LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode ### **General Description** The LM185-1.2/LM285-1.2/LM385-1.2 are micropower 2-terminal band-gap voltage regulator diodes. Operating over a 10µA to 20mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185-1.2 band-gap reference uses only transistors and resistors, low noise and good long term stability result. Careful design of the LM185-1.2 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation. The extremely low power drain of the LM185-1.2 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part. The LM185-1.2 is rated for operation over a -55°C to 125°C temperature range while the LM285-1.2 is rated -40°C to 85°C and the LM385-1.2 0°C to 70°C. The LM185-1.2/LM285-1.2 are available in a hermetic TO-46 package and the LM285-1.2/LM385-1.2 are also available in a low-cost TO-92 molded package, as well as SO and SOT-23. The LM185-1.2 is also available in a hermetic leadless chip carrier package. ### **Features** - ±1% and 2% initial tolerance - Operating current of 10µA to 20mA - 1Ω dynamic impedance - Low temperature coefficient - Low voltage reference 1.235V - 2.5V device and adjustable device also available - LM185-2.5 series and LM185 series, respectively ### **Connection Diagrams** T0-92 Plastic Package (Z) 00551810 Bottom View Order Number LM285Z-1.2, LM285BXZ-1.2, LM285BYZ-1.2 LM385Z-1.2, LM385BZ-1.2 LM385BXZ-1.2 or LM385BYZ-1.2 See NS Package Number Z03A 00551833 * Pin 3 is attached to the Die Attach Pad (DAP) and should be connected to Pin 2 or left floating. Order Number LM385M3-1.2 See NS Package Number MF03A ## Connection Diagrams (Continued) ### SO Package Order Number LM285M-1.2, LM285BXM-1.2, LM285BYM-1.2 LM385M-1.2, LM385BM-1.2 LM385BXM-1.2 or LM385BYM-1.2 See NS Package Number M08A TO-46 Metal Can Package (H) Bottom View Order Number LM185H-1.2, LM185H-1.2/883, LM185BXH-1.2, LM185BYH-1.2 LM285H-1.2 or LM285BXH-1.2 See NS Package Number H02A ### **Absolute Maximum Ratings** (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 2) Reverse Current 30mA Forward Current 10mA Operating Temperature Range (Note 3) Storage Temperature -55°C to +150°C Soldering Information TO-92 package: 10 sec. 260°C TO-46 package:10 sec. 300°C SO and SOT Pkg. Vapor phase (60 sec.) 215°C Infrared (15 sec.) 220°C See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ### **Electrical Characteristics** (Note 4) | | | | LM185-1.2
LM185BX-1.2
LM185BY-1.2
LM285-1.2
LM285BX-1.2
LM285BX-1.2
LM285BY-1.2 | | | | | | | |----------------------|--------------------------------------|-------|---|----------|-------------|----------|-----------------|----------|------------------| | | | | | | 5B-1.2 | | | | | | | | | | | LM385 | BX-1.2 | 3X-1.2 LM385-1. | | | | | | | | | LM385BY-1.2 | | | | Units
(Limit) | | Parameter | Conditions | Тур | Tested | Design | Tested | Design | Tested | Design | | | | | | Limit | Limit | Limit | Limit | Limit | Limit | | | | | | (Notes | (Note 6) | (Note 5) | (Note 6) | (Note 5) | (Note 6) | | | | | | 5, 8) | , | , | , | , | , | | | Reverse Breakdown | T _A = 25°C, | 1.235 | 1.223 | | 1.223 | | 1.205 | | V(Min) | | Voltage | 10μA ≤ I _R ≤ 20mA | | 1.247 | | 1.247 | | 1.260 | | V(Max) | | Minimum Operating | | 8 | 10 | 20 | 15 | 20 | 15 | 20 | μA | | Current | LM385M3-1.2 | | | | | | 10 | 15 | (Max) | | Reverse Breakdown | 10μA ≤ I _R ≤ 1mA | | 1 | 1.5 | 1 | 1.5 | 1 | 1.5 | mV | | Voltage Change | | | | | | | | | (Max) | | with Current | $1mA \le I_R \le 20mA$ | | 10 | 20 | 20 | 25 | 20 | 25 | mV | | | | | | | | | | | (Max) | | Reverse Dynamic | $I_{R} = 100 \mu A, f = 20 Hz$ | 1 | | | | | | | Ω | | Impedance | | | | | | | | | | | Wideband Noise | $I_{R} = 100 \mu A,$ | 60 | | | | | | | μV | | (rms) | $10Hz \le f \le 10kHz$ | | | | | | | | | | Long Term Stability | $I_R = 100\mu A, T = 1000$ | 20 | | | | | | | nnm | | | Hr, | 20 | | | | | | | ppm | | | $T_A = 25^{\circ}C \pm 0.1^{\circ}C$ | | | | | | | | | | Average | $I_R = 100\mu A$ | | | | | | | | | | Temperature | | | | | | | | | | | Coefficient (Note 7) | X Suffix | | 30 | | 30 | | | | ppm/°C | | | Y Suffix | | 50 | | 50 | | | | ppm/°C | | | All Others | | | 150 | | 150 | | 150 | ppm/°C | | | | | | | | | | | (Max) | **Note 1:** Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Note 2: Refer to RETS185H-1.2 for military specifications. Note 3: For elevated temperature operation, T_j max is: LM185 150°C LM285 