Preferred Device # Sensitive Gate Silicon Controlled Rectifiers # **Reverse Blocking Thyristors** PNPN devices designed for high volume, line-powered consumer applications such as relay and lamp drivers, small motor controls, gate drivers for larger thyristors, and sensing and detection circuits. Supplied in an inexpensive plastic TO-226AA package which is readily adaptable for use in automatic insertion equipment. #### **Features** - Sensitive Gate Allows Triggering by Microcontrollers and Other Logic Circuits - Blocking Voltage to 600 V - On–State Current Rating of 0.8 Amperes RMS at 80°C - High Surge Current Capability 10 A - Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design - Immunity to dV/dt 20 V/usec Minimum at 110°C - Glass-Passivated Surface for Reliability and Uniformity - Pb-Free Packages are Available* ## ON Semiconductor® http://onsemi.com # SCRs 0.8 A RMS 100 thru 600 V #### MARKING DIAGRAM x = Specific Device Code A = Assembly Location Y = Year WW = Work Week | PIN ASSIGNMENT | | | | | |----------------|---------|--|--|--| | 1 | Cathode | | | | | 2 | Gate | | | | | 3 | Anode | | | | #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. **Preferred** devices are recommended choices for future use and best overall value. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **ORDERING INFORMATION** | Device | Package Code | Shipping [†] | | | | | |---------------|----------------------------------|------------------------------------|--|--|--|--| | MCR100-003 | | 5000 Units / Bulk | | | | | | MCR100-004 | | | | | | | | MCR100-006 | | | | | | | | MCR100-008 | | | | | | | | MCR100-3RL | - 2 -2 (- 2 -2-2) | | | | | | | MCR100-6RL | TO-92 (TO-226) | 2000 Units / Tape & Reel | | | | | | MCR100-6RLRA | | | | | | | | MCR100-6RLRM | | 2000 Units / Tape & Ammunition Box | | | | | | MCR100-6ZL1 | | | | | | | | MCR100-8RL | | 2000 Units / Tape & Reel | | | | | | MCR100-003G | | | | | | | | MCR100-006G | | 5000 Units / Bulk | | | | | | MCR100-008G | | | | | | | | MCR100-3RLG | | 2000 Units / Tubes | | | | | | MCR100-6RLG | TO-92 (TO-226)
(Pb-Free) | | | | | | | MCR100-6RLRAG | (. 2 1 100) | 2000 Units / Tape & Reel | | | | | | MCR100-6RLRMG | | | | | | | | MCR100-6ZL1G | | 2000 Units / Tape & Ammunition Box | | | | | | MCR100-8RLG | | 2000 Units / Tape & Reel | | | | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## **MAXIMUM RATINGS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Rating | Symbol | Value | Unit | |--|---------------------------------------|--------------------------|------------------| | Peak Repetitive Off–State Voltage (Note 1) $ (T_J = -40 \text{ to } 110^{\circ}\text{C}, \text{ Sine Wave, } 50 \text{ to } 60 \text{ Hz; Gate Open}) \\ & & \text{MCR100-3} \\ & & \text{MCR100-4} \\ & & \text{MCR100-6} \\ & & \text{MCR100-8} \\ \end{cases} $ | V _{DRM,}
V _{RRM} | 100
200
400
