

FEATURES

- Vcc: operation voltage : 4.5V~5.5V
- Very low power consumption :

Vcc = 5.0V 45mA (Max.) write current 2mA (Max.) read current 0.6uA (Typ.) CMOS standby current

- High speed access time :
 - -70 70ns (Max.)
- Input levels are CMOS-compatible
- · Automatic power down when chip is deselected
- Three state outputs
- Fully static operation
- Data retention supply voltage as low as 1.5V
- Easy expansion with CE2, CE1, and OE options
- All I/O pins are 5V tolerant

PRODUCT FAMILY

■ DESCRIPTION

The WS628128 is a high performance, very low power CMOS Static Random Access Memory organized as 131,072 words by 8 bits and operates from very low voltage of 4.5V to 5.5V power supply Advanced CMOS technology and circuit techniques provide both high speed and low power features with a typical CMOS standby current of 0.6uA and maximum access time of 70ns in 5V operation.

Easy memory expansion is provided by an active LOW chip enable (CE1), an active HIGH chip enable (CE2), and active LOW output enable (OE) and three-state output drivers.

The WS628128 has an automatic power down feature, reducing the power consumption significantly when chip is deselected.

The WS628128 is available in the JEDEC standard 32 pin 600mil Plastic DIP and 450mil Plastic SOP. 8mmx20mm TSOP, and 8mmx13.4mm STSOP.

				POWER DIS	SIPATION	
PRODUCT OPERATING FAMILY TEMPERATURE F			SPEED	STANDBY (ICCSB1, Max)	Operating (Icc, Max)	PKG TYPE
FAMILY	IEMPERATURE	RANGE	(ns)	Vcc= 5.0V	Vcc= 5.0V	
WS628128LLP-70						DIP-32
WS628128LLFP-70						SOP-32
WS628128LLT-70	0°C~+70°C	4.5V~5.5V	70ns	3.0uA	45mA	TSOP-32
WS628128LLST-70						STSOP-32

■ PIN CONFIGURATIONS

BLOCK DIAGRAM

WINGSHING Co. reserves the right to modify document contents without notice.

■ PIN DESCRIPTIONS

Name	Function
A0-A16 Address Input	These 17 address input select one of the 131,072 x 8-bit words in the RAM
CE1 Chip Enable 1 Input CE2 Chip Enable 2 Input	CE1 is active LOW and CE2 is active HIGH. Both chip enables must be active to read from or write to the device. If either chip enable is not active, the device is deselected and is in a standby power mode. The DQ pins will be in the high impedance state when the device is deselected.
WE Write Enable Input	The write enable input is active LOW and controls read and write operations. With the chip selected, when \overline{WE} is HIGH and \overline{OE} is LOW, output data will be present on the DQ pins; when \overline{WE} is LOW, the data present on the DQ pins will be written into the selected memory location.
OE Output Enable Input	The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when \overline{OE} is inactive.
DQ0 – DQ7 Data Input/Output Ports	These 8 bi-directional ports are used to read data from or write data into the RAM.
Vcc	Power Supply
Gnd	Ground

■ TRUTH TABLE

MODE	WE	CE1	CE2	ŌĒ	I/O OPERATION	Vcc CURRENT
Not selected	Х	Н	X	X	Lligh 7	
(Power Down)	Х	Х	L	X	High Z	ICCSB, ICCSB1
Output Disabled	Н	L	н	н	High Z	I _{cc}
Read	Н	L	Н	L	Dout	I _{cc}
Write	L	L	н	X	DIN	I _{cc}

■ ABSOLUTE MAXIMUM RATINGS⁽¹⁾

SYMBOL	PARAMETER	RATING	UNITS
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.0	v
TBIAS	Temperature Under Bias	-40 to +125	°C
Тѕтс	Storage Temperature	-60 to +150	°C
Рт	Power Dissipation	1.0	w
Ιουτ	DC Output Current	20	mA

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

■ OPERATING RANGE

RANGE	AMBIENT TEMPERATURE	Vcc
Commercial	0°C to +70°C	2.4V ~ 5.5V

■ CAPACITANCE ⁽¹⁾ (T_A =25 °C, f = 1.0 MHz)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
CIN	Input Capacitance	VIN=0V	6	pF
CDQ	Input/Output Capacitance	VI/0=0V	8	pF

1. This parameter is guaranteed and not tested.

DC ELECTRICAL CHARACTERISTICS (TA = 0 to + 70°C)

