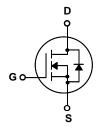


IRFP460C

500V N-Channel MOSFET

General Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies and power factor corrections.

Features

- 20A, 500V, $R_{DS(on)}$ = 0.24 Ω @V_{GS} = 10 V Low gate charge (typical 130nC)
- Low Crss (typical 60 pF)
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		IRFP460C	Units
V _{DSS}	Drain-Source Voltage		500	V
I _D	Drain Current - Continuous (T _C = 25°	C)	20	А
	- Continuous (T _C = 100	°C)	12.5	А
I _{DM}	Drain Current - Pulsed	(Note 1)	80	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	1050	mJ
I _{AR}	Avalanche Current	(Note 1)	20	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	23.5	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
P_D	Power Dissipation (T _C = 25°C)		235	W
	- Derate above 25°C		1.88	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.53	°C/W
R _{θCS} Thermal Resistance, Case-to-Sink		0.24		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Symbol	Parameter	Test Conditions	3	Min	Тур	Max	Units
Off Ch	naracteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		500			V
ΔBV _{DSS}	0	VGS = 0 V, 1D = 230 μΛ		300			V
ΔBV _{DSS}	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to 25°C			0.55		V/°C
I _{DSS}	Zoro Goto Voltago Proin Current	V _{DS} = 500 V, V _{GS} = 0 V				10	μΑ
Zero Gate Voltage Drain Current		V _{DS} = 400 V, T _C = 125°C				100	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
On Ch	naracteristics						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$		2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 10.0 A			0.2	0.24	Ω
g _{FS}	Forward Transconductance	$V_{DS} = 50 \text{ V}, I_{D} = 10.0 \text{ A}$	(Note 4)		18		S
	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz			4590 380	6000 460	pF pF
	Output Capacitance Reverse Transfer Capacitance						
C _{rss}	' '				380	460	pF
C _{rss}	Reverse Transfer Capacitance				380	460	pF
Switcl	Reverse Transfer Capacitance				380 60	460 80	pF pF
C_{rss} Switcl $t_{d(on)}$ t_r	Reverse Transfer Capacitance ning Characteristics Turn-On Delay Time	f = 1.0 MHz			380 60 50	460 80	pF pF
c_{rss} Switcl $t_{d(on)}$ t_r $t_{d(off)}$	Reverse Transfer Capacitance ning Characteristics Turn-On Delay Time Turn-On Rise Time	f = 1.0 MHz V _{DD} = 250 V, I _D = 20 A,	(Note 4, 5)		380 60 50 150	460 80 120 310	pF pF
$\frac{\mathbf{C}_{rss}}{\mathbf{Switcl}}$ $\mathbf{t}_{d(on)}$ \mathbf{t}_{r} $\mathbf{t}_{d(off)}$ \mathbf{t}_{f}	Reverse Transfer Capacitance ning Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	f = 1.0 MHz $V_{DD} = 250 \text{ V}, I_D = 20 \text{ A},$ $R_G = 25 \Omega$	(Note 4, 5)		380 60 50 150 380	460 80 120 310 770	pF pF
$\frac{\mathbf{C}_{\mathrm{rss}}}{\mathbf{Switcl}}$ $\frac{\mathbf{t}_{\mathrm{d(on)}}}{\mathbf{t}_{\mathrm{r}}}$ $\frac{\mathbf{t}_{\mathrm{d(off)}}}{\mathbf{t}_{\mathrm{f}}}$ \mathbf{Q}_{g}	Reverse Transfer Capacitance ning Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$I_{DD} = 250 \text{ V}, I_{D} = 20 \text{ A},$ $I_{RG} = 25 \Omega$ $I_{DS} = 400 \text{ V}, I_{D} = 20 \text{ A},$	(Note 4, 5)		380 60 50 150 380 180	460 80 120 310 770 370	pF pF ns ns