600 | V | | On-State RMS Current, (T _C = 80°C) 180° Conduction Angles | I _{T(RMS)} | 0.8 | А | | Peak Non-Repetitive Surge Current, (1/2 Cycle, Sine Wave, 60 Hz, T _J = 25°C) | I _{TSM} | 10 | Α | | Circuit Fusing Consideration, (t = 8.3 ms) | l ² t | 0.415 | A ² s | | Forward Peak Gate Power, ($T_A = 25^{\circ}C$, Pulse Width $\leq 1.0 \mu s$) | P _{GM} | 0.1 | W | | Forward Average Gate Power, (T _A = 25°C, t = 8.3 ms) | P _{G(AV)} | 0.10 | W | | Forward Peak Gate Current, ($T_A = 25^{\circ}C$, Pulse Width $\leq 1.0 \mu s$) | I _{GM} | 1.0 | А | | Reverse Peak Gate Voltage, ($T_A = 25^{\circ}C$, Pulse Width $\leq 1.0 \ \mu s$) | V_{GRM} | 5.0 | V | | Operating Junction Temperature Range @ Rate V _{RRM} and V _{DRM} | TJ | -40 to 110 | °C | | Storage Temperature Range | T _{stg} | -40 to 150 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--|-----------------------------|-----------|------| | Thermal Resistance, Junction-to-Case Junction-to-Ambient | $R_{ hetaJC} \ R_{ hetaJA}$ | 75
200 | °C/W | | Lead Solder Temperature (<1/16" from case, 10 secs max) | T _L | 260 | °C | #### **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | | |--|---|-------------------------------------|--------|-----------|------------|------| | OFF CHARACTERISTICS | | | • | | | | | Peak Repetitive Forward or Reverse Blocking Current | (Note 2)
T _C = 25°C | I _{DRM} , I _{RRM} | _ | _ | 10 | μΑ | | $(V_D = Rated V_{DRM} and V_{RRM}; R_{GK} = 1 k\Omega)$ | $T_{\rm C} = 110^{\circ}{\rm C}$ | | _ | _ | 100 | | | ON CHARACTERISTICS | | | | | | | | Peak Forward On–State Voltage*
(I _{TM} = 1.0 A Peak @ T _A = 25°C) | | V_{TM} | _ | - | 1.7 | V | | Gate Trigger Current (Continuous dc) (Note 3) $(V_{AK} = 7.0 \text{ Vdc}, R_L = 100 \Omega)$ | T _C = 25°C | I _{GT} | _ | 40 | 200 | μА | | Holding Current ⁽²⁾
(V _{AK} = 7.0 Vdc, Initiating Current = 20 mA) | $T_C = 25^{\circ}C$
$T_C = -40^{\circ}C$ | I _H | | 0.5
- | 5.0
10 | mA | | Latch Current ($V_{AK} = 7.0 \text{ V}, \text{ Ig} = 200 \mu\text{A}$) | $T_C = 25^{\circ}C$
$T_C = -40^{\circ}C$ | ΙL | | 0.6
- | 10
15 | mA | | Gate Trigger Voltage (Continuous dc) (Note 3) $(V_{AK} = 7.0 \text{ Vdc}, R_L = 100 \Omega) \qquad T_C = -40^{\circ}\text{C}$ | T _C = 25°C | V _{GT} | _
_ | 0.62
- | 0.8
1.2 | V | | DYNAMIC CHARACTERISTICS | | | | | | | | Critical Rate of Rise of Off–State Voltage (V_D = Rated V_{DRM} , Exponential Waveform, R_{GK} = 1000 Ω , T_J = 110°C) | | dV/dt | 20 | 35 | _ | V/μs | | Critical Rate of Rise of On–State Current (I _{PK} = 20 A; Pw = 10 μsec; diG/dt = 1 A/μsec, Igt = 2 | (0 mA) | di/dt | _ | - | 50 | A/μs | ^{*}Indicates Pulse Test: Pulse Width \leq 1.0 ms, Duty Cycle \leq 1%. 2. R_{GK} = 1000 Ω included in measurement. 3. Does not include R_{GK} in measurement. # **Voltage Current Characteristic of SCR** | Symbol | Parameter | |------------------|---| | V _{DRM} | Peak Repetitive Off State Forward Voltage | | I _{DRM} | Peak Forward Blocking Current | | V _{RRM} | Peak Repetitive Off State Reverse Voltage | | I _{RRM} | Peak Reverse Blocking Current | | V _{TM} | Peak on State Voltage | | I _H | Holding Current | Figure 1. Typical Gate Trigger Current versus Junction Temperature Figure 2. Typical Gate Trigger Voltage versus Junction Temperature Figure 3. Typical Holding Current versus Junction Temperature Figure 4. Typical Latching Current versus Junction Temperature Figure 5. Typical RMS Current Derating Figure 6. Typical On-State Characteristics ## TO-92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL Figure 7. Device Positioning on Tape | | | | Specification | | | | |--------|--------------------------------------|---------|---------------|------------|------|--| | | | Inches | | Millimeter | | | | Symbol | Item | Min | Max | Min | Max | | | D | Tape Feedhole Diameter | 0.1496 | 0.1653 | 3.8 | 4.2 | | | D2 | Component Lead Thickness Dimension | 0.015 | 0.020 | 0.38 | 0.51 | | | F1, F2 | Component Lead Pitch | 0.0945 | 0.110 | 2.4 | 2.8 | | | Н | Bottom of Component to Seating Plane | .059 | .156 | 1.5 | 4.0 | | | H1 | Feedhole Location | 0.3346 | 0.3741 | 8.5 | 9.5 | | | H2A | Deflection Left or Right | 0 | 0.039 | 0 | 1.0 | | | H2B | Deflection Front or Rear | 0 | 0.051 | 0 | 1.0 | | | H4 | Feedhole to Bottom of Component | 0.7086 | 0.768 | 18 | 19.5 | | | H5 | Feedhole to Seating Plane | 0.610 | 0.649 | 15.5 | 16.5 | | | L | Defective Unit Clipped Dimension | 0.3346 | 0.433 | 8.5 | 11 | | | L1 | Lead Wire Enclosure | 0.09842 | _ | 2.5 | _ | | | Р | Feedhole Pitch | 0.4921 | 0.5079 | 12.5 | 12.9 | | | P1 | Feedhole Center to Center Lead | 0.2342 | 0.2658 | 5.95 | 6.75 | | | P2 | First Lead Spacing Dimension | 0.1397 | 0.1556 | 3.55 | 3.95 | | | Т | Adhesive Tape Thickness | 0.06 | 0.08 | 0.15 | 0.20 | | | T1 | Overall Taped Package Thickness | _ | 0.0567 | _ | 1.44 | | | T2 | Carrier Strip Thickness | 0.014 | 0.027 | 0.35 | 0.65 | | | W | Carrier Strip Width | 0.6889 | 0.7481 | 17.5 | 19 | | | W1 | Adhesive Tape Width | 0.2165 | 0.2841 | 5.5 | 6.3 | | | W2 | Adhesive Tape Position | .0059 | 0.01968 | .15 | 0.5 | | #### NOTES: - 1. Maximum alignment deviation between leads not to be greater than 0.2 mm. - 2. Defective components shall be clipped from the carrier tape such that the remaining protrusion (L) does not exceed a maximum of 11 mm. - 3. Component lead to tape adhesion must meet the pull test requirements. - 4. Maximum non-cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches. - 5. Holddown tape not to extend beyond the edge(s) of carrier tape and there shall be no exposure of adhesive. - 6. No more than 1 consecutive missing component is permitted. - 7. A tape trailer and leader, having at least three feed holes is required before the first and after the last component. - 8. Splices will not interfere with the sprocket feed holes. #### PACKAGE DIMENSIONS TO-92 (TO-226) CASE 029-11 ISSUE AL #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - CONTROLLING DIMENSION: INCH. - CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. - LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. | | INC | HES | MILLIN | IETERS | |-----|-------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.175 | 0.205 | 4.45 | 5.20 | | В | 0.170 | 0.210 | 4.32 | 5.33 | | C | 0.125 | 0.165 | 3.18 | 4.19 | | D | 0.016 | 0.021 | 0.407 | 0.533 | | G | 0.045 | 0.055 | 1.15 | 1.39 | | Н | 0.095 | 0.105 | 2.42 | 2.66 | | J | 0.015 | 0.020 | 0.39 | 0.50 | | K | 0.500 | | 12.70 | | | L | 0.250 | | 6.35 | | | N | 0.080 | 0.105 | 2.04 | 2.66 | | P | | 0.100 | | 2.54 | | R | 0.115 | | 2.93 | | | V | 0.135 | | 3.43 | | STYLE 10: PIN 1. CATHODE 2. GATE 3. ANODE ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partnif rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.