MODULE X IN | P2IE.x | P2IFG.x | P2IES.x | |---------|---------|--------------------------------------|---------|-----------------|--------|-------------|--------|---------|---------| | P2Sel.6 | P2DIR.6 | P2DIR.6 | P2OUT.6 | V _{SS} | P2IN.6 | unused | P2IE.6 | P2IFG.6 | P2IES.6 | | P2Sel.7 | P2DIR.7 | P2DIR.7 | P2OUT.7 | V _{SS} | P2IN.7 | unused | P2IE.7 | P2IFG.7 | P2IES.7 | NOTE: Unbonded bits 6 and 7 of port P2 can be used as interrupt flags. Only software can affect the interrupt flags. They work as software interrupts. # port P3, P3.0 and P3.4 to P3.7, input/output with Schmitt-trigger | PnSel.x | PnDIR.x | DIRECTION
CONTROL
FROM MODULE | PnOUT.x | MODULE X OUT | PnIN.x | MODULE X IN | |---------|---------|-------------------------------------|---------|-----------------|--------|-------------| | P3Sel.0 | P3DIR.0 | V _{SS} | P3OUT.0 | V _{SS} | P3IN.0 | STE0 | | P3Sel.4 | P3DIR.4 | Vcc | P3OUT.4 | UTXD0† | P3IN.4 | Unused | | P3Sel.5 | P3DIR.5 | V _{SS} | P3OUT.5 | V _{SS} | P3IN.5 | URXD0‡ | | P3Sel.6 | P3DIR.6 | V _{SS} | P3OUT.6 | V _{SS} | P3IN.6 | Unused | | P3Sel.7 | P3DIR.7 | V _{SS} | P3OUT.7 | V _{SS} | P3IN.7 | Unused | [†] Output from USART0 module # port P3, P3.1, input/output with Schmitt-trigger [‡] Input to USART0 module ### port P3, P3.2, input/output with Schmitt-trigger ### port P3, P3.3, input/output with Schmitt-trigger NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P3.3/UCLK0 is always an input. SPI, slave mode: The clock applied to UCLK0 is used to shift data in and out. SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode). ### **APPLICATION INFORMATION** ### JTAG fuse check mode MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, a fuse check current, I_{TF}, of 1 mA at 3 V, 2.5 mA at 5 V can flow from from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. When the TEST pin is taken back low after a test or programming session, the fuse check mode and sense currents are terminated. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see Figure 13). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Figure 13. Fuse Check Mode Current, MSP430F12x ### NOTE: The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader access key is used. Also see the *bootstrap loader* section for more information. # RHB (S-PQFP-N32) ### PLASTIC QUAD FLATPACK NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. QFN (Quad Flatpack No-Lead) Package configuration. - D. The Package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected ground leads. - E. Falls within JEDEC MO-220. # RHB (S-PQFP-N32) # PLASTIC QUAD FLATPACK NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. QFN (Quad Flatpack No-Lead) Package configuration. - The Package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected ground leads. - E. Falls within JEDEC MO-220. # DW (R-PDSO-G**) ### PLASTIC SMALL-OUTLINE PACKAGE ### **16 PINS SHOWN** NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). D. Falls within JEDEC MS-013 # PW (R-PDSO-G**) ### 14 PINS SHOWN # PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 ### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2003, Texas Instruments Incorporated