
A6800/A6801

DABiC-5 Latched Sink Drivers

Supply Voltage, V_{DD}......7 V Input Voltage Range, $V_{I\!N}$ -0.3 V to $V_{D\!D}$ +0.3 V Package Power Dissipation, PD, see Allowable Power Disspation chart, page 5 Operating Temperature Range

Ambient Temperature, T_A-20°C to +85°C Storage Temperature, T_S -55°C to +150°C

Caution: CMOS devices have input-static protection, but are susceptible to damage when exposed to extremely high static-electrical charges.

The A6800 and A6801 latched-input BiMOS ICs merge high-current, high-voltage outputs with CMOS logic. The CMOS input section consists of 4 or 8 data ('D' type) latches with associated common CLEAR. STROBE, and OUTPUT ENABLE circuitry. The power outputs are bipolar NPN Darlingtons. This merged technology provides versatile, flexible interface. These BiMOS power interface ICs greatly benefit the simplification of computer or microprocessor I/O. The A6800 ICs each contain four latched drivers. A6801 ICs contain eight latched drivers.

The CMOS inputs are compatible with standard CMOS circuits. TTL circuits may mandate the addition of input pull-up resistors. The bipolar Darlington outputs are suitable for directly driving many peripheral/ power loads: relays, lamps, solenoids, small dc motors, etc.

All devices have open-collector outputs and integral diodes for inductive load transient suppression. The output transistors are capable of sinking 600 mA and will withstand at least 50 V in the OFF state. Because of limitations on package power dissipation, the simultaneous operation of all drivers at maximum rated current can only be accomplished by a reduction in duty cycle. Outputs may be paralleled for higher load current capability.

The A6800SA is furnished in a standard 14-pin DIP; the A6800SL and A6801SLW in surface-mountable SOICs; the A6801SA in a 22-pin DIP with 0.400" (10.16 mm) row centers; the A6801SEP in a 28-lead PLCC. These devices are lead (Pb) free, with 100% matte tin plated leadframes

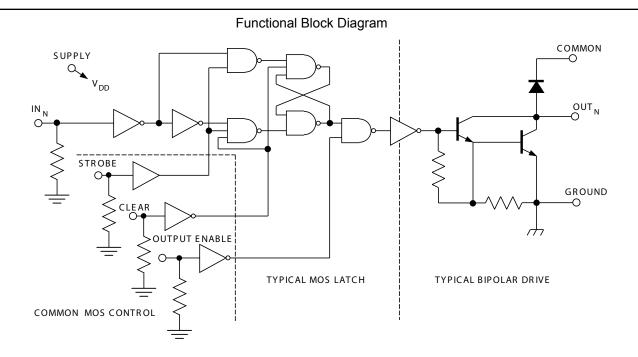
FEATURES

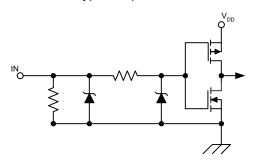
- 3.3 V to 5 V logic supply range
- CMOS, TTL compatible inputs
- To 10 MHz data input rate
- Output transient protection
- High-voltage, high-current outputs
- Internal pull-down resistors
- Darlington current-sink outputs, with improved low-saturation voltages
- Low-power CMOS latches

APPLICATIONS

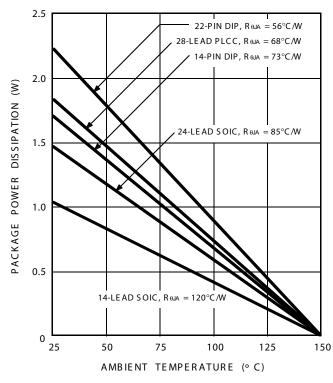
Relays

Solenoids


Small dc motors


Use the following complete part numbers when ordering:

Part Number	Pins	Package
A6800SA-T	14	DIP
A6800SL-T	14	SOIC
A6801SA-T	22	DIP
A6801SEP-T	28	PLCC
A6801SLW-T	24	SOIC