C_{rss} Switcl $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs}	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	f = 1.0 MHz $V_{DD} = 250 \text{ V}, I_D = 20 \text{ A},$ $R_G = 25 \Omega$	(Note 4, 5)	 	380 60 50 150 380 180	120 310 770 370 170	pF pF ns ns ns
Switcl td(on) tr td(off) tf Q Q Q g Q g d	Reverse Transfer Capacitance Ining Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 250 \text{ V}, I_{D} = 20 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 400 \text{ V}, I_{D} = 20 \text{ A},$ $V_{GS} = 10 \text{ V}$	(Note 4, 5)	 	380 60 50 150 380 180 130 20	120 310 770 370 170	pF pF ns ns ns ns
$egin{array}{ll} \mathbf{C}_{rss} & & & \\ \mathbf{Switcl} & & \\ \mathbf{t}_{d(on)} & & \\ \mathbf{t}_{r} & & \\ \mathbf{t}_{d(off)} & & \\ \mathbf{t}_{f} & & \\ \mathbf{Q}_{g} & & \\ \mathbf{Q}_{gs} & & \\ \mathbf{Q}_{gd} & & \\ \mathbf{Drain-S} & & \\ \end{array}$	Reverse Transfer Capacitance ning Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 250 \text{ V}, I_{D} = 20 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 400 \text{ V}, I_{D} = 20 \text{ A},$ $V_{GS} = 10 \text{ V}$ and Maximum Ratings	(Note 4, 5)	 	380 60 50 150 380 180 130 20	120 310 770 370 170	pF pF ns ns ns ns
Switcl td(on) tr td(off) tf Qg Qgs Qgd Drain-S	Reverse Transfer Capacitance ning Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 250 \text{ V}, I_D = 20 \text{ A},$ $R_G = 25 \Omega$ $V_{DS} = 400 \text{ V}, I_D = 20 \text{ A},$ $V_{GS} = 10 \text{ V}$ and Maximum Rating: $V_{DS} = 400 \text{ V}$ $V_{DS} = 400 \text{ V}$	(Note 4, 5)	 	380 60 50 150 380 180 130 20 45	460 80 120 310 770 370 170 	pF pF ns ns ns nc nC
C_{rss} Switcl $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-Substitute S_{gs}	Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode	$f = 1.0 \text{ MHz}$ $V_{DD} = 250 \text{ V}, I_D = 20 \text{ A},$ $R_G = 25 \Omega$ $V_{DS} = 400 \text{ V}, I_D = 20 \text{ A},$ $V_{GS} = 10 \text{ V}$ and Maximum Rating: $V_{DS} = 400 \text{ V}$ $V_{DS} = 400 \text{ V}$	(Note 4, 5)	 	380 60 50 150 380 180 130 20 45	460 80 120 310 770 370 170 	pF pF ns ns ns nc nC
t _{d(on)} t _r t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Reverse Transfer Capacitance hing Characteristics Turn-On Delay Time Turn-Off Delay Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics as Maximum Continuous Drain-Source Diode Fall Maximum Pulsed Drain-Source Diode Fall Time	$f = 1.0 \text{ MHz}$ $V_{DD} = 250 \text{ V}, I_D = 20 \text{ A},$ $R_G = 25 \Omega$ $V_{DS} = 400 \text{ V}, I_D = 20 \text{ A},$ $V_{GS} = 10 \text{ V}$ And Maximum Ratings of the Forward Current Forward Curren	(Note 4, 5)		380 60 50 150 380 180 130 20 45	120 310 770 370 170 	ns ns ns nC nC nC

