TOSHIBA

TOSHIBA PHOTOCOUPLER GaAlAs IRED & PHOTO-IC

TLP2200

ISOLATED BUSS DRIVER

HIGH SPEED LINE RECEIVER

MICROPOCESSOR SYSTEM INTERFACES

MOS FET GATE DRIVER

DIRECT REPLACEMENT FOR HCPL-2200

The Toshiba TLP2200 consists of a GaAlAs light emitting diode and integrated high gain, high speed photodetector.

This unit is 8-lead DIP package.

The detector has a three state output stage that eliminates the need for pull-up resistor, and built-in Schmitt trigger. The detector IC has an internal shield that provides a guaranteed common mode transient immunity of $1000V/\mu s$.

Input Current : $I_F=1.6mA$

Power Supply Voltage : VCC=4.5~20V

Switching Speed : 2.5MBd Guaranteed

Common Mode Transient Immunity

: $\pm 1000 \text{V} / \mu \text{s}$ (Min.)

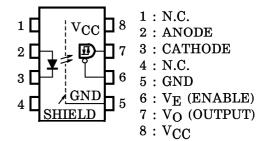
Guaranteed Performance Over Temp

: 0~85°C

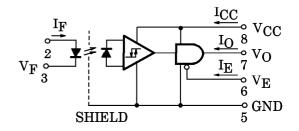

Isolation Voltage : 2500Vrms (Min.)

: UL1577, File No. E67349 UL Recognized

TRUTH TABLE (Positive logic)


INPUT	ENABLE	OUTPUT
H	H	Z
L	H	${f z}$
H	L	Н
L	L	L

Unit in mm



Weight: 0.54g

PIN CONFIGURATION (Top view)

SCHEMATIC

2001-06-01

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input Current, ON	I _F (ON)	1.6	_	5	mA
Input Current, OFF	I _F (OFF)	0	_	0.1	mA
Supply Voltage	v_{CC}	4.5	_	20	V
Enable Voltage High	$ m V_{EH}$	2.0	_	20	V
Enable Voltage Low	$ m v_{EL}$	0	_	0.8	V
Fan Out (TTL Load)	N	_	_	4	_
Operating Temperature	T_{opr}	0	_	85	°C

ABSOLUTE MAXIMUM RATINGS (No derating required up to 70°C)

	CHARACTERISTIC	SYMBOL	RATING	UNIT
Γα	Forward Current	$I_{\mathbf{F}}$	10	mA
团	Peak Transient Forward Current (Note 1)	I_{FPT}	1	A
Γ	Reverse Voltage	$v_{ m R}$	5	V
) R	Output Current	IO	25	mA
Τ0	Supply Voltage	v_{CC}	-0.5~20	V
EC	Output Voltage	v_0	-0.5~20	V
Г	Three State Enable Voltage	$V_{\mathbf{E}}$	-0.5~20	V
DE	Total Package Power Dissipation (Note 2)	P_{T}	210	mW
Ope	erating Temperature Range	${ m T_{opr}}$	-40~85	°C
Sto	rage Temperature Range	$\mathrm{T_{stg}}$	-55~125	°C
Lea	d Solder Temperature (10s) (**)	T_{sol}	260	°C
Isol	ation Voltage (AC 1min., R.H. \leq 60%, Ta=25°C) (Note 3)	$BV_{\mathbf{S}}$	2500	Vrms

⁽Note 1) Pulse width $1\mu s$ 300pps.

⁽Note 2) Derate 4.5mW/°C above 70°C ambient temperature.

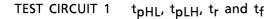
⁽Note 3) Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together

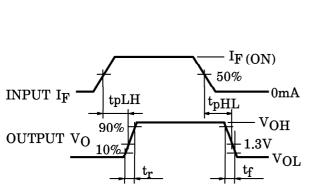
^{(**) 1.6}mm below seating plane.

