
IN80C31N/IN80C51N КМОП однокристальный 8-разрядный микроконтроллер

Микросхема IN80C31N/IN80C51N представляет собой высокопроизводительный микроконтроллер изготовленный по высококачественной КМОП-технологии.

Микросхема IN80C51N содержит ПЗУ памяти программ емкостью 4096 байт, встроенное ОЗУ данных емкостью 128 байт, 32 линии ввода/вывода, два 16-битовых таймера / счетчика, систему прерываний с пятью векторами и двумя уровнями приоритетов, последовательный порт для ввода/вывода или использования в расширения универсального качестве асинхронного приемопередатчика, встроенный тактовый генератор и систему синхронизации.

В микросхеме имеется два программируемых режима уменьшенного энергопотребления: режим холостого хода и режим микропотребления. Режим холостого хода блокирует работу центрального процессора, сохраняется состояние внутреннего ОЗУ данных. таймеры, последовательный тдоп система прерывания продолжают функционирование. Режим микропотребления выключает задающий генератор, прекращается работа всех узлов микросхемы и сохраняется только содержимое ОЗУ данных.

Обозначение микросхемы в корпусе

IN80C51N Пластмассовый DIP корпус T_{A} = от -40° до + 85°C

Обозначение выводов в корпусе

			_	
P1.0	1		40	Vec
P1.1	2		39	P0.0/AD0
P1.2	3		38	P0.1/AD1
P1.3	4		37	P0.2/AD2
P1.4	5		36	P0.3/AD3
P1.5	6		35	P0.4/AD4
P1.6	7		34	P0.5/AD5
P1.7	8		33	P0.6/AD6
RST	9	Пластмас-	32	P0.7/AD7
RxD/P3.0	10	совый DIP корпус	31	EA
TxD/P3.1	11	Біг корпус	30	ALE
INT0/P3.2	12		29	PSEN
INT1/P3.3	13		28	P2.7/A15
T0/P3.4	14		27	P2.6/A14
T1/P3.5	15		26	P2.5/A13
WR/P36	16		25	P2.4/A12
RD/P3.7	17		24	P2.3/A11
XTAL2	18		23	P2.2/A10
XTAL1	19		22	P2.1/A9
Vss	20		21	P2.0/A8

ОСОБЕННОСТИ

- 8031/8051 совместимы
 - 4k x 8 ПЗУ (80С51)
 - без ПЗУ (80С31)
 - 128 x 8 O3Y
 - два 16-битных таймера/счетчика
 - последоватедьный интерфейс
 - булевый процессор
- Адресное пространство 64к ПЗУ и 64к ОЗУ
- Режимы управления энергопотребления:
 - режим холостого хода
 - режим микропотребления
- Совместимость КМОП и ТТЛ уровней
- Две рабочие частоты Vcc=5V
 - 12 МГц
 - 16 МГц

Республика Беларусь, 220064, Минск, ул.Корженевского 12 Факс: +375 (17) 278 28 22, Тел: +375 (17) 278 07 11, 277 24 70, 277 24 61, 277 69 16

-mail: belms@belms.belpak.minsk.by

Предельные режимы*

Обозначени е параметра	Наименование параметра	Min	Max	Единица измерен ия
Vcc	Напряжение питания	-0,5	6	В
Vin	Входное напряжение	-0,5	6,5	В
lol	Выходной ток низкого уровня	ı	15	мА
Іон	Выходной ток высокого уровня		0,8	мА
CI	Емкость нагрузки	-	100	пФ

- При воздействии предельных режимов работоспособность микросхем не гарантируется. После снятия предельных режимов гарантируется работоспособность в предельно допустимом режиме.
- Предельное значение статического потенциала 1500 В.