Typical Input Circuit

Allowable Power Dissipation

ELECTRICAL CHARACTERISTICS¹ Unless otherwise noted: $T_A = 25$ °C, logic supply operating voltage $V_{dd} = 3.0 \, \text{V}$ to $5.5 \, \text{V}$

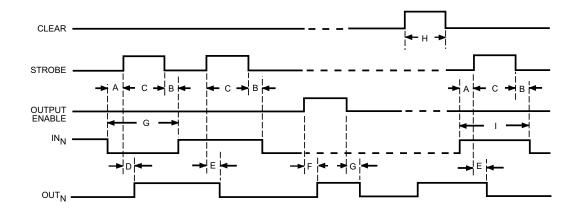
			$V_{dd} = 3.3 V$		V _{dd} = 5 V				
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Output Leakage Current	I _{CEX}	V _{OUT} = 50 V	-	-	10	-	_	10	μA
Output Sustaining Voltage	V _{CE(SUS)}	I _{OUT} = 350 mA, L = 3 mH	35	_	_	35	_	_	V
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _{OUT} = 100 mA	-	0.8	1.0	_	0.8	1.0	V
		I _{OUT} = 200 mA	-	0.9	1.1	_	0.9	1.1	V
Voltage		I _{OUT} = 350 mA (See note 2)	_	1.0	1.3	_	1.0	1.3	V
Input Voltage	V _{IN(1)}		2.2	_	_	3.3	_	-	V
Imput voitage	V _{IN(0)}		_	_	1.1	_	_	1.7	V
Input Resistance	R _{IN}		50	_	_	50	_	_	kΩ
Logic Supply Current	I _{DD(1)}	One output on, I _{OUT} = 100 mA	_	_	1.0	_	_	1.0	mA
Logic Supply Current	I _{DD(0)}	All outputs off	-	130	150	-	130	150	μA
Clamp Diode Leakage Current	l _r	V _r = 50 V	-	-	50	-	_	50	μA
Clamp Diode Forward Voltage	V _f	I _f = 350 mA	-	-	2.0	-	_	2.0	V
Output Fall Time	t _f	V _{CC} = 50 V, R1 = 500 Ω, C1≤30 pF	-	80	-	-	80	-	ns
Output Rise Time	t _r	V _{CC} = 50 V, R1 = 500 Ω, C1≤30 pF	-	100	-	-	100	-	ns

Operation of these devices with standard TTL or DTL may require the use of appropriate pull-up resistors to ensure a minimum logic 1.

Truth Table

			OUTPUT	ΟL	JT _N
IN _N	STROBE	CLEAR	ENABLE	t-1	t
0	1	0	0	Х	OFF
1	1	0	0	Х	ON
Χ	Χ	1	Χ	Χ	OFF
Χ	Χ	Χ	1	Χ	OFF
Χ	0	0	0	ON	ON
Х	0	0	0	OFF	OFF

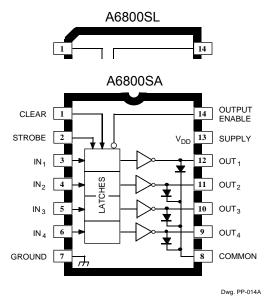
X = irrelevant


t-1 = previous output state

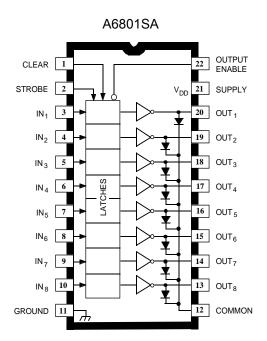
t = present output state

² Because of limitations on package power dissipation, the simultaneous operation of multiple drivers can only be accomplished by reduction in duty cycle.

