

PW PACKAGE

(TOP VIEW)

20 FORCEOFF

19 V_{CC}

18 GND

16 RIN1

12 DIN2

11 INVALID

17 DOUT1

15 ROUT1

14 FORCEON

EN

C1+∏2

C1- 14

C2+**[**5

V- 17

C2- 6

DOUT2 8

RIN2

ROUT2 10

V+**∏**3

3-V To 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

FEATURES

- Qualified for Automotive Applications
- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- Operates up to 250 kbit/s
- Two Drivers and Two Receivers
- Low Standby Current . . . 1 μA Typical
- External Capacitors . . . 4 × 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply

DESCRIPTION/ORDERING INFORMATION

The TRS3223 consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/µs driver output slew rate.

Flexible control options for power management are available when the serial port is inactive. The auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low and EN is high, both drivers and receivers are shut off, and the supply current is reduced to 1 μ A. Disconnecting the serial port or turning off the peripheral drivers causes auto-powerdown to occur. Auto-powerdown can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to any receiver input. The INVALID output is used to notify the user if an RS-232 signal is present at any receiver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 μ s. See Figure 4 for receiver input levels.

ORDERING INFORMATION⁽¹⁾

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 125°C	TSSOP – PW	Reel of 2000	TRS3223QPWRQ1	T3223

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS950-SEPTEMBER 2008

DRIVER FUNCTION TABLE (EACH DRIVER)⁽¹⁾

	II	NPUTS		OUTPUT	
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS
Х	Х	L	Х	Z	Powered off
L	Н	Н	Х	Н	Normal operation with oute new ordown dischool
Н	Н	Н	Х	L	Normal operation with auto-powerdown disabled
L	L	Н	Yes	Н	Normal operation with oute new ordown enabled
Н	L	Н	Yes	L	Normal operation with auto-powerdown enabled
L	L	Н	No	Z	Reward off by auto newardown feature
Н	L	Н	No	Z	Powered off by auto-powerdown feature

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

RECEIVER FUNCTION TABLE (EACH RECEIVER)⁽¹⁾

	INPUTS		OUTPUT
RIN	EN	VALID RIN RS-232 LEVEL	ROUT
L	L	Х	Н
Н	L	Х	L
Х	Н	Х	Z
Open	L	No	Н

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

LOGIC DIAGRAM

SLLS950-SEPTEMBER 2008

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

Supply voltage range	Supply voltage range	
Positive output supply voltage range	Positive output supply voltage range	
Negative output supply voltage range	Negative output supply voltage range	
Supply voltage difference		13 V
	Driver, FORCEOFF, FORCEON, EN	-0.3 V to 6 V
input voltage range	Receiver	-25 V to 25 V
	Driver	-13.2 V to 13.2 V
Output voltage range	Receiver, INVALID	-0.3 V to V _{CC} + 0.3 V
Package thermal impedance ⁽³⁾		83°C/W
Operating virtual-junction temperature		150°C
Storage temperature range		-65°C to 150°C
	Positive output supply voltage range Negative output supply voltage range Supply voltage difference Input voltage range Output voltage range Package thermal impedance ⁽³⁾ Operating virtual-junction temperature	Positive output supply voltage range Negative output supply voltage range Supply voltage difference Input voltage range Driver, FORCEOFF, FORCEON, EN Receiver Output voltage range Driver Receiver Package thermal impedance ⁽³⁾ Operating virtual-junction temperature

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND. (2)

(3)The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

see Figure 6

				MIN	NOM	MAX	UNIT
V	Supply voltage	$V_{\rm CC} = 3.3$		3	3.3	3.6	V
V _{CC}	V _{CC} Supply voltage		$V_{CC} = 5 V$	4.5	5	5.5	v
	Driver and control,	$V_{CC} = 3.3 V$	2			V	
VIH	High-level input voltage	DIN, EN, FORCEOFF, FORCEON	$V_{CC} = 5 V$	2.4			v
V_{IL}	Low-level input voltage	Driver and control, DIN, EN, FORCEOF	F, FORCEON			0.8	V
V	Innut voltage	Driver and control, DIN, EN, FORCEOF	F, FORCEON	0		5.5	V
VI	Input voltage	Receiver	Receiver			25	v
T _A	T _A Operating free-air temperature			-40		125	°C

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

ELECTRICAL CHARACTERISTICS⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAM	ETER	TES	ST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I _I	Input leakage cu	rrent	EN, FORCEOFF, FORCEON			±0.01	±1	μA
		Auto-powerdown disabled		No load, $\overline{\text{FORCEOFF}}$ and $\overline{\text{FORCEON}}$ at V_{CC}		0.3 2	mA	
Icc	Supply current	Powered off	$V_{CC} = 3.3 V \text{ or } 5 V,$	No load, FORCEOFF at GND	Fat GND 1 2	20		
		Auto-powerdown enabled	T _A = 25°C	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded		1	20	μΑ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (1)

(2)

