STM8AF51xx STM8AF6169 STM8AF617x STM8AF618x STM8AF619x STM8AF61Ax

Automotive 8-bit MCU, with up to 128 Kbytes Flash, data EEPROM, 10-bit ADC, timers, LIN, CAN, USART, SPI, I²C, 3 to 5.5 V

Features

- Core
 - Max f_{CPU}: 24 MHz
 - Advanced STM8A core with Harvard architecture and 3-stage pipeline
 - Average 1.6 cycles/instruction resulting in 10 MIPS at 16 MHz f_{CPU} for industry standard benchmark
- Memories
 - Program memory: 32 to 128 Kbytes Flash program; data retention 20 years at 55 °C
 - Data memory: up to 2 Kbytes true data
 - EEPROM; endurance 300 kcycles - RAM: 2 Kbytes to 6 Kbytes
- Clock management
 - Low-power crystal resonator oscillator with external clock input
 - Internal, user-trimmable 16 MHz RC and low-power 128 kHz RC oscillators
 - Clock security system with clock monitor
- Reset and supply management
 - Multiple low-power modes (wait, slow, autowakeup, halt) with user definable clock gating
 - Low consumption power-on and power-down reset
- Interrupt management
 - Nested interrupt controller with 32 interrupt vectors
 - Up to 37 external interrupts on 5 vectors
- Timers
 - 2 auto-reload 16-bit PWM timers with up to 3 CAPCOM channels each (IC, OC or PWM)
 - Multipurpose timer: 16-bit, 4 CAPCOM channels, 3 complementary outputs, deadtime insertion and flexible synchronization
 - 8-bit AR system timer with 8-bit prescaler
 - Auto-wakeup timer
 - Window and standard watchdog timers
- Operating temperature up to 145 °C

- Communication interfaces
 - High speed 1 Mbit/s active CAN 2.0B interface
 - USART with clock output for synchronous operation - LIN master mode
 - LINUART LIN 2.1 compliant, master/slave modes with automatic resynchronization
 - SPI interface up to 10 Mbit/s or $f_{CPU}/2$
 - I²C interface up to 400 Kbit/s
- Analog to digital converter (ADC)
 - 10-bit resolution, 2 LSB TUE, 1 LSB linearity and up to 16 multiplexed channels
- ∎ I/Os
 - Up to 72 user pins including 10 high sink I/Os
 - Highly robust I/O design, immune against current injection

Table 1.Device summary⁽¹⁾

Part numbers: STM8AF51xx (CAN)
STM8AF51AA, STM8AF51A9, STM8AF51A8, STM8AF519A, STM8AF5199, STM8AF5198, STM8AF518A, STM8AF5189, STM8AF5188, STM8AF5179, STM8AF5178, STM8AF5169, STM8AF5168

Part numbers: STM8AF61xx

STM8AF61AA, STM8AF61A9, STM8AF61A8, STM8AF619A, STM8AF6199, STM8AF6198, STM8AF618A, STM8AF6189, STM8AF6188, STM8AF6186, STM8AF6179, STM8AF6178, STM8AF6176, STM8AF6169

 This datasheet applies to product versions with and without data EEPROM. In the order code, the letter 'F' applies to devices featuring Flash and data EEPROM. 'F' is replaced by 'H' for devices with Flash only, and by 'P' for devices with FASTROM (see *Table 2*, *Table 3*, and *Figure 50*).

Contents

1	Introc	luction					
2	Desci	ription .					
3	Produ	uct line-	up				
4	Block	diagra	m				
5	Produ	uct over	view				
	5.1	STM8A	central processing unit (CPU) 14				
		5.1.1	Architecture and registers14				
		5.1.2	Addressing				
		5.1.3	Instruction set				
	5.2	Single w	vire interface module (SWIM) and debug module (DM) 15				
		5.2.1	SWIM				
		5.2.2	Debug module				
	5.3	Interrup	t controller				
	5.4	Flash program and data EEPROM					
		5.4.1	Architecture				
		5.4.2	Write protection (WP)16				
		5.4.3	Protection of user boot code (UBC)16				
		5.4.4	Read-out protection (ROP)16				
	5.5	Clock co	ontroller				
		5.5.1	Features				
		5.5.2	Internal 16 MHz RC oscillator17				
		5.5.3	Internal 128 kHz RC oscillator				
		5.5.4	Internal high-speed crystal oscillator				
		5.5.5	External clock input				
		5.5.6	Clock security system (CSS)				
	5.6	Low-pov	ver operating modes				
	5.7	Timers					
		5.7.1	Watchdog timers				
		5.7.2	Auto-wakeup counter				
		5.7.3	Beeper				

57

		5.7.4	Multipurpose and PWM timers
		5.7.5	System timer
	5.8	Analog t	to digital converter (ADC) 21
	5.9	Commu	nication interfaces
		5.9.1	Universal synchronous/asynchronous receiver transmitter (USART)21
		5.9.2	Universal asynchronous receiver/transmitter with LIN support (LINUART)
		5.9.3	Serial peripheral interface (SPI)24
		5.9.4	Inter integrated circuit (I ² C) interface
		5.9.5	Controller area network interface (beCAN)25
	5.10	Input/ou	tput specifications 25
6	Pinou	its and j	pin description 27
	6.1	Package	e pinouts
	6.2	Alternat	e function remapping 35
7	Memo	ory and	register map
	7.1	Memory	^y map
	7.2	Register	r map
		7.2.1	I/O register map
		7.2.2	Non volatile memory
		7.2.3	CPU registers
		7.2.4	Miscellaneous registers
		7.2.5	Clock and clock controller
		7.2.6	Interrupt controller
		7.2.7	Timers
		7.2.8	Communication interfaces
	7.3	Analog t	to digital converter (ADC) 55
8	Interr	upt tabl	e
9	Optio	n bytes	
10	Electr	rical cha	aracteristics
	10.1		ter conditions
		10.1.1	Minimum and maximum values
		10.1.1	Typical values
			·//···································

Doc ID 14395 Rev 6

		10.1.3	Typical curves	. 64
		10.1.4	Loading capacitor	. 64
		10.1.5	Pin input voltage	. 65
	10.2	Absolut	e maximum ratings	65
	10.3	Operati	ng conditions	67
		10.3.1	VCAP external capacitor	. 68
		10.3.2	Supply current characteristics	. 68
		10.3.3	External clock sources and timing characteristics	. 73
		10.3.4	Internal clock sources and timing characteristics	. 75
		10.3.5	Memory characteristics	. 77
		10.3.6	I/O port pin characteristics	. 79
		10.3.7	Reset pin characteristics	. 83
		10.3.8	TIM 1, 2, 3, and 4 electrical specifications	. 85
		10.3.9	SPI interface	. 86
		10.3.10	I ² C interface characteristics	. 89
		10.3.11	10-bit ADC characteristics	. 90
		10.3.12	EMC characteristics	. 92
	10.4	Therma	Il characteristics	95
		10.4.1	Reference document	. 95
		10.4.2	Selecting the product temperature range	. 96
11	Pack	age cha	racteristics	97
	11.1	ECOPA	CK [®] · · · · · · · · · · · · · · · · · · ·	97
	11.2	Packag	e mechanical data	98
12	Orde	ring info	ormation	102
13	Knov	vn limita	ations	103
	13.1		core	
	10.1	13.1.1	Wait for event instruction (WFE) not available	
		13.1.2	JRIL and JRIH instructions not available	
		13.1.2	CPU not returning to Halt mode when the AL bit is set	
		13.1.4	Main program not resuming after ISR has reset the AL bit	
	13.2			
	13.2			
		13.2.1	Misplaced NACK bit when receiving 2 bytes in master mode	
		13.2.2	Data register corrupted	104

		13.2.3	Delay in STOP bit programming leading to reception of supplementary byte 105
		13.2.4	START condition badly generated after misplaced STOP 105
	13.3	USART	Г Interface 105
		Parity e	rror flag (PE) not correctly set when overrun condition occurs
	13.4	LINUA	RT interface
		13.4.1	Framing error with data byte 0x00106
		13.4.2	Framing error when receiving an identifier (ID)
		13.4.3	Parity error when receiving an identifier (ID)
		13.4.4	OR flag not correctly set in LIN master mode
		13.4.5	LIN header error when automatic resynchronization is enabled 107
	13.5	Clock o	controller
		13.5.1	HSI RC oscillator cannot be switched off in run mode
	13.6	SPI Int	erface
		13.6.1	Last bit too short if SPI is disabled during communication
	13.7	beCAN	l interface
		13.7.1	beCAN transmission error when sleep mode is entered during transmission
		13.7.2	beCAN woken up from sleep mode with automatic wakeup interrupt . 108
		13.7.3	beCAN time triggered communication mode not supported
		13.7.4	be CAN read error in slow mode109
14	STM	8 develo	opment tools
	14.1	Emulat	ion and in-circuit debugging tools 110
		14.1.1	STice key features
	14.2	Softwa	re tools
		14.2.1	STM8 toolset
		14.2.2	C and assembly toolchains111
	14.3	Progra	mming tools
15	Revis	sion his	story

57

List of tables

Table 1.Device summary	
Table 2. STM8AF/H/P51xx product line-up with CAN	
Table 3. STM8AF/H/P61xx product line-up without CAN	
Table 4. PWM timers	
Table 5. TIM4	
Table 6. Legend/abbreviation for Table 7.	
Table 7. STM8A microcontroller family pin description	
Table 8. Memory model 128K.	
Table 9. I/O port hardware register map	
Table 10. Non volatile memory	
Table 11. CPU registers	
Table 12. CFG_GCR register map	
Table 13. RST_SR register map.	
Table 14. TMU register map and reset values	
Table 15. CLK register map and reset values	
Table 16. Interrupt software priority registers map	
Table 17. External interrupt control register map	
Table 18. WWDG register map and reset values	
Table 19. IWDG register map	
Table 20. AWU register map	
Table 21. BEEP register map	
Table 22. TIM1 register map	
Table 23. TIM2 register map.	
Table 23. TIM2 register map. Table 24. TIM3 register map.	
Table 26. SPI register map and reset value Table 27. I ² C register map	
Table 27. I ² C register map Table 29. USADT register map	
Table 28. USART register map.	
Table 29. LINUART register map and reset value Table 29. ADO anticlear and and reset value	
Table 30. ADC register map and reset value	
Table 31. STM8A interrupt table.	
Table 32. Option bytes	
Table 33. Option byte description	
Table 34. Voltage characteristics	
Table 35. Current characteristics	
Table 36. Thermal characteristics.	
Table 37. General operating conditions	
Table 38. Operating conditions at power-up/power-down	
Table 39. Total current consumption in run, wait and slow mode. General conditio	
apply. $T_A = -40$ °C to 145 °C	
Table 40. Total current consumption in halt and active halt modes. General condit	
apply. $T_A = -40$ °C to 55 °C unless otherwise stated	
Table 41. Oscillator current consumption	
Table 42. Programming current consumption.	70
Table 43.Typical peripheral current consumption $V_{DD} = 5.0 \text{ V}$	
Table 44. HSE external clock characteristics	
Table 45. HSE oscillator characteristics	
Table 46. HSI oscillator characteristics.	

Table 47.	LSI oscillator characteristics
Table 48.	Flash program memory/data EEPROM memory77
Table 49.	Program memory
Table 50.	Data memory
Table 51.	I/O static characteristics
Table 52.	NRST pin characteristics
Table 53.	TIM 1, 2, 3, and 4 electrical specifications
Table 54.	SPI characteristics
Table 55.	I ² C characteristics
Table 56.	ADC characteristics
Table 57.	ADC accuracy for V _{DDA} = 5 V
Table 58.	EMS data
Table 59.	EMI data
Table 60.	ESD absolute maximum ratings
Table 61.	Electrical sensitivities
Table 62.	Thermal characteristics
Table 63.	80-pin low profile quad flat package mechanical data
Table 64.	64-pin low profile quad flat package mechanical data
Table 65.	48-pin low profile quad flat package mechanical data
Table 66.	32-pin low profile quad flat package mechanical data
Table 67.	Document revision history

List of figures

Figure 1.	STM8A block diagram	. 13
Figure 2.	Flash memory organization of STM8A products	. 16
Figure 3.	LQFP 80-pin pinout.	. 27
Figure 4.	LQFP 64-pin pinout.	. 28
Figure 5.	LQFP 48-pin pinout.	. 29
Figure 6.	LQFP 32-pin pinout.	
Figure 7.	Register and memory map	
Figure 8.	CAN register mapping	
Figure 9.	CAN page mapping	
Figure 10.	Pin loading conditions.	
Figure 11.	Pin input voltage	
Figure 12.	f _{CPUmax} versus V _{DD}	
Figure 13.	External capacitor C _{EXT}	68
Figure 14.	Typ. $I_{DD(RUN)HSE}$ vs. V_{DD} @f _{CPU} = 16 MHz, peripherals = on	
Figure 15.	Typ. $I_{DD(RUN)HSE}$ vs. f_{CPU} @ V_{DD} = 5.0 V, peripherals = on	71
Figure 16.	Typ. $I_{DD(RUN)HSI}$ vs. V_{DD} @ $f_{CPU} = 16$ MHz, peripherals = off	72
Figure 17.	Typ. $I_{DD(WFI)HSE}$ vs. V_{DD} @ f_{CPU} = 16 MHz, peripherals = on	72
Figure 18.	Typ. $I_{DD(WFI)HSE}$ vs. f_{CPU} @ V_{DD} = 5.0 V, peripherals = on	. 72
Figure 19.	Typ. $I_{DD(WFI)HSI}$ vs. V_{DD} @ f_{CPU} = 16 MHz, peripherals = off	.72
Figure 20.	HSE external clock source	
Figure 21.	HSE oscillator circuit diagram.	
Figure 22.	Typical HSI frequency vs V _{DD} .	
-	Typical LSI frequency vs V _{DD}	
Figure 23.		
Figure 24.	Typical V_{IL} and V_{IH} vs V_{DD} @ four temperatures	
Figure 25.	Typical pull-up resistance R_{PU} vs V_{DD} @ four temperatures	
Figure 26.	Typical pull-up current I_{pu} vs V_{DD} @ four temperatures ⁽¹⁾	. 81
Figure 27.	Typ. $V_{OL} @ V_{DD} = 3.3 \dot{V}$ (standard ports).	
Figure 28.	Typ. $V_{OL} @ V_{DD} = 5.0 V$ (standard ports).	
Figure 29.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (true open drain ports)	
Figure 30.	Typ. $V_{OL} @ V_{DD} = 5.0 V$ (true open drain ports)	
Figure 31.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (high sink ports)	
Figure 32.	Typ. $V_{OL} @ V_{DD} = 5.0 V$ (high sink ports)	
Figure 33.	Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (standard ports).	
Figure 34.	Typ. V_{DD} - V_{OH} @ V_{DD} = 5.0 V (standard ports).	
Figure 35.	Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (high sink ports)	
Figure 36.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 5.0 V$ (high sink ports)	
Figure 37.	Typical NRST V _{IL} and V _{IH} vs V _{DD} @ four temperatures	
Figure 38.	Typical NRST pull-up resistance R _{PU} vs V _{DD}	
Figure 39.	Typical NRST pull-up current I _{pu} vs V _{DD}	. 84
Figure 40.	Recommended reset pin protection	
Figure 41.	SPI timing diagram in slave mode and with CPHA = 0	
Figure 42.	SPI timing diagram in slave mode and with CPHA = 1	. 87
Figure 43.	SPI timing diagram - master mode	
Figure 44.	Typical application with ADC	
Figure 45.	ADC accuracy characteristics	
Figure 46.	80-pin low profile quad flat package (14 x 14)	
Figure 47.	64-pin low profile quad flat package (10 x 10)	
Figure 48.	48-pin low profile quad flat package (7 x 7)	100

Figure 49.	32-pin low profile quad flat package (7 x 7) 10	1
Figure 50.	Ordering information scheme ⁽¹⁾	2

1 Introduction

This datasheet refers to the STM8AF51xx and STM8AF61xx products with 32 to 128 Kbytes of program memory. In the order code, the letter 'F' refers to product versions with Flash and data EEPROM, 'H' to product versions with Flash only, and 'P' to product versions with FASTROM. The identifiers 'F', 'H', and 'P' do not coexist in a given order code.

The datasheet contains the description of family features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8A microcontroller memory, registers and peripherals, please refer to STM8A microcontroller family reference manual (RM0009).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8 Flash programming manual (PM0047).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

2 Description

The STM8A automotive 8-bit microcontrollers covered in this datasheet offer from 32 Kbytes to 128 Kbytes of non volatile memory and integrated true data EEPROM.

The STM8AF51xx series feature a CAN interface.

All devices of the STM8A product line provide the following benefits:

- Reduced system cost
 - Integrated true data EEPROM for up to 300 kwrite/erase cycles
 - High system integration level with internal clock oscillators, watchdog and brownout reset
- Performance and robustness
 - Peak performance 20 MIPS at 24 MHz and average performance 10 MIPS at 16 MHz CPU clock frequency
 - Robust I/O, independent watchdogs with separate clock source
 - Clock security system
- Short development cycles
 - Applications scalability across a common family product architecture with compatible pinout, memory map and modular peripherals.
 - Full documentation and a wide choice of development tools
- Product longevity
 - Advanced core and peripherals made in a state-of-the art technology
 - Native automotive product family operating both at 3.3 V and 5 V supply

All STM8A and ST7 microcontrollers are supported by the same tools including STVD/STVP development environment, the STice emulator and a low-cost, third party incircuit debugging tool (for more details, see *Section 14: STM8 development tools on page 110*).