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Ta = $0 \sim 85^{\circ}$ C, V_{CC} = $4.5 \sim 20$ V, (IF (ON) = $1.6 \sim 5$ mA, IF (OFF) = $0 \sim 0.1$ mA, V_{EL} = $0 \sim 0.8$ V, V_{EH} = $2.0 \sim 20$ V)

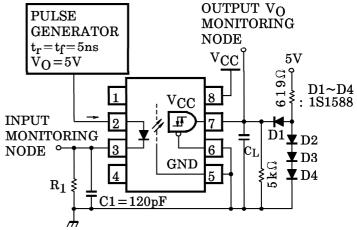
	(1 (ON) ·	(011)	, ,,		LII			
CHARACTERISTIC	SYMBOL	TEST CONDITION		MIN.	TYP.*	MAX.	UNIT	
Output Leakage Current	т	I _F =5mA,	$V_O = 5.5V$	_	_	100		
$(V_O > V_{CC})$	IOHH	$V_{\rm CC} = 4.5 V$	$V_0 = 20V$	_	2	500	μ A	
Logic Low Output Voltage	$v_{ m OL}$	$I_{\rm OL}$ = 6.4mA (4 '	ITL load)	_	0.32	0.5	V	
Logic High Output Voltage	v_{OH}	$I_{OH} = -2.6 \text{mA}$		2.4	3.4	_	V	
Logic Low Enable Current	$I_{ m EL}$	$V_{\rm E} = 0.4 V$		_	-0.13	-0.32	mA	
		$V_E = 2.7V$		_	_	20		
Logic High Enable Current	${ m I_{EH}}$	$V_E = 5.5V$		_	_	100	μ A	
		$V_E = 20V$		_	0.01	250		
Logic Low Enable Voltage	$ m V_{EL}$		_	_	_	0.8	V	
Logic High Enable Voltage	$v_{ m EH}$		_	2.0	_	_	V	
Logic Low Supply Cument	Taat	$I_{\mathbf{F}} = 0 \text{mA}$	$V_{\rm CC} = 5.5 V$	_	5	6.0	0	
Logic Low Supply Current	$_{ m ICCL}$	$\overline{V_E} = Don't care$	$V_{\rm CC} = 20V$	_	5.6	7.5	mA	
I agis High Cumply Cumpant	-	$I_F = 5mA$	$V_{\rm CC} = 5.5 V$	_	2.5	4.5	J A I	
Logic High Supply Current	ICCH	$\overline{V_E} = Don't care$	$V_{\rm CC} = 20V$	_	2.8	6.0		
High Impedance State	I_{OZL}	$I_{\mathbf{F}} = 5 \text{mA}$ $V_{\mathbf{E}} = 2 \text{V}$	$V_{O} = 0.4V$	_	1	-20		
	I _{OZH}	$V_{\rm D} = 0$ $V_{\rm C}$	$V_O = 2.4V$	_	_	20	μ A	
Output Current			$V_O = 5.5V$	_	_	100		
			$V_O = 20V$	_	0.01	500		
Logic Low Short Circuit	Logr	T 0 A	$V_O = V_{CC} = 5.5V$	25	55		mA	
Output Current (Note 4)	I_{OSL}	$I_{\mathbf{F}} = 0 \text{mA}$	$V_O = V_{CC} = 20V$	40	80		mA	
Logic High Short Circuit	Тоотт	$I_{\mathbf{F}} = 5 \text{mA}$	$V_{\rm CC} = 5.5 V$	-10	-25		mA	
Output Current (Note 4)	IOSH	$V_O = GND$	$V_{CC} = 20V$	-25	-60	_	ША	
Input Current Hysteresis	IHYS	$V_{CC}=5V$		_	0.05		mA	
Input Forward Voltage	$ m V_{f F}$	$I_F = 5 \text{mA}, Ta = 25 ^{\circ}\text{C}$		_	1.55	1.7	V	
Temperature Coefficient of Forward Voltage	$\Delta V_{\mathbf{F}}/\Delta Ta$	I _F =5mA		_	-2.0	_	mV/°C	
Input Reverse Breakdown Voltage	$BV_{\mathbf{R}}$	I _R =10μA, Ta=25°C		5	_	_	V	
Input Capacitance	c_{IN}	$V_F = 0V$, $f = 1MF$	_	45	_	рF		
Resistance (Input-Output)	$R_{\text{I-O}}$	$V_{\text{I-O}} = 500 \text{V R.H}$	5×10^{10}	10^{14}	_	Ω		
Capacitance (Input-Output)	$\mathrm{C}_{\mathrm{I-O}}$	$V_{I-O} = 0V, f = 1N$	IHz (Note 3)		0.6	_	рF	

^(**) All typ. values are at Ta=25°C, $V_{CC}=5V$, $I_{F\,(ON)}=3mA$ unless otherwise specified.