PARAMETER NAME	PARAMETER	TEST CONDITIONS		MIN.	TYP. ⁽¹⁾	MAX.	UNITS
VIL	Guaranteed Input Low Voltage ⁽²⁾			-0.5	-	0.3Vcc	v
Ин	Guaranteed Input High Voltage ⁽²⁾			0.7Vcc	-	Vcc+0.2	v
lı.	Input Leakage Current	$Vcc = Max$, $V_{IN} = 0V$ to Vcc		-	-	1	uA
lol	Output Leakage Current	$\frac{V_{CC} = Max, \overline{CE1} = V_{H}, CE2 = V_{L}, or}{\overline{OE} = V_{H}, V_{IO} = 0V \text{ to } V_{CC}}$			-	1	uA
Vol	Output Low Voltage	Vcc = Max, IoL = 2mA			-	0.4	v
Vон	Output High Voltage	Vcc = Min, Iон = -1mA		2.4	-		v
laa	Operating Power Supply	CE1 = V _{IL} , or CE2 = V _{IH} ,	Vcc=3.0V	-	-	20	
Icc	Current			-	45	mA	
lagan	Standby Power Supply	CE1 = V _H , or CE2 = V _L ,	Vcc=3.0V	-	-	1	
ICCSB	Current	$I_{DQ} = 0mA, F = Fmax^{(3)}$ v_{cc}				2	mA
lagand	Power Down Supply	CE1≧Vcc-0.2V, CE2≦0.2V,	Vcc=3.0V		0.02	0.5	
ICCSB1	Current	$V_{IN} \ge Vcc-0.2V \text{ or } V_{IN} \le 0.2V$	Vcc=5.0V		0.6	3	uA

1. Typical characteristics are at $T_A = 25$ °C.

2. These are absolute values with respect to device ground and all overshoots due to system or tester notice are included. 3. Fmax = $1/t_{RC}$.

■ DATA RETENTION CHARACTERISTICS (TA = 0 to + 70°C)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP. ⁽¹⁾	MAX.	UNITS
V _{DR}	Vcc for Data Retention	$\label{eq:cell} \begin{array}{l} \overline{\text{CE1}} \ \geq \ \text{Vcc} \mbox{ - } 0.2 \mbox{V}, \mbox{CE2} \ \leq \ 0.2 \mbox{V}, \\ \overline{\text{VIN}} \ \geq \ \text{Vcc} \mbox{ - } 0.2 \mbox{V} \mbox{ or } \mbox{VIN} \ \leq \ 0.2 \mbox{V} \end{array}$	1.5		1	v
I _{CCDR}	Data Retention Current	$\label{eq:cell} \begin{array}{l} \overline{\text{CE1}} \ \geqq \ \text{Vcc} \mbox{ - } 0.2 \mbox{V}, \mbox{CE2} \ \leqq \ 0.2 \mbox{V}, \\ \overline{\text{VIN}} \ \geqq \ \text{Vcc} \mbox{ - } 0.2 \mbox{V} \mbox{ or } \mbox{VIN} \ \leqq \ 0.2 \mbox{V} \end{array}$	-	0.02	0.3	uA
t _{cdr}	Chip Deselect to Data Retention Time	See Retention Waveform	0		ł	ns
t _R	Operation Recovery Time		T _{RC} ⁽²⁾		١	ns

1. Vcc = 1.5V, $T_A = +25^{\circ}C$

2. t_{RC} = Read Cycle Time

■ LOW V_{CC} DATA RETENTION WAVEFORM (1) (CE1 Controlled)

■ LOW V_{CC} DATA RETENTION WAVEFORM (2) (CE2 Controlled)

■ AC TEST CONDITIONS

Input Pulse Levels	Vcc/0V
Input Rise and Fall Times	5ns
Input and Output	
Timing Reference Level	0.5Vcc

AC TEST LOADS AND WAVEFORMS

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	MUST BE STEADY	MUST BE STEADY
	MAY CHANGE FROM H TO L	WILL BE CHANGE FROM H TO L
	MAY CHANGE FROM L TO H	WILL BE CHANGE FROM L TO H
XXX	DON'T CARE: ANY CHANGE PERMITTED	CHANGE : STATE UNKNOWN
	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF"STATE

■ AC ELECTRICAL CHARACTERISTICS (over the operating range) READ CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	DESCRIPTION		V MIN.	VS6281 TYP.	28 MAX.	UNIT
t _{avax}	t _{RC}	Read Cycle Time		70			ns
t _{avqv}	t _{AA}	Address Access Time		1		70	ns
t _{e1LQV}	t _{ACS1}	Chip Select Access Time	(CE1)			70	ns
t _{e2HOV}	t _{ACS2}	Chip Select Access Time	(CE2)			70	ns
t _{GLQV}	t _{oe}	Output Enable to Output Valid				50	ns
t _{e1LQX}	t _{cL21}	Chip Select to Output Low Z	(CE1)	10			ns
t _{e2HOX}	t _{CLZ2}	Chip Select to Output Low Z	(CE2)	10			ns
t _{GLQX}	t _{oLZ}	Output Enable to Output in Low Z		10			ns
t _{e1HQZ}	t _{chz1}	Chip Deselect to Output in High Z	(CE1)	0		40	ns
t _{E2HQZ}	t _{cHZ1}	Chip Deselect to Output in High Z	(CE2)	0		40	
t _{ghoz}	t _{ohz}	Output Disable to Output in High Z		0		35	ns
t _{axox}	t _{on}	Output Disable to Output Address Change		10			ns