3 Product line-up

Order code	Package	Prog. (bytes)	RAM (bytes)	Data EE (bytes)	10-bit A/D ch.	Timers (IC/OC/PWM)	Serial interfaces	l/0 wakeup pins
STM8AF/H/P51AAT	LQFP80	128 K					CAN, LIN(UART) , SPI, USART, I²C	72/37
STM8AF/H/P519AT	(14x14)	96 K	6 K	2 K				12/31
STM8AF/H/P51A9T	LQFP64 (10x10)	128 K	OK	2 K	16			
STM8AF/H/P5199T		96 K						56/36
STM8AF/H/P5189T		64 K	4 K	1.5 K				
STM8AF/H/P5179T	(*******)	48 K	3 K	1.5 K				
STM8AF/H/P5169T		32 K	2 K	1 K				
STM8AF/H/P51A8T		128 K	6 K	2 K	10			
STM8AF/H/P5198T	LQFP48 (7x7) ⁽¹⁾	96 K	OK	2 K				40/25
STM8AF/H/P5188T		64 K	4 K	151				40/35
STM8AF/H/P5178T]	48 K	3 K	1.5 K				

Table 2.	STM8AF/H/P51xx product line-up with CAN
----------	---

1. QFN package planned

Table 3. STM8AF/H/P61xx product line-up without CAN

Order code	Package	Prog. (bytes)	RAM (bytes)	Data EE (bytes)	10-bit A/D ch.	Timers (IC/OC/PWM)	Serial interfaces	l/0 wakeup pins
STM8AF/H/P61AAT	LQFP80	128 K						72/37
STM8AF/H/P619AT	(14x14)	96 K	6 K	2 K				12/31
STM8AF/H/P61A9T		128 K	OK	2 N				
STM8AF/H/P6199T		96 K			16			
STM8AF/H/P6189T	LQFP64 (10x10)	64 K	4 K			1x8-bit: TIM4 3x16-bit: TIM1, TIM2, TIM3 (9/9/9)	LIN(UART), SPI, USART, I²C	56/36
STM8AF/H/P6179T		48 K	3 K	1.5 K				
STM8AF/H/P6169T		32 K	2 K	1 K				
STM8AF/H/P61A8T		128 K		0.14	10			
STM8AF/H/P6198T	LQFP48	96 K	6 K	2 K				40/05
STM8AF/H/P6188T	(7x7) ⁽¹⁾	64 K	4 K		10			40/35
STM8AF/H/P6178T	-	48 K	3 K					
STM8AF/H/P6186T		64 K	4 K	1.5 K		1x8-bit: TIM4		
STM8AF/H/P6176T	LQFP32 (7x7) ⁽¹⁾	48 K	3 K		7	3x16-bit: TIM1, TIM2, TIM3 (8/8/8)	LIN(UART), SPI, I²C	25/23

1. QFN package planned.

Block diagram 4

Figure 1. STM8A block diagram

57

5 **Product overview**

This section is intended to describe the family features that are actually implemented in the products covered by this datasheet.

For more detailed information on each feature please refer to the STM8A microcontroller family reference manual (RM0009).

5.1 STM8A central processing unit (CPU)

The 8-bit STM8A core is a modern CISC core and has been designed for code efficiency and performance. It contains 21 internal registers (six directly addressable in each execution context), 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

5.1.1 Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus with single cycle fetching for most instructions
- X and Y 16-bit index registers, enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter with 16-Mbyte linear memory space
- 16-bit stack pointer with access to a 64 Kbyte stack
- 8-bit condition code register with seven condition flags for the result of the last instruction.

5.1.2 Addressing

- 20 addressing modes
- Indexed indirect addressing mode for look-up tables located anywhere in the address space
- Stack pointer relative addressing mode for efficient implementation of local variables and parameter passing

5.1.3 Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

5.2 Single wire interface module (SWIM) and debug module (DM)

5.2.1 SWIM

The single wire interface module, SWIM, together with an integrated debug module, permits non-intrusive, real-time in-circuit debugging and fast memory programming. The interface can be activated in all device operation modes and can be connected to a running device (hot plugging). The maximum data transmission speed is 145 bytes/ms.

5.2.2 Debug module

The non-intrusive debugging module features a performance close to a full-flavored emulator. Besides memory and peripheral operation, CPU operation can also be monitored in real-time by means of shadow registers.

- R/W of RAM and peripheral registers in real-time
- R/W for all resources when the application is stopped
- Breakpoints on all program-memory instructions (software breakpoints), except the interrupt vector table
- Two advanced breakpoints and 23 predefined breakpoint configurations

5.3 Interrupt controller

- Nested interrupts with three software priority levels
- 24 interrupt vectors with hardware priority
- Five vectors for external interrupts (up to 37 depending on the package)
- Trap and reset interrupts

5.4 Flash program and data EEPROM

- 32 Kbytes to 128 Kbytes of single voltage program Flash memory
- Up to 2 Kbytes true (not emulated) data EEPROM
- Read while write: Writing in the data memory is possible while executing code in the program memory
- The device setup is stored in a user option area in the non volatile memory

5.4.1 Architecture

- The memory is organized in blocks of 128 bytes each
- Read granularity: 1 word = 4 bytes
- Write/erase granularity: 1 word (4 bytes) or 1 block (128 bytes) in parallel
- Writing, erasing, word and block management is handled automatically by the memory interface.

5.4.2 Write protection (WP)

Write protection in application mode is intended to avoid unintentional overwriting of the memory. The write protection can be removed temporarily by executing a specific sequence in the user software.

5.4.3 Protection of user boot code (UBC)

If the user chooses to update the program memory using a specific boot code to perform in application programming (IAP), this boot code needs to be protected against unwanted modification.

In the STM8A a memory area of up to 128 Kbytes can be protected from overwriting at user option level. Other than the standard write protection, the UBC protection can exclusively be modified via the debug interface, the user software cannot modify the UBC protection status.

The UBC memory area contains the reset and interrupt vectors and its size can be adjusted in increments of 512 bytes by programming the UBC and NUBC option bytes (see *Section 9: Option bytes on page 58*).

Figure 2. Flash memory organization of STM8A products

5.4.4 Read-out protection (ROP)

The STM8A provides a read-out protection of the code and data memory which can be activated by an option byte setting (see the ROP option byte in section 10).

The read-out protection prevents reading and writing program memory, data memory and option bytes via the debug module and SWIM interface. This protection is active in all device operation modes. Any attempt to remove the protection by overwriting the ROP option byte triggers a global erase of the program and data memory.

The ROP circuit may provide a temporary access for debugging or failure analysis. The temporary read access is protected by a user defined, 8-byte keyword stored in the option

byte area. This keyword must be entered via the SWIM interface to temporarily unlock the device.

If desired, the temporary unlock mechanism can be permanently disabled by the user throughOPT6/NOPT6 option bytes.

5.5 Clock controller

The clock controller distributes the system clock coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness.

5.5.1 Features

Clock sources

- Internal 16 MHz and 128 kHz RC oscillators
- Crystal/resonator oscillator
- External clock input
- Reset: After reset the microcontroller restarts by default with an internal 2-MHz clock (16 MHz/8). The clock source and speed can be changed by the application program as soon as the code execution starts.
- Safe clock switching: Clock sources can be changed safely on the fly in run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management**: To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- Wakeup: In case the device wakes up from low-power modes, the internal RC oscillator (16 MHz/8) is used for quick startup. After a stabilization time, the device switches to the clock source that was selected before halt mode was entered.
- Clock security system (CSS): The CSS permits monitoring of external clock sources and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.
- **Configurable main clock output (CCO)**: This feature permits to outputs a clock signal for use by the application.

5.5.2 Internal 16 MHz RC oscillator

- Default clock after reset 2 MHz (16 MHz/8)
- Fast wakeup time

User trimming

The register CLK_HSITRIMR with two trimming bits plus one additional bit for the sign permits frequency tuning by the application program. The adjustment range covers all possible frequency variations versus supply voltage and temperature. This trimming does not change the initial production setting.

5.5.3 Internal 128 kHz RC oscillator

The frequency of this clock is 128 kHz and it is independent from the main clock. It drives the independent watchdog or the AWU wakeup timer.

In systems which do not need independent clock sources for the watchdog counters, the 128 kHz signal can be used as the system clock. This configuration has to be enabled by setting an option byte (OPT3/OPT3N, bit LSI_EN).

5.5.4 Internal high-speed crystal oscillator

The internal high-speed crystal oscillator can be selected to deliver the main clock in normal run mode. It operates with quartz crystals and ceramic resonators.

- Frequency range: 1 MHz to 24 MHz
- Crystal oscillation mode: preferred fundamental
- I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT

5.5.5 External clock input

An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The frequency range is 0 to 24 MHz.

5.5.6 Clock security system (CSS)

The clock security system protects against a system stall in case of an external crystal clock failure.

In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is automatically selected with a frequency of 2 MHz (16 MHz/8).

5.6 Low-power operating modes

The product features various low-power modes:

- Slow mode: prescaled CPU clock, selected peripherals at full clock speed
- Active halt mode: CPU and peripheral clocks are stopped, the device cyclically goes back to run mode, controlled by the AWU timer. Wakeup through external events is possible.
- Halt mode: CPU and peripheral clocks are stopped, the device remains powered on. Wakeup is triggered by an external interrupt.

In all modes the CPU and peripherals remain permanently powered on, the system clock is applied only to selected modules. The RAM content is preserved and the brown-out reset circuit remains activated.

5.7 Timers

5.7.1 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications. The watchdog timer activity is controlled by the application program or

option bytes. Once the watchdog is activated, it cannot be disabled by the user program without going through reset.