- $\label{eq:Notes:1} \begin{tabular}{ll} \textbf{Notes:} \\ 1. & \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature} \\ 2. & \textbf{L} = 5.1 \text{mH, } |_{AS} = 20 \text{A, } |_{DD} = 50 \text{V, } |_{RG} = 25 \ \Omega, \text{ Starting } |_{J} = 25 \ \text{°C} \\ 3. & \textbf{l}_{SD} \leq 20 \text{A, } \text{didd} \leq 200 \text{A/µs, } |_{DD} \leq \text{BV}_{DSS}, \text{ Starting } |_{J} = 25 \ \text{°C} \\ 4. & \textbf{Pulse Test: Pulse width} \leq 300 \ \mu\text{s, Duty cycle} \leq 2 \ \text{\%} \\ 5. & \textbf{Essentially independent of operating temperature} \\ \end{tabular}$

Typical Characteristics

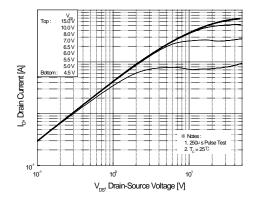


Figure 1. On-Region Characteristics

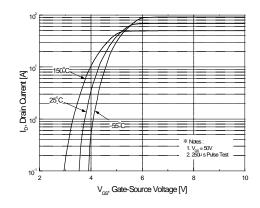


Figure 2. Transfer Characteristics

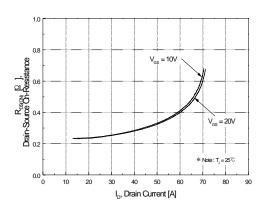


Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

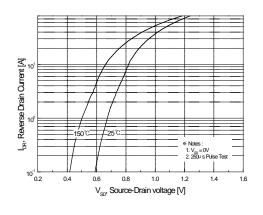


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

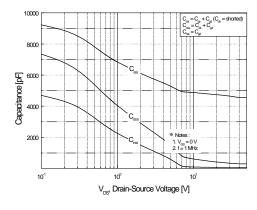


Figure 5. Capacitance Characteristics

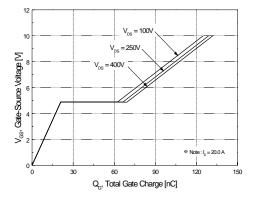


Figure 6. Gate Charge Characteristics

Dimensions in Millimeters

Typical Characteristics (Continued)

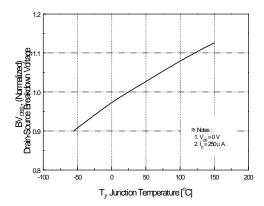
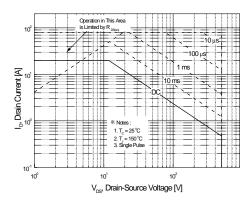



Figure 7. Breakdown Voltage Variation vs Temperature

Figure 8. On-Resistance Variation vs Temperature

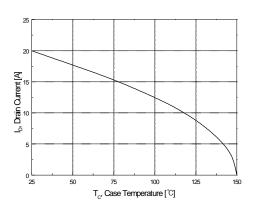
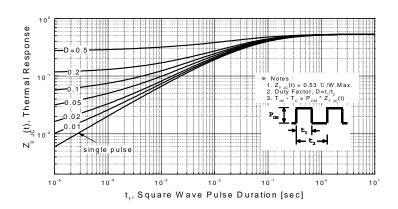
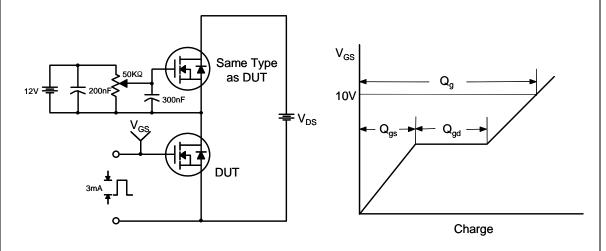
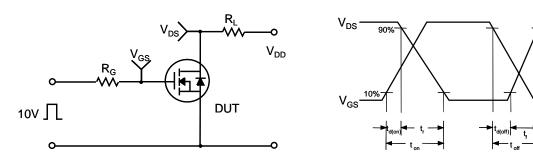


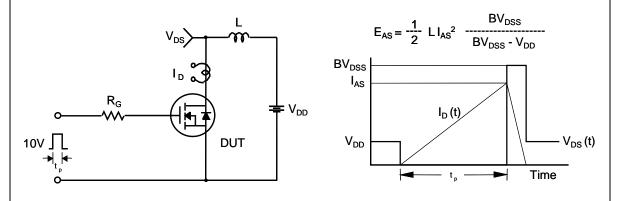
Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs Case Temperature