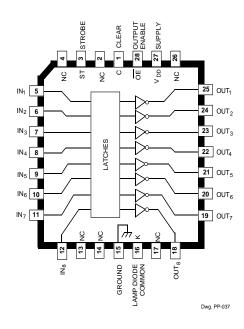
Timing Requirements and Specifications (Logic Levels are V_{DD} and Ground)

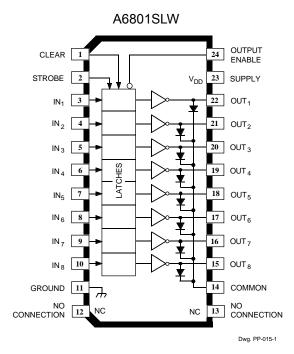

Key	Description		
Α	Minimum data active time before Strobe enabled (Data Set-Up Time)	25	
В	Minimum data active time after Strobe disabled (Data Hold Time)	25	
С	Minimum Strobe pulse width	50	
D	Maximum time between Strobe activation and transition from output on to output off*	500	
Е	Minimum time between Strobe activation and transition from output off to output on*	500	
F	Maximum time between Output Enable activation and transition from output on to output off*	500	
G	Minimum time between Output Enable activation and transition from output off to output on*	500	
Н	Minimum Clear pulse width	50	
I	Minimum data pulse width	100	

^{*}Conditions for output transition testing are: V_{DD} = 50 V, V_{CC} = 5 V, R1 = 500 Ω , C1 \leq 30 pF.


NOTE: Information present at an input is transferred to its latch when the STROBE is high. A high CLEAR input will set all latches to the output off condition regardless of the data or STROBE input levels. A high

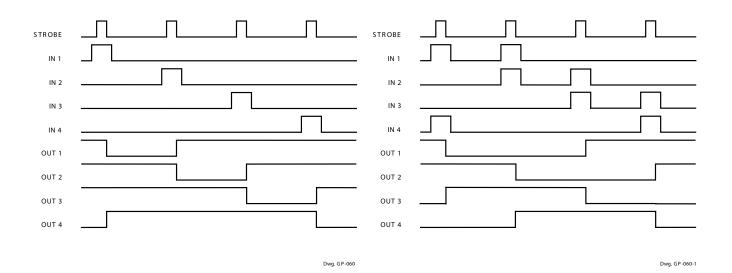
OUTPUT ENABLE will set all outputs to the off contdition, regardless of any other input conditions. When the OUTPUT ENABLE is low, the outputs depend on the state of their respective latches.




Note: The A6800SL (SOIC) and the A6800SA (DIP) are electrically identical and share a common terminal number assignment.

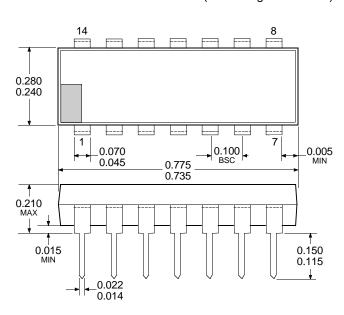

Dwg. PP-015

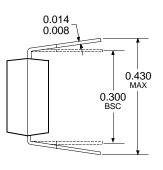
A6801SEP


TYPICAL APPLICATION UNIPOLAR STEPPER-MOTOR DRIVE

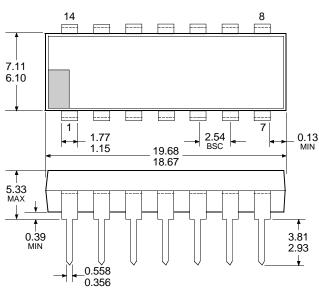
Dwg. No. B-1537

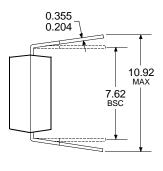
UNIPOLAR WAVE DRIVE


UNIPOLAR 2-PHASE DRIVE



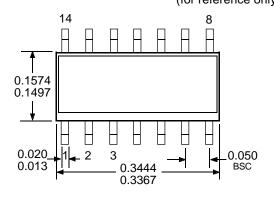
A6800SA

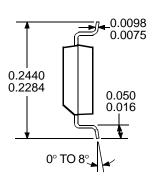

Dimensions in Inches (controlling dimensions)

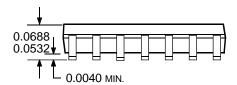


Dwg. MA-001-14A in

Dimensions in Millimeters (for reference only)

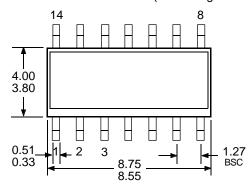

Dwg. MA-001-14A mm

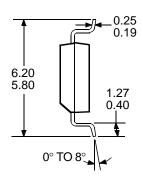

- NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
 - 2. Lead spacing tolerance is non-cumulative.
 - 3. Lead thickness is measured at seating plane or below.