Window watchdog timer

The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

The window function can be used to trim the watchdog behavior to match the application timing perfectly. The application software must refresh the counter before time-out and during a limited time window. If the counter is refreshed outside this time window, a reset is issued.

Independent watchdog timer

The independent watchdog peripheral can be used to resolve malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure. If the hardware watchdog feature is enabled through the device option bits, the watchdog is automatically enabled at power-on, and generates a reset unless the key register is written by software before the counter reaches the end of count.

5.7.2 Auto-wakeup counter

This counter is used to cyclically wakeup the device in active halt mode. It can be clocked by the internal 128 kHz internal low-frequency RC oscillator or external clock

5.7.3 Beeper

This function generates a rectangular signal in the range of 1, 2 or 4 kHz which can be output on a pin. This is useful when audible sounds without interference need to be generated for use in the application.

5.7.4 Multipurpose and PWM timers

STM8A devices described in this datasheet, contain up to three 16-bit multipurpose and PWM timers providing nine CAPCOM channels in total. A CAPCOM channel can be used either as input compare, output compare or PWM channel. These timers are named TIM1, TIM2 and TIM3.

Timer	Counter width	Counter type	Prescaler factor	Channels	Inverted outputs	Repetition counter	trigger unit	External trigger	Break input
TIM1	16-bit	Up/down	1 to 65536	4	3	Yes	Yes	Yes	Yes
TIM2	16-bit	Up	2 ⁿ n = 0 to 15	3	None	No	No	No	No
ТІМЗ	16-bit	Up	2 ⁿ n = 0 to 15	2	None	No	No	No	No

TIM1: Multipurpose PWM timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and bridge driver.

- 16-bit up, down and up/down AR (auto-reload) counter with 16-bit fractional prescaler.
- Four independent CAPCOM channels configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Trigger module which allows the interaction of TIM1 with other on-chip peripherals. In the present implementation it is possible to trigger the ADC upon a timer event.
- External trigger to change the timer behavior depending on external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Interrupt sources: 4 x input capture/output compare, 1 x overflow/update, 1 x break

TIM2 and TIM3: 16-bit PWM timers

- 16-bit auto-reload up-counter
- 15-bit prescaler adjustable to fixed power of two ratios 1...32768
- Timers with three or two individually configurable CAPCOM channels
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

5.7.5 System timer

The typical usage of this timer (TIM4) is the generation of a clock tick.

Timer	Counter width	Counter type	Prescaler factor	Channels	Inverted outputs	Repetition counter	trigger unit	External trigger	Break input
TIM4	8-bit	Up	2 ⁿ n = 0 to 7	0	None	No	No	No	No

- 8-bit auto-reload, adjustable prescaler ratio to any power of two from 1 to 128
- Clock source: master clock
- Interrupt source: 1 x overflow/update

5.8 Analog to digital converter (ADC)

The STM8A products described in this datasheet contain a 10-bit successive approximation ADC with up to 16 multiplexed input channels, depending on the package.

ADC features:

- 10-bit resolution
- Single and continuous conversion modes
- Programmable prescaler: f_{MASTER} divided by 2 to 18
- Conversion trigger on timer events, and external events
- Interrupt generation at end of conversion
- Selectable alignment of 10-bit data in 2 x 8 bit result registers
- Shadow registers for data consistency
- ADC input range: VSSA = VIN = VDDA
- Schmitt-trigger on analog inputs can be disabled to reduce power consumption

5.9 Communication interfaces

5.9.1 Universal synchronous/asynchronous receiver transmitter (USART)

The devices covered by this datasheet contain one USART interface. The USART can operate in standard SCI mode (serial communication interface, asynchronous) or in SPI emulation mode. It is equipped with a 16 bit fractional prescaler. It features LIN master support.

Detailed feature list:

- Full duplex, asynchronous communications
- NRZ standard format (mark/space)
- High-precision baud rate generator system
 - Common programmable transmit and receive baud rates up to f_{MASTER}/16
- Programmable data word length (8 or 9 bits)
- Configurable stop bits: Support for 1 or 2 stop bits
- LIN master mode:
 - LIN break and delimiter generation
 - LIN break and delimiter detection with separate flag and interrupt source for readback checking.
- Transmitter clock output for synchronous communication
- Separate enable bits for transmitter and receiver
- Transfer detection flags:
 - Receive buffer full
 - Transmit buffer empty
 - End of transmission flags
- Parity control:
 - Transmits parity bit
 - Checks parity of received data byte

- Four error detection flags:
 - Overrun error
 - Noise error
 - Frame error
 - Parity error
 - Six interrupt sources with flags:
 - Transmit data register empty
 - Transmission complete
 - Receive data register full
 - Idle line received
 - Parity error
 - LIN break and delimiter detection
- Two interrupt vectors:
 - Transmitter interrupt
 - Receiver interrupt
- Reduced power consumption mode
- Wakeup from mute mode (by idle line detection or address mark detection)
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line

5.9.2 Universal asynchronous receiver/transmitter with LIN support (LINUART)

The devices covered by this datasheet contain one LINUART interface. The interface is available on all the supported packages. The LINUART is an asynchronous serial communication interface which supports extensive LIN functions tailored for LIN slave applications. In LIN mode it is compliant to the LIN standards rev 1.2 to rev 2.1.

Detailed feature list:

LIN mode

Master mode

- LIN break and delimiter generation
- LIN break and delimiter detection with separate flag and interrupt source for read back checking.

Slave mode

- Autonomous header handling one single interrupt per valid header
- Mute mode to filter responses
- Identifier parity error checking
- LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI) clock source
- Break detection at any time, even during a byte reception
- Header errors detection:
 - Delimiter too short
 - Synch field error
 - Deviation error (if automatic resynchronization is enabled)
 - Framing error in synch field or identifier field
 - Header time-out

UART mode

- Full duplex, asynchronous communications NRZ standard format (mark/space)
- High-precision baud rate generator
 - A common programmable transmit and receive baud rates up to f_{MASTER}/16
- Programmable data word length (8 or 9 bits) 1 or 2 stop bits parity control
- Separate enable bits for transmitter and receiver
- Error detection flags
- Reduced power consumption mode
- Multi-processor communication enter mute mode if address match does not occur
- Wakeup from mute mode (by idle line detection or address mark detection)
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line

5.9.3 Serial peripheral interface (SPI)

The devices covered by this datasheet contain one SPI. The SPI is available on all the supported packages.

- Maximum speed: 8 Mbit/s or f_{MASTER}/2 both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave mode/master mode management by hardware or software for both master and slave
- Programmable clock polarity and phase
- Programmable data order with MSB-first or LSB-first shifting
- Dedicated transmission and reception flags with interrupt capability
- SPI bus busy status flag
- Hardware CRC feature for reliable communication:
 - CRC value can be transmitted as last byte in Tx mode
 - CRC error checking for last received byte

5.9.4 Inter integrated circuit (I²C) interface

The devices covered by this datasheet contain one I^2C interface. The interface is available on all the supported packages.

- I²C master features:
 - Clock generation
 - Start and stop generation
- I²C slave features:
 - Programmable I²C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
- Supports different communication speeds:
 - Standard speed (up to 100 kHz),
 - Fast speed (up to 400 kHz)
- Status flags:
 - Transmitter/receiver mode flag
 - End-of-byte transmission flag
 - I²C busy flag
- Error flags:
 - Arbitration lost condition for master mode
 - Acknowledgement failure after address/data transmission
 - Detection of misplaced start or stop condition
 - Overrun/underrun if clock stretching is disabled

- Interrupt:
 - Successful address/data communication
 - Error condition
 - Wakeup from halt
- Wakeup from halt on address detection in slave mode

5.9.5 Controller area network interface (beCAN)

The beCAN controller (basic enhanced CAN), interfaces the CAN network and supports the CAN protocol version 2.0A and B. It is equipped with a receive FIFO and a very versatile filter bank. Together with a filter match index, this allows a very efficient message handling in today's car network architectures. The CPU is significantly unloaded. The maximum transmission speed is 1 Mbit/s.

Transmission

- Three transmit mailboxes
- Configurable transmit priority by identifier or order request

Reception

- 11- and 29-bit ID
- 1 receive FIFO (3 messages deep)
- Software-efficient mailbox mapping at a unique address space
- FMI (filter match index) stored with message for quick message association
- Configurable FIFO overrun
- Time stamp on SOF reception
- 6 filter banks, 2 x 32 bytes (scalable to 4 x 16-bit) each, enabling various masking configurations, such as 12 filters for 29-bit ID or 48 filters for 11-bit ID.
- Filtering modes (mixable):
 - Mask mode permitting ID range filtering
 - ID list mode

Interrupt management

- Maskable interrupt
- Software-efficient mailbox mapping at a unique address space

5.10 Input/output specifications

The product features four I/O types:

- Standard I/O 2 MHz
- Fast I/O up to 10 MHz
- High sink 8 mA, 2 MHz
- True open drain (I²C interface)

To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.

The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitt-trigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.

STM8A I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A. Thanks to this feature, external protection diodes against current injection are no longer required.