Предельно-допустимые режимы

Обозначение параметра	Наименование параметра	Min	Max	Единица измерения
Vcc	Напряжение питания	4.0	6.0	В
Vin	Входное напряжение	0	6,5	В
lol	Выходной ток низкого уровня	-	3,2	мА
Іон	Выходной ток высокого уровня	-	-0,8	мА
CI	Емкость нагрузки	-	100	пФ

Статические параметры

Обозначение	Наименование	Режим	Норма		Единица
параметра	параметра	Измерения	min	max	измерения
fc	Частота следования импульсов тактовых сигналов	Vcc=5B±20%	1,2	16	МГц
V _{IL}	Входное напряжение низкого уровня (за исключением вывода EA)		-0,5	0,2Vcc- 0,1	В
Vill	Входное напряжение низкого уровня по выводу ЕА		0	0.2Vcc- 0,3	В
Vih	Входное напряжение высокого уровня (за исключением выводов XTAL1,RST)		0,2Vcc+0,9	Vcc+0,5	В

Республика Беларусь, 220064, Минск, ул.Корженевского 12 Факс: +375 (17) 278 28 22, Тел: +375 (17) 278 07 11, 277 24 70, 277 24 61, 277 69 16 E-mail: belms@belms.belpak.minsk.by URL: www.bms.by

Обозначение	Наименование	Режим	Нор	ма	Единица
параметра	параметра	Измерения	min	max	измерения
Vih1	Входное напряжение высокого уровня по выводам XTAL1,RST		0,7Vcc	Vcc+0,5	В
Vol	Выходное напряжение низкого уровня по портам 1,2,3	Iol=1,6mA	-	0,45	В
Voll	Выходное напряжение низкого уровня по порту 0, выводам ALE и PSEN	IoI=3,2mA		0,45	В
Voh	Выходное напряжение высокого уровня по портам 1,2,3 и выводам ALE , PSEN	loh=-60mкA loh=-25mкA loh=-10mкA	2,4 0,75Vcc 0,9Vcc		В
Voh1	Выходное напряжение высокого уровня по порту 0 и выводам ALE , PSEN (в активном режиме)	loh=-0,8mA loh=-0,3mA loh=-80mкA	2,4 0,75Vcc 0,9Vcc		В
lil	Входной ток низкого уровня по портам 1,2,3	Vin=0,45B		-50	мкА
Iti	Выходной ток низкого уровня по портам 1,2,3 в третьем состоянии	Vin=2B		-650	мкА
Ili	Входной ток утечки по порту 0	Vin=Vil,Vih		±10	мкА
Icco	Динамический ток потребления			18	мА
Iccos	Динамический ток в режиме микропотребления			4,4	мА
Iccs	Статический ток потребления			50	мкА
Rrst	Сопротивление резистора по входу		50	150	Ом

Динамические параметры

$T=-10^{\circ}C$ to + $70^{\circ}C$ или $-40^{\circ}C$ to + $85^{\circ}C$ $Vcc = 5V \pm 10\%$ или $5V \pm 20\%$

Символ	Параметры	Норма		Единица измерения
		Min	Max	
1/tCLCL	Частота генератора:			
	IN80C31N - 12	1,2	12	МГц
	IN80C31N - 16	1,2	16	МГц
	IN80C51N – 12	1,2	12	МГц
	IN80C51N - 16	1,2	16	МГц
	Внешняя программная память			
t _{LHLL}	Длительность высокого уровня ALE от переднего до заднего фронта	2t _{CLCL} -40	-	HC
t _{AVLL}	Время предустановки адреса относительно заднего фронта ALE	t _{CLCL} -20	-	HC

Республика Беларусь, 220064, Минск, ул.Корженевского 12 Факс: +375 (17) 278 28 22, Тел: +375 (17) 278 07 11, 277 24 70, 277 24 61, 277 69 16 E-mail: belms@belms.belpak.minsk.by