NSTRUMENTS

EXAS

SLLS950-SEPTEMBER 2008

DRIVER SECTION ELECTRICAL CHARACTERISTICS⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	ТІ	EST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	DOUT at $R_L = 3 k\Omega$ to G	ND	5	5.4		V
V _{OL}	Low-level output voltage	DOUT at $R_L = 3 k\Omega$ to G	ND	-5	-5.4		V
I _{IH}	High-level input current	$V_{I} = V_{CC}$			±0.01	±1	μA
I_{IL}	Low-level input current	V _I = GND			±0.01	±1	μA
	Short-circuit output current ⁽³⁾	$V_{CC} = 3.6 \text{ V}, \text{ V}_{O} = 0 \text{ V}$			±35	±60	mA
I _{OS}		$V_{CC} = 5.5 \text{ V}, \text{ V}_{O} = 0 \text{ V}$			±35	±60	mA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V, V	$V_{\rm O} = \pm 2 \text{ V}$	300	10M		Ω
	Output lookage ourrent	FORCEOFF = GND	$V_{O} = \pm 12$ V, $V_{CC} = 3$ V to 3.6 V			±25	۸
I _{off}	Output leakage current	Teakage current FORCEOFF = GND $V_0 = \pm 10 \text{ V}, V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$				±25	μA

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(3) Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.

DRIVER SECTION SWITCHING CHARACTERISTICS⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST COND	ITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	C _L = 1000 pF, One DOUT switching	= 1000 pF, One DOUT switching, $R_L = 3 k\Omega$ (see Figure 1)				kbit/s
t _{sk(p)}	Pulse skew ⁽³⁾	C_L = 150 pF to 2500 pF, R_L = 3 k Ω to 7 k Ω (see Figure 2)			100		ns
	Slew rate, transition region		C _L = 150 pF to 1000 pF	6		30	
SR(tr)	(see Figure 1)	$V_{CC} = 3.3 \text{ V}, \text{ R}_{L} = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega$ $C_{L} = 150 \text{ pF to } 2500 \text{ pF}$		4		30	V/μs

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device. (1)

(2)

(3)

TRS3223-01

SLLS950-SEPTEMBER 2008

www.ti.com

RECEIVER SECTION ELECTRICAL CHARACTERISTICS⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	0 11 0	1 0 1 1		, (•	,
	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} - 0.6	V _{CC} – 0.1		V
V _{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
V _{IT+} Positive-going input threshold voltage	V _{CC} = 3.3 V		1.6	2.4	V	
	Positive-going input threshold voltage	$V_{CC} = 5 V$		1.9	2.4	v
V	Negotive going input threshold veltage	V _{CC} = 3.3 V	0.6	1.1		V
V _{IT–}	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.8	1.4		v
V _{hys}	Input hysteresis (V _{IT+} – V _{IT–})			0.5		V
I _{off}	Output leakage current	$\overline{EN} = V_{CC}$		±0.05	±10	μΑ
r _i	Input resistance	$V_{I} = \pm 3 V$ to $\pm 25 V$	3	5	8.3	kΩ

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

RECEIVER SECTION SWITCHING CHARACTERISTICS⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low-level to high-level output	C _L = 150 pF, See Figure 3	150	ns
t _{PHL}	Propagation delay time, high-level to low-level output	C _L = 150 pF, See Figure 3	150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 3	50	ns

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device. (1)

(2)

(3)

SLLS950-SEPTEMBER 2008

AUTO-POWERDOWN SECTION ELECTRICAL CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, $\overline{\text{FORCEOFF}} = V_{CC}$		2.7	V
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, $\overline{\text{FORCEOFF}} = V_{CC}$	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, $\overline{\text{FORCEOFF}} = V_{CC}$	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	$I_{OH} = -1 \text{ mA}, \text{ FORCEON} = \text{GND}, \overline{\text{FORCEOFF}} = V_{CC}$	$V_{CC} - 0.6$		V
V _{OL}	INVALID low-level output voltage	I_{OL} = 1.6 mA, FORCEON = GND, FORCEOFF = V_{CC}		0.4	V

AUTO-POWERDOWN SECTION SWITCHING CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	30	μs
t _{en}	Supply enable time	100	μs

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25 ^{\circ}C.

6

EXAS

NSTRUMENTS

www.ti.com

TRS3223-Q1

SLLS950-SEPTEMBER 2008

www.ti.com

PARAMETER MEASUREMENT INFORMATION

A.C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 1. Driver Slew Rate

A.C_L includes probe and jig capacitance.

B.The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew

A.CL includes probe and jig capacitance.

B.The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10 \text{ ns}$.

Figure 3. Receiver Propagation Delay Times

SLLS950-SEPTEMBER 2008

PARAMETER MEASUREMENT INFORMATION (continued)

A.CL includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.

Figure 4. Receiver Enable and Disable Times

SLLS950-SEPTEMBER 2008

A.C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 5 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_i \le 10$ ns, $t_i \le 10$ ns.

Figure 5. INVALID Propagation Delay Times and Supply Enabling Time

SLLS950-SEPTEMBER 2008

www.ti.com

APPLICATION INFORMATION

A.C3 can be connected to $V_{\mbox{CC}}$ or GND.

B.Resistor values shown are nominal.

C.Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

Vcc vs	CAPACITOR VALUES	
100 10	OALAOLOLO TALOLO	

V _{CC}	C1	C2, C3, C4
$\begin{array}{c} \textbf{3.3 V} \pm \textbf{0.3 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{3 V to 5.5 V} \end{array}$	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF

Figure 6	. Typical	Operating	Circuit and	Capacitor	Values
----------	-----------	-----------	--------------------	-----------	--------

MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated