TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T C 7 W 1 2 5 F U

DUAL BUS BUFFER

The TC7W125FU is a high speed C²MOS DUAL BUS BUFFERS fabricated with silicon gate C²MOS technology. It achieve the high speed operation similar to equivalent LSTTL while maintaining the C²MOS low power dissipation.

The require 3-state control input \overline{G} to be set high to place the output into the high impedance.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

FEATURES

- Low Power Dissipation \cdots $I_{CC} = 2\mu A$ (Max.) at Ta = 25°C
- High Noise Immunity VNIH = VNIL = 28% VCC (Min.)
- Output Drive Capability 15 LSTTL Loads
- Symmetrical Output Impedance …… |I_{OH}| = I_{OL} = 6mA (Min.)
- Balanced Propagation Delays ………t_{pLH}≒t_{pHL}
- Wide Operating Voltage Range …… V_{CC (opr)} = 2~6V

MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	Vcc	- 0.5~7	V
DC Input Voltage	VIN	$-0.5 \sim V_{CC} + 0.5$	V
DC Output Voltage	Vout	-0.5~V _{CC} +0.5	V
Input Diode Current	lik	± 20	mA
Output Diode Current	ІОК	± 20	mA
DC Output Current	ΙΟυτ	± 35	mA
DC V _{CC} /Ground Current	lcc	± 37.5	mA
Power Dissipation	PD	300	mW
Storage Temperature	T _{stg}	- 65~150	°C
Lead Temperature (10s)	TL	260	°C

MARKING

PIN ASSIGNMENT (TOP VIEW)

961001EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

TOSHIBA

LOGIC DIAGRAM

TRUTH TABLE

INP	UTS	OUTPUTS
G	Α	Y
Н	Х	Z
L	L	L
L	Н	Н

X : Don't Care

Z : High Impedance

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	Vcc	2~6	V
Input Voltage	VIN	0~V _{CC}	V
Output Voltage	νουτ	0~V _{CC}	V
Operating Temperature	T _{opr}	- 40~85	°C
Input Rise and Fall Time	t _r , tf	0~1000 (V _{CC} = 2.0V) 0~ 500 (V _{CC} = 4.5V) 0~ 400 (V _{CC} = 6.0V)	ns

DC ELECTRICAL CHARACTERISTICS

PARAMETER	AMETER SYMBOL CIR-		TEST CONDITION			Ta = 25°C			Ta = − 40~85°C		
		CUIT			V _{CC}	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High-Level Input						1.5	_	—	1.5	—	
Voltage	v_{H}	—			4.5	3.15		—	3.15	—	V
Voltage					6.0	4.2			4.2		
Low-Level Input			_		2.0	—	—	0.5	—	0.5	
Voltage	VIL	—			4.5	—	—	1.35	—	1.35	V
voltage					6.0	—	—	1.8	—	1.8	
			V _{IN} = V _{IH} or V _{IL}		2.0	1.9	2.0	—	1.9	—	
High-Level				l _{OH} = – 20μA	4.5	4.4	4.5	—	4.4	—	_ v
Output Voltage	Vон	—			6.0	5.9	6.0	—	5.9	—	
Output voltage				I _{OH} = - 6mA	4.5	4.18	4.31	—	4.13	—	
				I _{OH} = - 7.8mA	6.0	5.68	5.80	—	5.63	—	
			V _{IN} = V _{IL}	l _{OL} =20μA	2.0	—	0.0	0.1	—	0.1	
Low-Level Output Voltage					4.5	—	0.0	0.1	—	0.1	
	VOL				6.0	—	0.0	0.1	—	0.1	V
Output voltage				I _{OL} = 6mA	4.5	_	0.17	0.26	_	0.33	
				I _{OL} = 7.8mA	6.0	—	0.18	0.26		0.33	
3-State Output Off-State Current	loz	—	V _{IN} = V _{IH} or V _{IL} V _{OUT} = V _{CC} or GND		6.0	_	_	±0.5	_	± 5.0	
Input Leakage Current	IIN	_	V _{IN} = V _{CC} or GND		6.0	_	_	±0.1	_	± 1.0	μΑ
Quiescent Supply Current	lcc	_	$V_{IN} = V_{CC}$	or GND	6.0	_		2.0	_	20.0	

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

PARAMETER	SYMBOL	TEST CIR- CUIT	TEST			Ta = 25°C			Ta = − 40~85°C		
	STIVIBUL		CONDITION	с _L	V _{CC}	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
Output Transition	t _{TLH}	_			2.0	_	20	60	-	75	
Time			—	50	4.5	—	6	12	—	15	
	tthl				6.0	—	5	10	—	13	
					2.0	—	30	90	—	115	
				50	4.5	—	11	18	—	23	
Propagation	tplh	_	_		6.0	—	10	15		20	
Delay Time	^t pHL				2.0		42	130	—	165	
				150	4.5	—	14	26	—	33	
					6.0	—	12	22	—	28	ns
Output Enable Time	^t pZL ^t pZH	_	$R_L = 1k\Omega$	50	2.0	—	30	90	—	115	-
					4.5		11	18	-	23	
					6.0	—	10	15	—	20	
				150	2.0	—	42	130	—	165	
					4.5	—	14	26	—	33	
					6.0	—	12	22	—	28	
Output Disable	^t pLZ		$R_L = 1k\Omega$	50	2.0	—	24	100	—	125	
Time					4.5		12	20	—	25	
	^t pHZ				6.0	—	10	17	—	21	
Input Capacitance	C _{IN}		—				5	10		10	
Output Capacitance	COUT	_	_	_	_	_	10	_	_	_	рF
Power Dissipation Capacitance	C _{PD}	_	Note (1)			_	32				

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 6ns$)

Note (1) : C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation : $I_{CC}(opr) = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC} / 2 \text{ (per Gate)}$ OUTLINE DRAWING SSOP8-P-0.65

Unit : mm

Weight : 0.02g (Typ.)