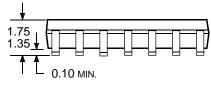


A6800SL

Dimensions in Inches (for reference only)

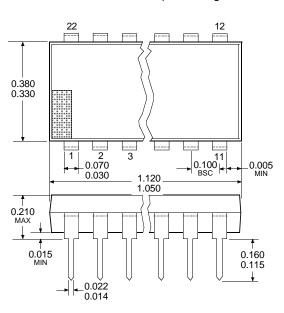


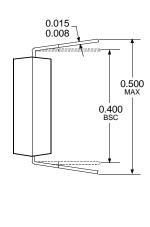




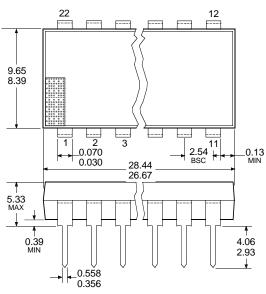
Dwg. MA-007-14 in

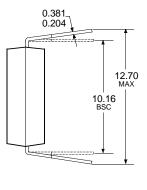
Dimensions in Millimeters (controlling dimensions)


Dwg. MA-007-14A mm


Exact body and lead configuration at vendor's option within limits shown. Lead spacing tolerance is non-cumulative. NOTES: 1.

A6801SA


Dimensions in Inches (controlling dimensions)

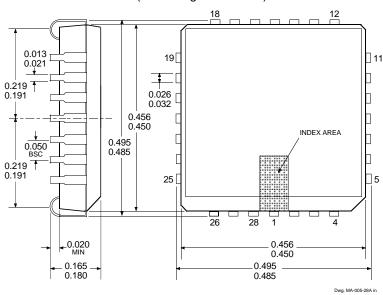


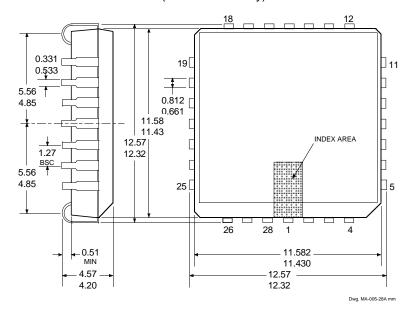
Dwg. MA-002-22 in

Dimensions in Millimeters (for reference only)

Dwg. MA-002-22 mm

- NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

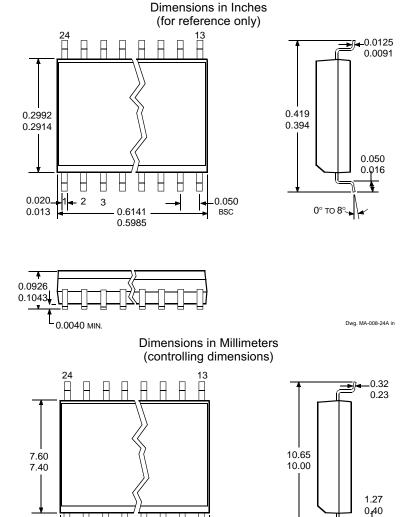

 - Lead spacing tolerance is non-cumulative.
 Lead thickness is measured at seating plane or below.

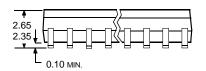

Worcester, Massachusetts 01615-0036 (508) 853-5000

A6801SEP

Dimensions in Inches (controlling dimensions)

Dimensions in Millimeters (for reference only)




NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

2. Lead spacing tolerance is non-cumulative.

A6801SLW

15.60 15.20

Dwg. MA-008-24A mm

0° TO 8° ✓

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

1 4 2

3

Lead spacing tolerance is non-cumulative.

1.27

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copyright©2003, 2004, 2005 Allegro Microsystems, Inc.

