- Designed for Complementary Use with TIP135, TIP136 and TIP137 - 70 W at 25°C Case Temperature - 8 A Continuous Collector Current - Minimum h_{FE} of 1000 at 4 V, 4 A # Pin 2 is in electrical contact with the mounting base. MDTRACA ### absolute maximum ratings at 25°C case temperature (unless otherwise noted) | RATING | | | VALUE | UNIT | |--|--------|------------------|-------------|------| | | TIP130 | | 60 | | | Collector-base voltage (I _E = 0) | TIP131 | V_{CBO} | 80 | V | | | TIP132 | | 100 | | | | TIP130 | | 60 | | | Collector-emitter voltage (I _B = 0) | TIP131 | V_{CEO} | 80 | V | | | TIP132 | | 100 | ı | | Emitter-base voltage | | | 5 | V | | Continuous collector current | | | 8 | Α | | Peak collector current (see Note 1) | | | 12 | Α | | Continuous base current | | | 0.3 | Α | | Continuous device dissipation at (or below) 25°C case temperature (see Note 2) | | P _{tot} | 70 | W | | Continuous device dissipation at (or below) 25°C free air temperature (see Note 3) | | P _{tot} | 2 | W | | Unclamped inductive load energy (see Note 4) | | | 75 | mJ | | Operating junction temperature range | | | -65 to +150 | °C | | Storage temperature range | | | -65 to +150 | °C | | Lead temperature 3.2 mm from case for 10 seconds | | | 260 | °C | - NOTES: 1. This value applies for $t_p \leq 0.3$ ms, duty cycle $\leq 10\%.$ - 2. Derate linearly to 150°C case temperature at the rate of 0.56 W/°C. - 3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C. - 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 5 mA, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_{S} = 0.1 Ω , V_{CC} = 20 V. # TIP130, TIP131, TIP132 NPN SILICON POWER DARLINGTONS JUNE 1973 - REVISED MARCH 1997 ## electrical characteristics at 25°C case temperature | PARAMETER TEST CONDITIONS | | | MIN | TYP | MAX | UNIT | | | | |---------------------------|--------------------------------------|---|---|--|--|-----------------|--|-----------------------------|----| | V _{(BR)CEO} | Collector-emitter breakdown voltage | I _C = 30 mA | I _B = 0 | (see Note 5) | TIP130
TIP131
TIP132 | 60
80
100 | | | V | | I _{CEO} | Collector-emitter cut-off current | $V_{CE} = 30 \text{ V}$ $V_{CE} = 40 \text{ V}$ $V_{CE} = 50 \text{ V}$ | $I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$ | | TIP130
TIP131
TIP132 | 100 | | 0.5
0.5
0.5 | mA | | I _{CBO} | Collector cut-off current | _ | $I_{E} = 0$ | $T_C = 100$ °C
$T_C = 100$ °C
$T_C = 100$ °C | TIP130
TIP131
TIP132
TIP130
TIP131
TIP132 | | | 0.2
0.2
0.2
1
1 | mA | | I _{EBO} | Emitter cut-off current | V _{EB} = 5 V | I _C = 0 | | | | | 5 | mA | | h _{FE} | Forward current transfer ratio | $V_{CE} = 4 V$ $V_{CE} = 4 V$ | $I_C = 1 A$
$I_C = 4 A$ | (see Notes 5 and 6) | | 500
1000 | | 15000 | | | V _{CE(sat)} | Collector-emitter saturation voltage | $I_B = 16 \text{ mA}$
$I_B = 30 \text{ mA}$ | $I_C = 4 A$
$I_C = 6 A$ | (see Notes 5 and 6) | | | | 2 3 | V | | V_{BE} | Base-emitter voltage | V _{CE} = 4 V | I _C = 4 A | (see Notes 5 and | d 6) | | | 2.5 | V | | C _{obo} | Output capacitance | V _{CB} = 10 V | I _E = 0 | | | | | 200 | pF | | V _{EC} | Parallel diode forward voltage | I _E = 8 A | I _B = 0 | (see Notes 5 and | d 6) | | | 3.5 | ٧ | NOTES: 5. These parameters must be measured using pulse techniques, t_p = 300 μ s, duty cycle \leq 2%. #### thermal characteristics | PARAMETER | | MIN | TYP | MAX | UNIT | |-----------------|---|-----|-----|------|------| | $R_{\theta JC}$ | Junction to case thermal resistance | | | 1.78 | °C/W | | $R_{\theta JA}$ | Junction to free air thermal resistance | | | 62.5 | °C/W | ^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts. #### TYPICAL CHARACTERISTICS # **TYPICAL DC CURRENT GAIN COLLECTOR CURRENT** TCS130AA 50000 $T_c = -40^{\circ}C$ 25°C $T_c = 100$ °C h_{FE} - Typical DC Current Gain 10000 1000 4 V = 300 µs, duty cycle < 2% 100 0.5 1-0 10 Ic - Collector Current - A Figure 1. ### **COLLECTOR-EMITTER SATURATION VOLTAGE** Figure 2. #### **BASE-EMITTER SATURATION VOLTAGE** Power #### **MAXIMUM SAFE OPERATING REGIONS** #### THERMAL INFORMATION #### **MAXIMUM POWER DISSIPATION** JUNE 1973 - REVISED MARCH 1997 #### **MECHANICAL DATA** #### **TO-220** #### 3-pin plastic flange-mount package This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly. NOTES: A. The centre pin is in electrical contact with the mounting tab. - B. Mounting tab corner profile according to package version. - C. Typical fixing hole centre stand off height according to package version. Version 1, 18.0 mm. Version 2, 17.6 mm. **MDXXBE** #### PRODUCT INFORMATION # TIP130, TIP131, TIP132 NPN SILICON POWER DARLINGTONS JUNE 1973 - REVISED MARCH 1997 #### **IMPORTANT NOTICE** Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current. PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except as mandated by government requirements. PI accepts no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS. Copyright © 1997, Power Innovations Limited