FM IF SYSTEM FOR CAR STEREO

The KA22441 is a monolithic integrated circuit consisting of FM IF system suitable for use in car stereo and music centers.

It features practically all of the functions for use a FM tuner, including AGC output, AFC output, level meter output in a single package.

FUNCTIONS

- FM IF amplifier.
- Quadrature detector.
- · AFC output.
- AGC output.
- Level meter output.
- · Muting for weak signal.
- Muting for detuned condition.

FEATURES

- Soft muting function.
- Variable muting maximum attenuation.
- Variable muting attack input signal.
- Variable muting slope with respect to input signal level.
- Level meter output.
- AFC output.
- AGC output.
- High sensitivity (V_{I(LIM)} = 25dBµ: Typ).
- High output level.
- Good S/N ratio (78dB: Typ).
- Low distortion (0.05%: Typ).
- Wide operating supply voltage range: $V_{cc} = 6V \sim 14V$

ORDERING INFORMATION

Device	Package	Operating Temperature
KA22441	16 ZSIP	– 20°C~ + 70°C

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	· 16	∨
Power Dissipation	P _D	640	m₩
Operating Temperature	T _{OPR}	-20~+70	℃
Storage Temperature	T _{STG}	-40~+125	℃

ELECTRICAL CHARACTERISTICS

(T_a=25°C, V_{CC}=8V, $\Delta f = \pm 75$ KHz, V_i=100dB_µ, fm=400Hz, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{cc}		6	8	14	v
- 3dB Limiting Sensitivity	Icca	V ₁ =0	15	21	27	mA
Input Limiting Sensitivity	Vi (LIM)	$V_0 (V_0 = 100 dB\mu) - 3 dB down$		25	29	dΒμ
Dectector Output Voltage			200	260	320	mV
Total Harmonic Distortion	THD			0.05	0.2	%
Signal to Noise Ratio	S/N		70	78		dB
AM Rejection Ratio	AMR	AM: fm=1KHz, 30% Mod	50	63		dB
Signal Meter Output Voltage	V _M	V ₁ = 0	0	0.1	0.3	v
		$V_1 = 100 dB\mu$	4.5	5.3	6.0	
		V ₁ = 0	3.5	4.1	4.5	
AGC Output Voltage	V _{O (AGC)}	$V_i = 100 dB\mu$	0	0.02	0.3	V
Muting Sensitivity	SMUTE	V ₁₄ = 2V	22	26	32	dΒμ
		V ₆ = 2V	10	15	20	
Muting Attenuation	ATT _{MUTE}	V ₆ = 5V	24	28	32	dB
Muting Bandwidth	BW _{MUTE}	V ₁₄ = 2V	140	210	370	KHz

.

3

TEST CIRCUIT

٠

C₅

APPLICATION INFORMATION

C₁, C₂, C₃: IF amplifier bypass capacitors

These capacitors bypass to the ground both the carrier signal and the high-frequency components of the amplifier output.

- C₁₀ : Power supply bypass capacitor
- C₉ : Internal regulated power supply bypass capacitor
- C₈ : AFC output smoothing capacitor

This capacitor bypasses to the ground the detector signal output at Pin 7.

C₇ : De-emphasis capacitor

The value of the C₈ determines the de-emphasis time constant.

C₆ : Mute drive output smoothing capacitor

This capacitor bypasses to the ground high-frequency noise components included in the muting output.

: Signal meter output voltage smoothing capacitor This capacitor is used to reduce any IF carrier signal components or other high-frequency components remaining on the level meter output voltage.

C4 : AGC voltage smoothing capacitor

If C₁₁ is not connected, the AGC output will contain residual IF carrier frequency components.

R1 : IF amplifier resistor

The IF amplifier input impedance is determined by the value of this resistance.

R₂ : Muting maximum attenuation adjustment resistor

The value of this resistor sets the maximum muting attenuation which is used when no signal is present or in the detuned condition. If the value of R_5 is made small, the maximum muting attenuation is decreased.

R₃ : Mute drive current adjusting resistor

This resistor is used to adjust the slope of the muting attenuation. If the value of this resistor is made small, the muting slope for the input signal level is increased.

R4 : Muting bandwidth adjustment resistor

This resistor is capable of adjusting the muting bandwidth and AFC sensitivity. If the value of R_7 is made small, the muting bandwidth widens and the AFC sensitivity decreases.

R₅ : Damping resistor

If the value of R_{11} is made small, the Q of the tuned circuit decreases with an accompanying decrease in gain.

R₆ : Damping resistor

R7: : Mute drive load resistor

If R_{14} is made large, the time required for muting to be removed will increase.

R₈ : Signal meter output load resistor

This resistor is used to adjust the slope of the muting attenuation. If the value of this resistor is made small, the slope of the muting attenuation is increased.

R₉ : AGC output load resistor

This resistor is used to set the weak-signal muting starting point. If the value of this resistor is made small, the starting point of input signal level for muting is raised.

L₁ : Power supply chock coil

T1, T2 : IF transformer

The detector output voltage and total harmonic distortion are determined by the Q of this quadrature detector coil.

COIL SPECIFICATIONS

1. T1

C ₀ (pF)	f (MHz)	0 (9/)	Т	ums	
		Q _o (%)	3 – 4	6 – 3	
120	10.7	20 (Min)	89 1/2	17 1/2	

KOREA TOKO 292MEA-K5018FKG-KR 0.07Ø 2UEW

2. T2

3 1 2 2	ر آ
DI3	

C ₀ (pF)	f (MHz)	Q. (%)	Turns		
C ₀ (pr)			1 – 3	6-4	
62	10.7	20 (Min)	24	1	

KOREA TOKO 292MEA-K5019AN-KR 0.07Ø 2UEW

COIL COMBINATION