6 Pinouts and pin description

6.1 Package pinouts

1. The CAN interface is only available on the STM8AF/H/P51xx product line.

1. The CAN interface is only available on the STM8AF/H/P51xx product line.

1. The CAN interface is only available on the STM8AF/H/P51xx product line.

Table 6. Lege	end/abbrev	viation for Table 7								
Туре	I= input, O :	= input, O = output, S = power supply								
Level	Input	CM = CMOS (standard for all I/Os)								
Level	Output	HS = high sink (8 mA)								
Output speed	O2 = Fast (O3 = Fast/s	ard (up to 2 MHz) up to 10 MHz) slow programmability with slow as default state after reset slow programmability with fast as default state after reset								
Port and control	Input	float = floating, wpu = weak pull-up								
configuration	Output	T = true open drain, OD = open drain, PP = push pull								

Р	in nu	ımbe					Inpu			-	tput				Alternate
LQFP80	LQFP64	LQFP48	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QD	РР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	1	NRST	I/O	-	Х	—	—	—	—	-		Reset	—
2	2	2	2	PA1/OSCIN ⁽¹⁾	I/O	х	х	_	_	01	х	х	Port A1	Resonator/ crystal in	_
3	3	3	3	PA2/OSCOUT	I/O	х	х	х	_	01	х	х	Port A2	Resonator/ crystal out	_
4	4	4	I	V _{SSIO_1}	S				_		—	_	I/C) ground	—
5	5	5	4	V _{SS}	S						—	—	Digit	tal ground	—
6	6	6	5	VCAP	S	_	—	—		—	_	—	1.8 V reg	ulator capacitor	—
7	7	7	6	V _{DD}	S	_	_	_	_	_	—	—	Digital p	power supply	—
8	8	8	7	V _{DDIO_1}	S	_	_	_	_	_	—	—	I/O po	ower supply	—
9	9	9	-	PA3/TIM2_CC3	I/O	х	х	х	_	01	х	х	Port A3	Timer 2 - channel 3	TIM3_CC1 [AFR1]
10	10	10	-	PA4/USART_RX	I/O	х	х	х		O3	х	x	Port A4	USART receive	_
11	11	11	-	PA5/USART_TX	I/O	х	х	х	_	O3	х	х	Port A5	USART transmit	_
12	12	12	-	PA6/USART_CK	I/O	х	х	х	_	О3	х	x	Port A6	USART synchronous clock	_
13	-	-	-	PH0	I/O	Х	Х	_	HS	O3	Х	Х	Port H0	_	—
14	-	-	-	PH1	I/O	Х	Х	_	HS	O3	Х	Х	Port H1	_	—
15	-	-	-	PH2	I/O	Х	Х	_	_	01	Х	Х	Port H2	_	—
16	-	-	-	PH3	I/O	Х	Х	_	—	01	Х	Х	Port H3	_	—
17	13	-	-	PF7/AIN15	I/O	х	х	_	_	01	х	х	Port F7	Analog input 15	—
18	14	-	-	PF6/AIN14	I/O	х	х	_	_	01	х	x	Port F6	Analog input 14	_
19	15	-	-	PF5/AIN13	I/O	х	х	_	_	01	х	х	Port F5	Analog input 13	_
20	16	-	8	PF4/AIN12	I/O	х	х	_	_	01	х	х	Port F4	Analog input 12	_
21	17	-	-	PF3/AIN11	I/O	х	х	_	_	01	х	х	Port F3	Analog input 11	_
22	18	-	-	V _{REF+}	S	—		_	_			_		itive reference oltage	_

 Table 7.
 STM8A microcontroller family pin description

Р	in nı	ımbe	ər				Inpu	t		Out	tput				
LQFP80	LQFP64	LQFP48	LQFP32	Pin name	Type	floating	ndm	Ext. interrupt	High sink	Speed	OD	дд	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
23	19	13	9	V _{DDA}	S	_	_	—	—	—		—	Analog	power supply	_
24	20	14	10	V _{SSA}	S	_		—	—	—		_	Anal	og ground	—
25	21	-	-	V _{REF-}	S	_		—		—		—		ative reference oltage	—
26	22	-	-	PF0/AIN10	I/O	х	Х	—	—	01	х	х	Port F0	Analog input 10	—
27	23	15	-	PB7/AIN7	I/O	Х	х	Х	_	01	Х	Х	Port B7	Analog input 7	—
28	24	16	-	PB6/AIN6	I/O	Х	Х	Х		01	Х	Х	Port B6	Analog input 6	—
29	25	17	11	PB5/AIN5	I/O	х	х	х		01	х	х	Port B5	Analog input 5	I ² C_SDA [AFR6]
30	26	18	12	PB4/AIN4	I/O	х	х	х	_	01	х	х	Port B4	Analog input 4	I ² C_SCL [AFR6]
31	27	19	13	PB3/AIN3	I/O	х	х	х		01	х	х	Port B3	Analog input 3	TIM1_ETR [AFR5]
32	28	20	14	PB2/AIN2	I/O	x	х	х	_	01	х	х	Port B2	Analog input	TIM1_NCC 3 [AFR5]
33	29	21	15	PB1/AIN1	I/O	x	х	x	_	01	х	х	Port B1	Analog input 1	TIM1_NCC 2 [AFR5]
34	30	22	16	PB0/AIN0	I/O	x	x	x	_	01	х	x	Port B0	Analog input 0	TIM1_NCC 1 [AFR5]
35	-	-	-	PH4/TIM1_ETR	I/O	х	х	_	_	01	х	х	Port H4	Timer 1 - trigger input	—
36	-	-	-	PH5/ TIM1_NCC3	I/O	x	х	_	_	01	х	x	Port H5	Timer 1 - inverted channel 3	_
37	-	-	-	PH6/ TIM1_NCC2	I/O	x	х	_	_	01	х	x	Port H6	Timer 1 - inverted channel 2	_
38	-	-	-	PH7/ TIM1_NCC1	I/O	x	x	_	_	01	х	х	Port H7	Timer 1 - inverted channel 2	_
39	31	23	-	PE7/AIN8	I/O	Х	Х	_	—	01	Х	Х	Port E7	Analog input 8	
40	32	24		PE6/AIN9	I/O	Х	Х	Х	_	01	Х	Х	Port E7	Analog input 9	_
41	33	25	17	PE5/SPI_NSS	I/O	х	х	х	_	01	х	х	Port E5	SPI master/ slave select	_

Table 7.	STM8A microcontroller family pin de	escription (continued)
----------	-------------------------------------	------------------------

Р	in nı	ımbe	ər				Inpu	t		Out	put				
LQFP80	LQFP64	LQFP48	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	ЪР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
42	-	-	-	PC0/ADC_ETR	I/O	х	х	Х	—	01	х	х	Port C0	ADC trigger input	_
43	34	26	18	PC1/TIM1_CC1	I/O	х	х	х	HS	О3	х	х	Port C1	Timer 1 - channel 1	—
44	35	27	19	PC2/TIM1_CC2	I/O	х	х	Х	HS	О3	х	х	Port C2	Timer 1- channel 2	_
45	36	28	20	PC3/TIM1_CC3	I/O	х	х	Х	HS	O3	х	х	Port C3	Timer 1 - channel 3	—
46	37	29	21	PC4/TIM1_CC4	I/O	х	х	х	HS	О3	х	x	Port C4	Timer 1 - channel 4	_
47	38	30	22	PC5/SPI_SCK	I/O	Х	Х	Х		O3	Х	х	Port C5	SPI clock	—
48	39	31	-	V _{SSIO_2}	S	_				_		_	I/C	ground	—
49	40	32	-	V _{DDIO_2}	S				—	_		—	I/O po	ower supply	_
50	41	33	23	PC6/SPI_MOSI	I/O	x	х	х	_	О3	х	х	Port C6	SPI master out/ slave in	_
51	42	34	24	PC7/SPI_MISO	I/O	х	х	х	_	О3	х	x	Port C7	SPI master in/ slave out	_
52	43	35	-	PG0/CAN_Tx	I/O	Х	Х	_	—	01	Х	Х	Port G0	CAN transmit	—
53	44	36	-	PG1/CAN_Rx	I/O	Х	Х		_	01	Х	Х	Port G1	CAN receive	_
54	45	-	-	PG2	I/O	Х	Х			01	Х	Х	Port G2	_	—
55	46	-	-	PG3	I/O	Х	Х			01	Х	Х	Port G3	_	—
56	47	-	-	PG4	I/O	Х	Х	_	—	01	Х	Х	Port G4	_	—
57	48	-	-	PI0	I/O	Х	Х			01	Х	Х	Port I0	_	—
58	-	-	-	PI1	I/O	Х	Х	_	—	01	Х	Х	Port I1	_	—
59	-	-	-	PI2	I/O	Х	Х	—		01	Х	Х	Port I2		_
60	-	-	-	PI3	I/O	Х	Х	_	—	01	Х	Х	Port I3		_
61	-	-	-	PI4	I/O	Х	Х		_	01	Х	Х	Port I4		
62	-	-	-	PI5	I/O	Х	Х	—		01	Х	Х	Port I5		_
63	49	-	-	PG5	I/O	Х	Х	_	—	01	Х	Х	Port G5	_	—
64	50	-	-	PG6	I/O	Х	Х	_	_	01	Х	Х	Port G6		
65	51	-	-	PG7	I/O	Х	Х	_	_	01	Х	Х	Port G7		
66	52	-	-	PE4	I/O	Х	Х	Х	_	01	Х	Х	Port E4	_	—