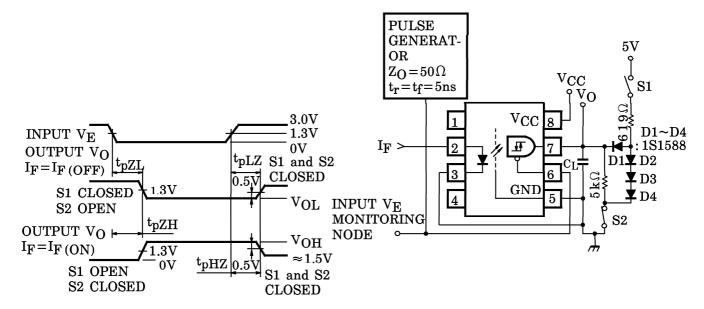

3 2001-06-01


SWITCHING CHARACTERISTICS

(Unless otherwise specified, $Ta = 0 \sim 85^{\circ}C$, $V_{CC} = 4.5 \sim 20V$, $I_{F(ON)} = 1.6 \sim 5mA$, $I_{F(OFF)} = 0 \sim 0.1mA$)

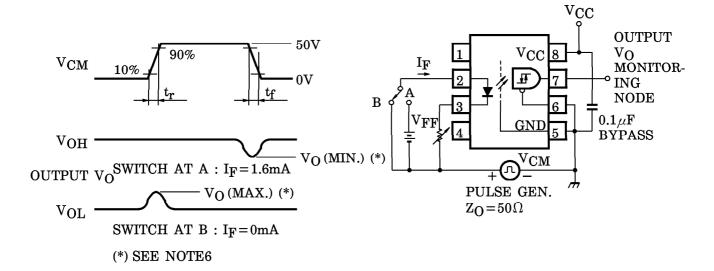

			, ,				
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time to Logic High Output Level	${ m t_{pLH}}$		Without peaking capacitor C ₁	_	235	_	ns
(Note 5)	-		With peaking capacitor C ₁	_		400	
Propagation Delay Time to Logic Low Output Level	${ m t_{pHL}}$	1	Without peaking capacitor C ₁	_	250	_	ns
(Note 5)	1		With peaking capacitor C ₁	_	_	400	
Output Rise Time (10-90%)	t_r			_	35	_	ns
Output Fall Time (90-10%)	tf		_	_	20	_	ns
Output Enable Time to Logic High	^t pZH		_	_	_	_	ns
Output Enable Time to Logic Low	${ m t_{pZL}}$		_	_	_	_	ns
Output Disable Time from Logic High	t _{pHZ}	2	_	_	_	_	ns
Output Disable Time from Logic Low	$t_{ m pLZ}$		_	_	_	_	ns
Common Mode Transient Immunity at Logic High Output (Note 6)	CM_{H}	3	$I_F = 1.6 \text{mA}, V_{CM} = 50 \text{V},$ $Ta = 25 ^{\circ}\text{C}$	-1000	_	_	V/μs
Common Mode Transient Immunity at Logic Low Output (Note 6)	$ m CM_L$	ე პ	$I_F = 0 \text{mA}, \ V_{CM} = 50 \text{V}, \ Ta = 25 ^{\circ}\text{C}$	1000	_	_	V / μs

- (*) ALL Typ. values are at Ta=25°C, $V_{CC}=5V$, $I_{F(ON)}=3mA$ unless otherwise specified.
- (Note 4) Duration of output short circuit time should not exceed 10ms.
- (Note 5) The t_{pLH} propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3V point on the leading edge of the output pulse. The t_{pHL} propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3V point on the trailing edge of the output pulse.
- (Note 6) CML is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic low state ($V_O \le 0.8V$). CMH is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic high state ($V_O \le 2.0V$).


R_1	$2.15 \mathrm{k}\Omega$	1.1k Ω	681Ω
I _F (ON)	1.6mA	3mA	5mA

C₁ is peaking capacitor. The probe and jig capacitances are include in C₁.

C_L is approximately 15pF which includes probe and stray wiring capacitance.


TEST CIRCUIT 2 t_{pHZ}, t_{pZH}, t_{pLZ} and t_{pZL}

C_L is approximately 15pF which includes probe and stray wiring capacitance.

5 2001-06-01

TEST CIRCUIT 3 Common mode transient immunity

6 2001-06-01

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.