Символ	Параметры	Нор	Единица измерения	
		Min	Max	
t _{LLAX}	Время удержания адреса	t _{CLCL} -30		НС
LLFV	относительно заднего фронта ALE	-OLOL		
t _{LLIV}	Длительность низкого уровня ALE от	-	4t _{CLCL} -65	НС
LLIV	заднего фронта до входной команды		JOLOE 11	
t _{LLPL}	Время от заднего фронта ALE до	t _{CLCL} -15	-	НС
	заднего фронта PSEN			
t _{PLPH}	Длительность высокого уровня PSEN	3t _{CLCL} -25		HC
t_PLIV	Длительность низкого уровня PSEN от	-	3t _{CLCL} -55	HC
	заднего фронта до входной команды			
t_PXIX	Время удержания входной команды	0	-	HC
	относительно переднего фронта PSEN			
t_{PXIZ}	Время снятия входной команды	-	t _{CLCL} -10	HC
	относительно переднего фронта PSEN			
t_{AVIV}	Время предустановки адреса	-	5t _{CLCL} -70	HC
	относительно входной команды			
t_PLAZ	Время снятия адреса относительно	-	10	HC
	заднего фронта PSEN			
	Внешняя память данных			
t _{RLRH}	Длительность низкого уровня RD от	6t _{CLCL} -100	-	нс
	заднего до переднего фронта	0101		
t _{WLWH}	Длительность низкого уровня WR от	6t _{CLCL} -100	-	нс
*******	заднего до переднего фронта	0101		
t _{RLDV}	Длительность низкого уровня RD от	-	5t _{CLCL} -90	нс
NED V	заднего фронта до входных данных		0202	
t _{RHDX}	Время удержания входных данных	0	-	нс
1111271	относительно переднего фронта RD			
t _{RHDZ}	Время снятия входных данных	-	2t _{CLCL} -30	нс
TUIDE	относительно переднего фронта RD		0202	
t_{LLDV}	Длительность низкого уровня ALE от	-	8t _{CLCL} -150	нс
225 *	заднего фронта до входных данных		0202	
t _{AVDV}	Время предустановки адреса	-	9t _{CLCL} -165	нс
7,1751	относительно входных данных		0202	
t_{AVDV}	Время предустановки адреса	-	9t _{CLCL} -165	HC
	относительно входных данных			
t _{LLWL}	Длительность низкого уровня ALE от	3t _{CLCL} -50	3t _{CLCL} +50	НС
*LLVVL	заднего фронта до заднего фронта RD		O LOLOL O O	
	(WR)			
t _{AVWL}	Время предустановки адреса	4t _{CLCL} -75	-	нс
-AVVVL	относительно заднего фронта WR	T-OLOL T		
	(RD)			
t _{QVWX}	Время предустановки выходных		_	НС
- ₩ ٧ ٧٧ ٨	данных относительно заднего фронта	t_{CLCL} -20		
	WR			
t _{WHQX}	Время удержания выходных данных		 	HC
WHQX	относительно переднего фронта WR	t_{CLCL} -20		110
t _{RLAZ}	Время снятия адреса относительно	_	0	HC
•KLAZ	заднего фронта RD			110
	Tourisio Abouta IVD			

Республика Беларусь, 220064, Минск, ул.Корженевского 12 Факс: +375 (17) 278 28 22, Тел: +375 (17) 278 07 11, 277 24 70, 277 24 61, 277 69 16 E-mail: belms@belms.belpak.minsk.by URL: www.bms.by

Символ	Параметры	Норма		Единица измерения
		Min	Max	
t _{WHLH}	Длительность высокого уровня WR от переднего фронта до переднего фронта ALE	t _{CLCL} -50	t _{CLCL} +50	НС
	Внешняя синхронизация			
t _{CHCX}	Длительность высокого уровня сигнала синхронизации от переднего до заднего фронта	15	-	НС
t _{CLCX}	Длительность высокого уровня сигнала синхронизации от заднего до переднего фронта	15	-	нс
t _{CLCH}	Длительность фронтов	-	20	НС
t _{CLCL}	Длительность цикла	-	20	HC

Примечание: $CL = 80 \pi \Phi$. Емкость нагрузки для других выходов

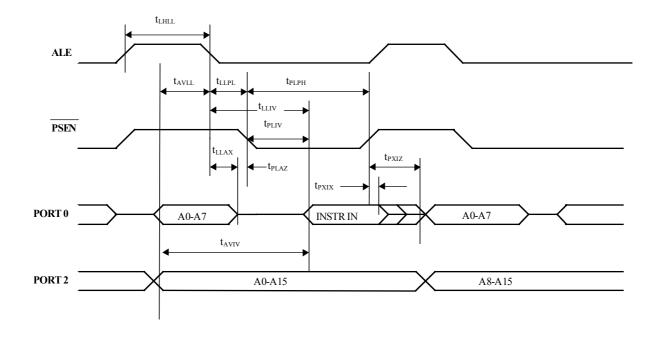


Рисунок 1. Цикл чтения внешней программы памяти

Республика Беларусь, 220064, Минск, ул.Корженевского 12 Факс: +375 (17) 278 28 22, Тел: +375 (17) 278 07 11, 277 24 70, 277 24 61, 277 69 16 E-mail: belms.belpak.minsk.by

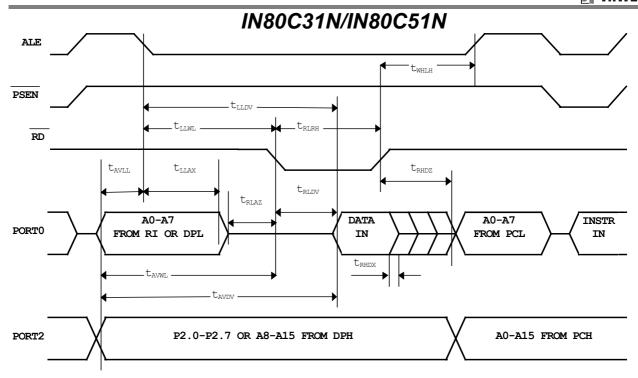


Рисунок 2. Цикл внешней памяти данных.

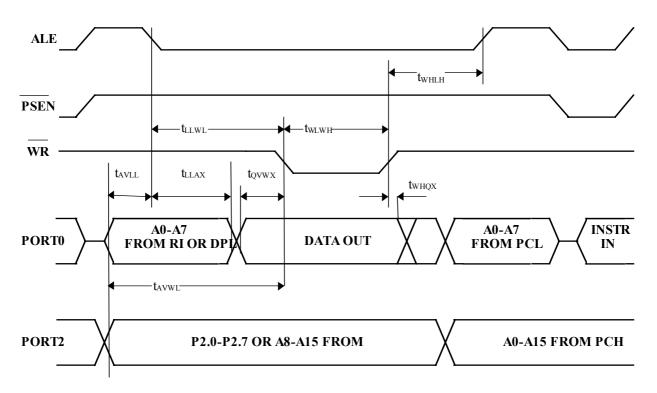


Рисунок 3. Цикл записи во внешнюю память данных.

Республика Беларусь, 220064, Минск, ул. Корженевского 12 Факс: +375 (17) 278 28 22, Тел: +375 (17) 278 07 11, 277 24 70, 277 24 61, 277 69 16

E-mail: belms@belms.belpak.minsk.by

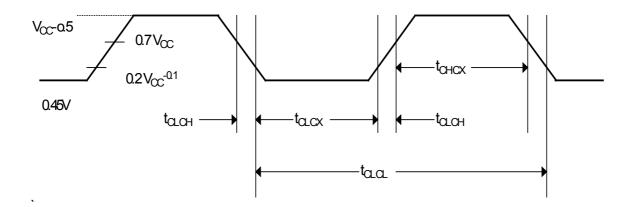


Рисунок 4. Внешняя синхронизация.

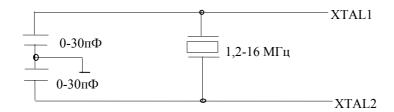


Рисунок 5. Схема подключения кварцевого резонатора.

Республика Беларусь, 220064, Минск, ул.Корженевского 12 Факс: +375 (17) 278 28 22, Тел: +375 (17) 278 07 11, 277 24 70, 277 24 61, 277 69 16 E-mail: belms@belms.belpak.minsk.by URL: www.bms.by