Table 7.	STM8A microcontroller family pir	n description (continued)
----------	----------------------------------	-----------------	------------

Р	in nı	umbe	ər				Inpu	t		Out	tput				A 14 a
LQFP80	LQFP64	LQFP48	LQFP32	Pin name	Type	floating	ndm	Ext. interrupt	High sink	Speed	OD	dд	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
67	53	37	-	PE3/TIM1_BKIN	I/O	х	х	х	—	01	х	х	Port E3	Timer 1 - break input	_
68	54	38	-	PE2/I ² C_SDA	I/O	Х	Х	Х	—	01	T ⁽²⁾	-	Port E2	I ² C data	—
69	55	39	-	PE1/I ² C_SCL	I/O	Х	Х	Х		01	T ⁽²⁾	-	Port E1	I ² C clock	—
70	56	40	-	PE0/CLK_CCO	I/O	х	х	х		O3	х	х	Port E0	Configurable clock output	_
71	-	-	-	PI6	I/O	Х	Х			01	Х	Х	Port I6	_	_
72	-	-	-	PI7	I/O	Х	Х		—	01	Х	Х	Port I7	_	_
73	57	41	25	PD0/TIM3_CC2	I/O	x	x	x	HS	О3	x	х	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
74	58	42	26	PD1/SWIM	I/O	х	Х	х	HS	04	х	х	Port D1	SWIM data interface	_
75	59	43	27	PD2/TIM3_CC1	I/O	х	х	х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CC3 [AFR1]
76	60	44	28	PD3/TIM2_CC2	I/O	х	х	х	HS	O3	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
77	61	45	29	PD4/TIM2_CC1/ BEEP	I/O	х	х	х	HS	О3	x	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
78	62	46	30	PD5/ LINUART_TX	I/O	х	х	х	_	01	х	х	Port D5	LINUART data transmit	_
79	63	47	31	PD6/ LINUART_RX	I/O	х	х	х		01	х	х	Port D6	LINUART data receive	_
80	64	48	32	PD7/TLI ⁽³⁾	I/O	х	х	х	—	01	х	х	Port D7	Top level interrupt	—

Table 7. STM8A microcontroller family pin description (continued)

In halt/active halt mode, this pin behaves as follows: 1.

The input/output path is disabled.
If the HSE clock is used for wakeup, the internal weak pull-up is disabled.
If the HSE clock is off, the internal weak pull-up setting is used. It is configured through Px_CR1[7:0] bits of the corresponding port control register. Px_CR1[7:0] bits must be set correctly to ensure that the pin is not left floating in halt/active halt mode.

2. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer and protection diode to V_{DD} are not implemented)

3. If this pin is configured as interrupt pin, it will trigger the TLI.

6.2 Alternate function remapping

As shown in the rightmost column of *Table 7*, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to *Section 9: Option bytes on page 58*. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of the STM8A microcontroller family reference manual, RM0009).

7 Memory and register map

7.1 Memory map

Figure 7. Register and memory map

Table 8.Memory model 128K

Program memory size	Program memory end address	RAM size	RAM end address	Stack roll-over address
128K	27FFFh	6K	17FFh	1400h
96K	1FFFFh	6K	17FFh	1400h
64K	17FFFh	4K	0FFFh	n/a ⁽¹⁾
48K	13FFFh	ЗК	0BFFh	n/a ⁽¹⁾
32K	0FFFFh	2K	07FFh	n/a ⁽¹⁾

 if the device is containing the super set silicon (salestype contains SSS), the roll-over address is the same as on the 128K device. For more information on stack handling refer to section 2.1.2 in the reference manual RM0009. For more information on salestype composition, refer to section 13 in the present document.

7.2 Register map

In this section the memory and register map of the devices covered by this datasheet is described. For a detailed description of the functionality of the registers, refer to the reference manual RM009.

7.2.1 I/O register map

Address	Block	Register label	Register name	Reset status
00 5000h		PA_ODR	Port A data output latch register	00h
00 5001h		PA_IDR	Port A input pin value register	00h
00 5002h	Port A	PA_DDR	Port A data direction register	00h
00 5003h		PA_CR1	Port A control register 1	00h
00 5004h		PA_CR2	Port A control register 2	00h
00 5005h		PB_ODR	Port B data output latch register	00h
00 5006h		PB_IDR	Port B input pin value register	00h
00 5007h	Port B	PB_DDR	Port B data direction register	00h
00 5008h		PB_CR1	Port B control register 1	00h
00 5009h		PB_CR2	Port B control register 2	00h
00 500Ah		PC_ODR	Port C data output latch register	00h
00 500Bh		PB_IDR	Port C input pin value register	00h
00 500Ch	Port C	PC_DDR	Port C data direction register	00h
00 500Dh	PC_CR1		Port C control register 1	00h
00 500Eh		PC_CR2	Port C control register 2	00h
00 500Fh		PD_ODR	Port D data output latch register	00h
00 5010h		PD_IDR	Port D input pin value register	00h
00 5011h	Port D	PD_DDR	Port D data direction register	00h
00 5012h		PD_CR1	Port D control register 1	02h
00 5013h		PD_CR2	Port D control register 2	00h
00 5014h		PE_ODR	Port E data output latch register	00h
00 5015h	1	PE_IDR	Port E input pin value register	00h
00 5016h	Port E	PE_DDR	Port E data direction register	00h
00 5017h	PE_CR1		Port E control register 1	00h
00 5018h		PE_CR2	Port E control register 2	00h

Table 9. I/O port hardware register map

Table 9.		iruware register i				
Address	Block	Register label	Register name	Reset status		
00 5019h		PF_ODR	Port F data output latch register	00h		
00 501Ah		PF_IDR	Port F input pin value register	00h		
00 501Bh	Port F	PF_DDR	Port F data direction register	00h		
00 501Ch		PF_CR1	Port F control register 1	00h		
00 501Dh		PF_CR2	Port F control register 2	00h		
00 501Eh		PG_ODR	Port G data output latch register	00h		
00 501Fh		PG_IDR	Port G input pin value register	00h		
00 5020h	Port G	PG_DDR	Port G data direction register	00h		
00 5021h		PG_CR1	Port G control register 1	00h		
00 5022h		PG_CR2 Port G control register 2				
00 5023h		PH_ODR	Port H data output latch register	00h		
00 5024h		PH_IDR	Port H input pin value register	00h		
00 5025h	Port H	PH_DDR	Port H data direction register	00h		
00 5026h		PH_CR1	Port H control register 1	00h		
00 5027h		PH_CR2	Port H control register 2	00h		
00 5028h		PI_ODR	Port I data output latch register	00h		
00 5029h]	PI_IDR	Port I input pin value register	00h		
00 502Ah	Port I	PI_DDR	Port I data direction register	00h		
00 502Bh	1	PI_CR1	Port I control register 1	00h		
00 502Ch	1	PI_CR2	Port I control register 2	00h		

 Table 9.
 I/O port hardware register map (continued)

7.2.2 Non volatile memory

Table 10.Non volatile memory

Address	Register name	7	6	5	4	3	2	1	0
00 505Ah	FLASH_CR1	-	-	-	-	HALT	AHALT	IE	FIX
00 505AN	Reset value	0	0	0	0	0	0	0	0
00 505Bh	FLASH_CR2	OPT	WPRG	ERASE	FPRG	-	-	-	PRG
00 50561	Reset value	0	0	0	0	0	0	0	0
00 505Ch	FLASH_NCR2	NOPT	NWPRG	NERASE	NFPRG	-	-	-	NPRG
00 50501	Reset value	1	1	1	1	1	1	1	1
00 505Dh	FLASH_FPR	WPB7	WPB6	WPB5	WPB4	WPB3	WPB2	WPB1	WPB0
00 505011	Reset value	0	0	0	0	0	0	0	0
00 505Eh	FLASH_NFPR	NWPB7	NWPB6	NWPB5	NWPB4	NWPB3	NWPB2	NWPB1	NWPB0
00 505EH	Reset value	1	1	1	1	1	1	1	1

Address	Register name	7	6	5	4	3	2	1	0
	FLASH_IAPSR	-	HVOFF	-	-	DUL	EOP	PUL	WR_PG_DIS
00 505Fh	Reset value	0	1	0	0	0	0	0	0
00 5060h									
to				Re	eserved				
00 5061h									
00 5062h	FLASH_PUKR	PUK7	PUK6	PUK5	PUK4	PUK3	PUK2	PUK1	PUK0
00 500211	Reset value	0	0	0	0	0	0	0	0
00 5063h				Re	served				
00 5064h	FLASH_DUKR	DUK7	DUK6	DUK5	DUK4	DUK3	DUK2	DUK1	DUK0
00 500411	Reset value	0	0	0	0	0	0	0	0

Table 10. Non volatile memory (continued)

7.2.3 CPU registers

Table 11.CPU registers

Address	Block	Register label	Register name	Reset status
00 7F00h		A	Accumulator	00h
00 7F01h		PCE	Program counter extended	00h
00 7F02h		PCH	Program counter high	80h
00 7F03h		PCL	Program counter low	00h
00 7F04h		ХН	X index register high	00h
00 7F05h	CPU ⁽¹⁾	XL	X index register low	00h
00 7F06h		YH	Y index register high	00h
00 7F07h		YL	Y index register low	00h
00 7F08h		SPH	Stack pointer high	17h ⁽²⁾
00 7F09h		SPL	Stack pointer low	FFh
00 7F0Ah		CC	Condition code register	28h

1. Accessible by debug module only

2. Product dependent value, see Figure 7: Register and memory map.

7.2.4 Miscellaneous registers

Global configuration register

Table 12. CFG_GCR register map

Address	Register name	7	6	5	4	3	2	1	0
00 7F60h	CFG_GCR	-	-	-	-	-	-	AL	SWD
	Reset value	0	0	0	0	0	0	0	0

Reset status register

Table 13.	RST_SR register map	

Address	Register name	7	6	5	4	3	2	1	0
00 50B3h	RST_SR	-	-	-	EMCF	SWIMF	ILLOPF	IWDGF	WWDGF
00 300311	Reset value	х	х	х	х	x	х	х	Х

Temporary memory unprotection key registers

Address	Register name	7	6	5	4	3	2	1	0
00 5000h	TMU_K1	K7	K6	K5	K4	K3	K2	K1	K0
00 5800h	Reset value	0	0	0	0	0	0	0	0
00 50016	TMU_K2	K7	K6	K5	K4	K3	K2	K1	K0
00 5801h	Reset value	0	0	0	0	0	0	0	0
00 5802h	TMU_K3	K7	K6	K5	K4	K3	K2	K1	K0
00 560211	Reset value	0	0	0	0	0	0	0	0
00 5803h	TMU_K4	K7	K6	K5	K4	K3	K2	K1	K0
00 560511	Reset value	0	0	0	0	0	0	0	0
00 5804h	TMU_K5	K7	K6	K5	K4	K3	K2	K1	К0
00 300411	Reset value	0	0	0	0	0	0	0	0
00 5805h	TMU_K6	K7	K6	K5	K4	K3	K2	K1	К0
00 560511	Reset value	0	0	0	0	0	0	0	0
00 5807h	TMU_K8	K7	K6	K5	K4	K3	K2	K1	K0
00 300711	Reset value	0	0	0	0	0	0	0	0
00 5808h	TMU_CSR	-	-	-	-	ROPS	TIMUE	TMUB	TMUS
00 300011	Reset value	0	0	0	0	0	0	0	0

Table 14. TMU register map and reset values

7.2.5 Clock and clock controller

 Table 15.
 CLK register map and reset values

Address	Register name	7	6	5	4	3	2	1	0
	CLK_ICKR	-	-	SWUAH	LSIRDY	LSIEN	FHWU	HSIRDY	HSIEN
00 50C0h	Reset value	0	0	0	0	0	0	0	1
00 50C1h	CLK_ ECKR	-	-	-	-	-	-	HSERDY	HSEEN
00 500 11	Reset value	0	0	0	0	0	0	0	0
00 50C2h		Reserved							

Address	Register name	7	6	5	4	3	2	1	0
00 50C3h	CLK_ CMSR	CKM7	CKM6	CKM5	CKM4	СКМЗ	CKM2	CKM1	CKM0
	Reset value	1	1	1	0	0	0	0	1
00 50C4h	CLK_SWR Reset	SWI7	SWI6	SWI5	SWI4	SWI3	SWI2	SWI1	SWI0
	value	1	1	1	0	0	0	0	1
00 50C5h	CLK_ SWCR	-	-	-	-	SWIF	SWIEN	SWEN	SWBSY
	Reset value	х	x	х	х	0	0	0	0
00 50C6h	CLK_ CKDIVR	-	-	-	HSIDIV1	HSIDIV0	CPUDIV2	CPUDIV1	CPUDIV
	Reset value	0	0	0	1	1	0	0	0
00 50C7h	CLK_ PCKENR1 Reset	PCK EN17	PCK EN16	PCK EN15	PCK EN14	PCK EN13	PCK EN12	PCK EN11	PCK EN10
	value	1	1	1	1	1	1	1	1
00 50C8h	CLK_ CSSR	-	-	-	-	CSSD	CSSDIE	AUX	CSSEN
	Reset value	0	0	0	0	0	0	0	0
00 50C9h	CLK_ CCOR Reset	-	CCOBSY	CCORDY	CCO SEL3	CCO SEL2	CCO SEL1	CCO SEL0	CCOEN
	value	0	0	0	0	0	0	0	0
00 50CAh	CLK_PCK ENR2 Reset	PCK EN27	PCK EN26	-	-	PCK EN23	PCK EN22	-	-
	value	1	1	1	1	1	1	1	1
00 50CBh	CLK_CAN CCR	-	-	-	-	-	CANDIV2	CANDIV1	CANDIV0
	Reset value	0	0	0	0	0	0	0	0
00 50CCh	CLK_HSIT RIMR Reset	-	-	-	-	-	HSI TRIM2	HSI TRIM1	HSI TRIM0
	value	x	x	x	x	x	0	0	0
00 50CDh	CLK_SWI MCCR Reset	-	-	-	-	-	-	-	SWI MCLK
	value	0	0	0	0	0	0	0	0

Table 15.	CLK register map and reset values (continued)

7.2.6 Interrupt controller

Interrupt software priority registers

 Table 16.
 Interrupt software priority registers map

Address	Register name	7	6	5	4	3	2	1	0
00 7F70h	ITC_SPR1 Reset value	VECT3S PR1 1	VECT3S PR0 1	VECT2S PR1 1	VECT2S PR0 1	VECT1S PR1 1	VECT1S PR0 1	Reserved	Reserved
007F71h	ITC_SPR2	VECT7S	VECT7S	VECT6S	VECT6S	VECT5S	VECT5S	VECT4S	VECT4S
	Reset	PR1	PR0	PR1	PR0	PR1	PR0	PR1	PR0
	value	1	1	1	1	1	1	1	1
00 7F72h	ITC_SPR3	VECT11	VECT11	VECT10	VECT10	VECT9S	VECT9S	VECT8S	VECT8S
	Reset	SPR1	SPR0	SPR1	SPR0	PR1	PR0	PR1	PR0
	value	1	1	1	1	1	1	1	1
00 7F73h	ITC_SPR4	VECT15	VECT15	VECT14	VECT14	VECT13	VECT13	VECT12	VECT12
	Reset	SPR1	SPR0	SPR1	SPR0	SPR1	SPR0	SPR1	SPR0
	value	1	1	1	1	1	1	1	1
00 7F74h	ITC_SPR5	VECT19	VECT19	VECT18	VECT18	VECT17	VECT17	VECT16	VECT16
	Reset	SPR1	SPR0	SPR1	SPR0	SPR1	SPR0	SPR1	SPR0
	value	1	1	1	1	1	1	1	1
00 7F75h	ITC_SPR6	VECT23	VECT23	VECT22	VECT22	VECT21	VECT21	VECT20	VECT20
	Reset	SPR1	SPR0	SPR1	SPR0	SPR1	SPR0	SPR1	SPR0
	value	1	1	1	1	1	1	1	1
00 7F76h	ITC_SPR7 Reset value	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	VECT24 SPR1 1	VECT24 SPR0 1

External interrupt control register

 Table 17.
 External interrupt control register map

Address	Register name	7	6	5	4	3	2	1	0
00 50A0h	EXTI_CR1	PDIS1	PDIS0	PCIS1	PCIS0	PBIS1	PBIS0	PAIS1	PAIS0
	Reset value	0	0	0	0	0	0	0	0
00 50A1h	EXTI_CR2	Reserved	Reserved	Reserved	Reserved	Reserved	TLIS	PEIS1	PEIS0
	Reset value	0	0	0	0	0	0	0	0

7.2.7 Timers

Window watchdog timer

Table 18. WWDG register map and reset values

Address	Register name	7	6	5	4	3	2	1	0
00 50D1h	WWDG_CR	WDGA	Т6	T5	T4	Т3	T2	T1	T0
	Reset value	0	1	1	1	1	1	1	1
00 50D2h	WWDG_WR	-	W6	W5	W4	W3	W2	W1	W0
	Reset value	0	1	1	1	1	1	1	1

Independent watchdog timer

Table 19. IWDG register map

Address	Register name	7	6	5	4	3	2	1	0
00 50E0h	IWDG_KR	KEY7	KEY6	KEY5	KEY4	KEY3	KEY2	KEY1	KEY0
00 302011	Reset value	х	х	х	х	х	х	х	x
00 50E1h	IWDG_PR	-	-	-	-	-	PR2	PR1	PR0
00 30L III	Reset value	0	0	0	0	0	0	0	0
00 50E2h	IWDG_RLR	RL7	RL6	RL5	RL4	RL3	RL2	RL1	RL0
00 30E211	Reset value	1	1	1	1	1	1	1	1