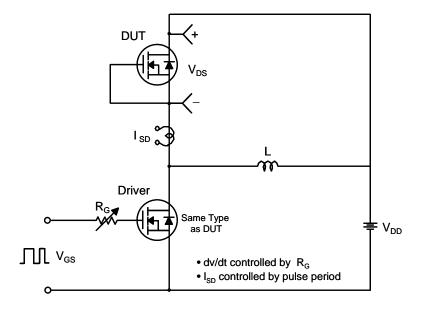



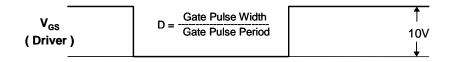

Figure 11. Transient Thermal Response Curve

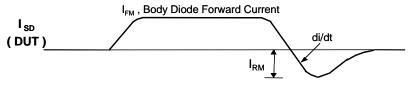
Dimensions in Millimeters


Gate Charge Test Circuit & Waveform

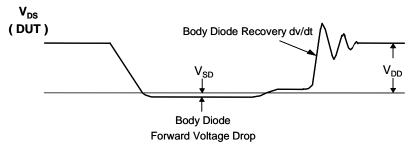
Resistive Switching Test Circuit & Waveforms

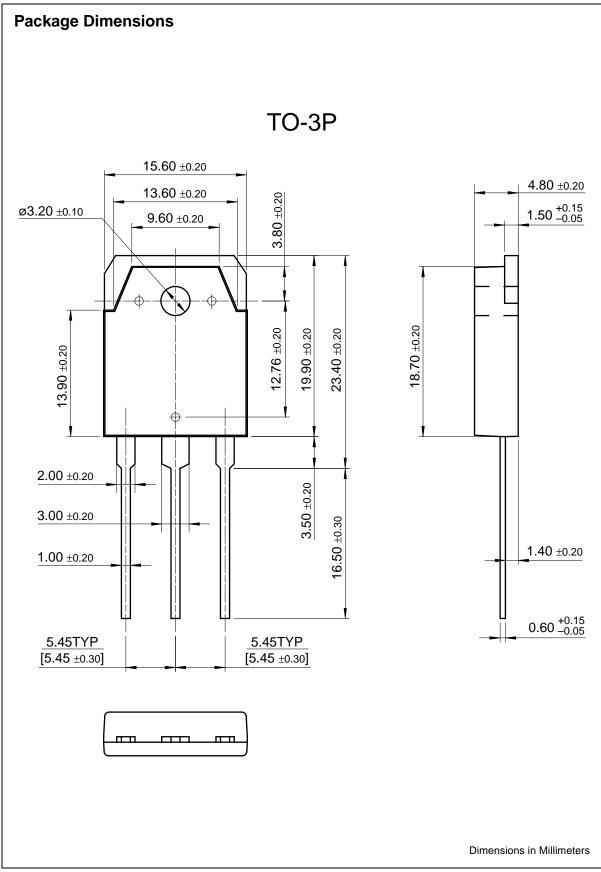



Unclamped Inductive Switching Test Circuit & Waveforms



Dimensions in Millimeters


Peak Diode Recovery dv/dt Test Circuit & Waveforms



Body Diode Reverse Current

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	OPTOLOGIC™	SMART START™	VCX^{TM}
Bottomless™	FASTr™	OPTOPLANAR™	STAR*POWER™	
CoolFET™	FRFET™	PACMAN™	Stealth™	
$CROSSVOLT^{TM}$	GlobalOptoisolator™	POP™	SuperSOT™-3	
DenseTrench™	GTO™	Power247™ _	SuperSOT™-6	
DOME™	HiSeC™	PowerTrench [®]	SuperSOT™-8	
EcoSPARK™	ISOPLANAR™	QFET™	SyncFET™	
E ² CMOS™	LittleFET™	QS™	TruTranslation™	
EnSigna™	MicroFET™	QT Optoelectronics™	TinyLogic™	
FACT™	MicroPak™	Quiet Series™	UHC™ _	
FACT Quiet Series™	MICROWIRE™	SLIENT SWITCHER®	UltraFET [®]	

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2002 Fairchild Semiconductor Corporation Rev. H4