125°C LM385 100°C | Thermal Resistance | TO-92 | TO-46 | SO-8 | SOT23 | |---|------------------------|---------|---------|---------| | θ_{JA} (junction to ambient) | 180°C/W (0.4" leads) | 440°C/W | 165°C/W | 283°C/W | | | 170°C/W (0.125" leads) | | | | | θ_{JC} (junction to case) | N/A | 80°C/W | N/A | N/A | Note 4: Parameters identified with boldface type apply at temperature extremes. All other numbers apply at $T_A = T_J = 25^{\circ}C$. Note 5: Guaranteed and 100% production tested. Note 6: Guaranteed, but not 100% production tested. These limits are not used to calculate average outgoing quality levels. Note 7: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures between the operating T_{MAX} and T_{MIN}, divided by T_{MAX} - T_{MIN}. The measured temperatures are -55°C, -40°C, 0°C, 25°C, 70°C, 85°C, 125°C. Note 8: A military RETS electrical specification is available on request. ### **Typical Performance Characteristics** #### **Forward Characteristics** ### **Reverse Dynamic Impedance** ### **Reverse Characteristics** ### **Temperature Drift of 3 Representative Units** ### **Reverse Dynamic Impedance** # Typical Performance Characteristics (Continued) ## **Typical Applications** 00551822 1.5V Battery 1.5V 3k 1.2V LM385-1.2 ## Typical Applications (Continued) ### Micropower* 5V Regulator $^*I_Q \simeq 30 \mu A$ ### Micropower* 10V Reference $^*I_Q \simeq 20 \mu A$ standby current ### Precision 1µA to 1mA Current Sources $*I_{OUT} = \frac{1.23V}{R2}$ ## Typical Applications (Continued) #### **METER THERMOMETERS** #### 0°C-100°C Thermometer #### Calibration - 1. Short LM385-1.2, adjust R3 for $I_{OUT} = temp \ at \ 1\mu\text{A/}^{\circ}\text{K}$ - 2. Remove short, adjust R2 for correct reading in centigrade $\dagger I_Q$ at 1.3V=500 μA I_Q at 1.6V \simeq 2.4mA #### **Lower Power Thermometer** 00551829 - *2N3638 or 2N2907 select for inverse $H_{FE}\,\simeq\,5$ - †Select for operation at 1.3V - $\sharp I_Q \simeq 600 \mu A$ to $900 \mu A$ #### 0°F-50°F Thermometer #### Calibration - 1. Short LM385-1.2, adjust R3 for $I_{\mbox{OUT}}\!\!=\!$ temp at 1.8 $\mu\mbox{A/}^{\circ}\mbox{K}$ - 2. Remove short, adjust R2 for correct reading in °F Typical supply current 50µA ## Micropower Thermocouple Cold Junction Compensator 00551831 #### Adjustment Procedure - 1. Adjust TC ADJ pot until voltage across R1 equals Kelvin temperature multiplied by the thermocouple Seebeck coefficient. - 2. Adjust zero ADJ pot until voltage across R2 equals the thermocouple Seebeck coefficient multiplied by 273.2. | Thermocouple
Type | Seebeck
Coefficien | R1 R2 t (Ω) (Ω) | Voltage
Across
R1 | Voltage
Across
R2 | |----------------------|-----------------------|-----------------|-------------------------|-------------------------| | | (μV/°C) | | @ 25°C | (mV) | | | | | (mV) | | | J | 52.3 | 523.24k | 15.60 | 14.32 | | Т | 42.8 | 432 1k | 12.77 | 11.78 | | K | 40.8 | 412953Ω | 12.17 | 11.17 | | S | 6.4 | 63.450Ω | 1.908 | 1.766 | ## Typical Applications (Continued) ### **Centigrade Thermometer** #### Calibration - 1. Adjust R1 so that V1 = temp at $1mV/^{\circ}K$ - 2. Adjust V2 to 273.2mV $\dagger I_Q$ for 1.3V to 1.6V battery voltage = 50 μ A to 150 μ A ## **Schematic Diagram** ### Physical Dimensions inches (millimeters) unless otherwise noted H02A (REV C) TO-46 Metal Can Package (H) Order Number LM185H-1.2, LM185H-1.2/883, LM185BXH-1.2, LM185BYH-1.2, LM285H-1.2, or LM285BXH-1.2 NS Package Number H02A CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS MF03A (Rev B) SOT-23 Package (M3) Order Number LM385M3-1.2 NS Package Number MF03A 9 ### Physical Dimensions inches (millimeters) unless otherwise noted (Continued) Small Outline (SO-8) Package Order Number LM285M-1.2, LM285BXM-1.2, LM285BYM-1.2 LM385M-1.2, LM385BM-1.2, LM385BXM-1.2, LM385BYM-1.2 NS Package Number M08A TO-92 Plastic Package (Z) Order Number LM285Z-1.2, LM285BXZ-1.2 LM285BYZ-1.2, LM385Z-1.2, LM385BZ-1.2 LM385BXZ-1.2 or LM385BYZ-1.2 NS Package Number Z03A ### **Notes** National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. For the most current product information visit us at www.national.com. ### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### **BANNED SUBSTANCE COMPLIANCE** National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2. National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Email: europe.support@nsc.cc Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560