1. Typical characteristics are at Vcc =, T_A = 25°C. Vcc=5.0V

SWITCHING WAVEFORMS (READ CYCLE)

READ CYCLE2 (1,3,4) CE1

CE2

READ CYCLE3 (1,4) t RC ADDRESS t 🗛 OE <u>_t он</u>_ t oe ⊢to∟z → CE1 _____ t ACS1 t онz ⁽⁵⁾ → K t cizi <u>t</u>cңiz CE2 t ACS2 (2,5) t снz (5) t cizz D OUT

NOTES:

- 1. WE is high for read Cycle.
- 2. Device is continuously selected when $\overline{CE1} = V_{IL}$ and $CE2 = V_{IH}$.
- 3. Address valid prior to or coincident with CE1 transition low and/or CE2 transition high.
- 4. OE = VIL .
- 5. Transition is measured \pm 500mV from steady state with CL = 5pF as shown in Figure 1B. The parameter is guaranteed but not 100% tested.

■ AC ELECTRICAL CHARACTERISTICS (over the operating range)

WRITE CYCLE

JEDEC PARAMETER NAME	PARAMETER NAME	DESCRIPTION	V MIN.	VS62812 TYP.	8 MAX.	UNIT
t _{avax}	t _{wc}	Write Cycle Time	70			ns
t _{e1LWH}	t _{cw}	Chip Select to End of Write	70			ns
t _{avwL}	t _{AS}	Address Set up Time	0			ns
t _{avwh}	t _{AW}	Address Valid to End of Write	70			ns
t _{wlwh}	t _{wp}	Write Pulse Width	50			ns
t_{whax}	t _{wR1}	Write Recovery Time (CE1, W	Ē) 0			ns
t _{e2LAX}	t _{wr2}	Write Recovery Time (CE	2) 0			ns
t _{wLoz}	t _{whz}	Write to Output in High Z	0		30	ns
t _{ovw}	t _{ow}	Data to Write Time Overlap	30			ns
t _{whdx}	t _{DH}	Data Hold from Write Time	0			ns
t _{ghoz}	t _{ohz}	Output Disable to Output in High Z	0		30	ns
t _{whox}	t _{ow}	End of Write to Output Active	5			ns

1. Typical characteristics are at Vcc = 5.0V T_A = 25° C.

SWITCHING WAVEFORMS (WRITE CYCLE)

WS628128

WRITE CYCLE2 (1,6)

NOTES:

- 1. WE must be high during address transitions.
- 2. The internal write time of the memory is defined by the overlap of CE1 and CE2 active and WE low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
- 3. TWR is measured from the earlier of CE1 or WE going high or CE2 going low at the end of write cycle.
- 4. During this period, DQ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 5. If the CE1 low transition or the CE2 high transition occurs simultaneously with the WE low transitions or after the WE transition, output remain in a high impedance state.
- 6. \overline{OE} is continuously low ($\overline{OE} = V_{IL}$).
- 7. DOUT is the same phase of write data of this write cycle.
- 8. DOUT is the read data of next address.
- 9. If CE1 is low and CE2 is high during this period, DQ pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
- 10. Transition is measured \pm 500mV from steady state with CL = 5pF as shown in Figure 1B. The parameter is guaranteed but not 100% tested.
- 11. Tcw is measured from the later of CE1 going low or CE2 going high to the end of write.

■ ORDERING INFORMATION

PACKAGE DIMENSIONS

32 DUAL INLINE PACKAGE (600mil)

Units: millimeter(inch)

32 PLASTIC SMALL OUTLINE PACKAGE (450mil)

■ PACKAGE DIMENSIONS (continued)

UNIT	INCH(BASE)	MM(REF.)
A	0.047(MAX)	1.20(MAX)
A1	0.004±0.002	0.10±0.05
A2	0.039±0.002	1.00±0.05
Ь	0.008(TYP)	0.20(TYP)
С	0.006(TYP)	0.15(TYP)
DЬ	0.465±0.004	11.80±0.10
Ε	0.315±0.004	8.00±0.10
е	0.020(TYP)	0.50(TYP)
D	0.528±0.008	13.40±0.20
L	0.020±0.004	0.50±0.10
L1	0.0315±0.004	0.80±0.10
у	0.004(MAX)	0.102(MAX)
θ	0*-5*	0°-5°

Α

A1

A2

ь

С

DЬ

Ε

e

L1

у Ө

L

L

A

2 D

INCH(BASE)

0.047(MAX)

0.004±0.002

 0.039 ± 0.002

0.008(TYP)

0.006(TYP)

0.724±0.004

0.315±0.004 0.020(TYP)

0.787±0.008

0.004(MAX)

0*-5*

(Option 1)

(Option 2)

0.0315±0.004 0.80±0.10

0.020±0.004 0.50±0.10

0.024±0.004 0.60±0.10

MM(REF.)

1.20(MAX)

0.10±0.05

1.00±0.05

0.20(TYP)

0.15(TYP)

18.40±0.10

8.00±0.10

0.50(TYP)

20.00±0.20

0.102(MAX)

0*-5*

TSOP-32