Auto-wakeup counter and beeper

Table 20.AWU register map

Address	Register name	7	6	5	4	3	2	1	0
00 50F0h	AWU_CSR	-	-	AWUF	AWUEN	-	-	-	MSR
00 50-011	Reset value	0	0	0	0	0	0	0	0
00 50F1h	AWU_APR	-	-	APR5	APR4	APR3	APR2	APR1	APR0
00 50F 11	Reset value	0	0	1	1	1	1	1	1
00 50F2h	AWU_TBR	-	-	-	-	AWUTB3	AWUTB2	AWUTB1	AWUTB0
00 50F211	Reset value	0	0	0	0	0	0	0	0

Table 21.BEEP register map

Address	Register name	7	6	5	4	3	2	1	0
00 50F3h	BEEP_CSR	BEEP SEL2	BEEP SEL1	BEEP EN	BEEP DIV4	BEEP DIV3	BEEP DIV2	BEEP DIV1	BEEP DIV0
	Reset value	0	0	0	0	0	0	0	0

TIM1

Table 22.TIM1 register map

Address	Register name	7	6	5	4	3	2	1	0
00 5250b	TIM1_CR1	ARPE	CMS1	CMS0	DIR	OPM	URS	UDIS	CEN
00 5250h	Reset value	0	0	0	0	0	0	0	0
00 5251h	TIM1_CR2	TI1S	MMS2	MMS1	MMS0	-	COMS	-	CCPC
00 525 111	Reset value	0	0	0	0	0	0	0	0
00 5252h	TIM1_SMCR	MSM	TS2	TS1	TS0	-	SMS2	SMS1	SMS0
00 02 021	Reset value	0	0	0	0	0	0	0	0
00 5253h	TIM1_ETR	ETP	ECE	ETPS1	ETPS0	EFT3	EFT2	EFT1	EFT0
00 020011	Reset value	0	0	0	0	0	0	0	0
00 5254h	TIM1_IER	BIE	TIE	COMIE	CC4IE	CC3IE	CC2IE	CC1IE	UIE
00 020411	Reset value	0	0	0	0	0	0	0	0
00 5255h	TIM1_SR1	BIF	TIF	COMIF	CC4IF	CC3IF	CC2IF	CC1IF	UIF
00 02 001	Reset value	0	0	0	0	0	0	0	0
00 5256h	TIM1_SR2	-	-	-	CC4OF	CC3OF	CC2OF	CC10F	-
00 32 3011	Reset value	0	0	0	0	0	0	0	0
00 5257h	TIM1_EGR	BG	TG	COMG	CC4G	CC3G	CC2G	CC1G	UG
00 323711	Reset value	0	0	0	0	0	0	0	0
	TIM1_CCMR1	OC1CE	OC1M2	OC1M1	OC1M0	OC1PE	OC1FE	CC1S1	CC1S0
	(output mode)								
00 5258h	Reset value	0	0	0	0	0	0	0	0
	TIM1_CCMR1	IC1F3	IC1F2	IC1F1	IC1F0	IC1PSC1	IC1PSC0	CC1S1	CC1S0
	(input mode)	0	0	0	0	0	0	0	0
	Reset value	0	0	0	0	0	0	0	0
	TIM1_CCMR2	OC2CE	OC2M2	OC2M1	OC2M0	OC2PE	OC2FE	CC2S1	CC2S0
	(output mode) Reset value	0	0	0	0	0	0	0	0
00 5259h	TIM1_CCMR2	IC2F3	IC2F2	IC2F1	IC2F0	IC2PSC1	IC2PSC0	CC2S1	CC2S0
	(input mode)								
	Reset value	0	0	0	0	0	0	0	0
	TIM1_CCMR3	OC3CE	OC3M2	OC3M1	OC3M0	OC3PE	OC3FE	CC3S1	CC3S0
	(output mode)								
00 525Ah	Reset value	0	0	0	0	0	0	0	0
00020411	TIM1_CCMR3 (input mode)	IC3F3	IC3F2	IC3F1	IC3F0	IC3PSC1	IC3PSC0	CC3S1	CC3S0
	Reset value	0	0	0	0	0	0	0	0

Address	Register name	7	6	5	4	3	2	1	0
	TIM1_CCMR4	OC4CE	OC4M2	OC4M1	OC4M0	OC4PE	OC4FE	CC4S1	CC4S0
	(output mode)	_	_	_	_	_		_	
00 525Bh	Reset value	0	0	0	0	0	0	0	0
	TIM1_CCMR4	IC4F3	IC4F2	IC4F1	IC4F0	IC4PSC1	IC4PSC0	CC4S1	CC4S0
	(input mode) Reset value	0	0	0	0	0	0	0	0
					-			-	
00 525Ch	TIM1_CCER1 Reset value	CC2NP 0	CC2NE 0	CC2P 0	CC2E 0	CC1NP 0	CC1NE 0	CC1P 0	CC1E 0
		0							
00 525Dh	TIM1_CCER2 Reset value	- 0	- 0	CC4P 0	CC4E 0	CC3NP 0	CC3NE 0	CC3P 0	CC3E 0
					-	-	-	_	-
00 525Eh	TIM1_CNTRH Reset value	CNT15 0	CNT14 0	CNT13 0	CNT12 0	CNT11 0	CNT10 0	CNT9 0	CNT8 0
		-							
00 525Fh	TIM1_CNTRL Reset value	CNT7 0	CNT6 0	CNT5 0	CNT4 0	CNT3 0	CNT2 0	CNT1 0	CNT0 0
					-			_	
00 5260h	TIM1_PSCRH Reset value	PSC15 0	PSC14 0	PSC13 0	PSC12 0	PSC11 0	PSC10 0	PSC9 0	PSC8
		-							0
00 5261h	TIM1_PSCRL	PSC7 0	PSC6	PSC5	PSC4 0	PSC3	PSC2	PSC1	PSC0
	Reset value		0	0	-	0	0	0	0
00 5262h	TIM1_ARRH	ARR15	ARR14	ARR13	ARR12	ARR11	ARR10	ARR9	ARR8
	Reset value	1	1	1	1	1	1	1	1
00 5263h	TIM1_ARRL	ARR7	ARR6	ARR5	ARR4	ARR3	ARR2	ARR1	ARR0
	Reset value	1	1	1	1	1	1	1	1
00 5264h	TIM1_RCR	REP7	REP6	REP5	REP4	REP3	REP2	REP1	REP0
	Reset value	0	0	0	0	0	0	0	0
00 5265h	TIM1_CCR1H	CCR115	CCR114	CCR113	CCR112	CCR111	CCR110	CCR19	CCR18
	Reset value	0	0	0	0	0	0	0	0
00 5266h	TIM1_CCR1L	CCR17	CCR16	CCR15	CCR14	CCR13	CCR12	CCR11	CCR10
	Reset value	0	0	0	0	0	0	0	0
00 5267h	TIM1_CCR2H		CCR214				CCR210	CCR29	CCR28
	Reset value	0	0	0	0	0	0	0	0
00 5268h	TIM1_CCR2L	CCR27	CCR26	CCR25	CCR24	CCR23	CCR22	CCR21 0	CCR20
	Reset value	0	0	0	0	0	0		0
00 5269h	TIM1_CCR3H	CCR315	CCR314	CCR313	CCR312	CCR311	CCR310	CCR39	CCR38
	Reset value	0	0	0	0	0	0	0	0
00 526Ah	TIM1_CCR3L	CCR37	CCR36	CCR35	CCR34	CCR33	CCR32	CCR31	CCR3
	Reset value	0	0	0	0	0	0	0	00
00 526Bh	TIM1_CCR4H	CCR415	CCR414	CCR413	CCR412	CCR411	CCR410	CCR490	CCR48
30 020011	Reset value	0	0	0	0	0	0		0
00 526Ch	TIM1_CCR4L	CCR47	CCR46	CCR45	CCR44	CCR43	CCR42	CCR41	CCR40
0002001	Reset value	0	0	0	0	0	0	0	0

Table 22. TIM1 register map (continued)

Address	Register name	7	6	5	4	3	2	1	0
00 526Dh	TIM1_BKR	MOE	AOE	BKP	BKE	OSSR	OSSI	LOCK	LOCK
00 526011	Reset value	0	0	0	0	0	0	0	0
00 526Eh	TIM1_DTR	DTG7	DTG6	DTG5	DTG4	DTG3	DTG2	DTG1	DTG0
00 520EN	Reset value	0	0	0	0	0	0	0	0
	TIM1_OISR	-	OIS4	OIS3N	OIS3	OIS2N	OIS2	OIS1N	OIS1
00 526Fh	Reset value	0	0	0	0	0	0	0	0

Table 22. TIM1 register map (continued)

TIM2

Table 23.TIM2 register map

Address	Register name	7	6	5	4	3	2	1	0
00 5300h	TIM2_CR1	ARPE	-	-	-	OPM	URS	UDIS	CEN
00 550011	Reset value	0	0	0	0	0	0	0	0
00 5301h	TIM2_IER	-	-	-	-	CC3IE	CC2IE	CC1IE	UIE
00 550 11	Reset value	0	0	0	0	0	0	0	0
00 5302h	TIM2_SR1	-	-	-	-	CC3IF	CC2IF	CC1IF	UIF
00 330211	Reset value	0	0	0	0	0	0	0	0
00 5303h	TIM2_SR2	-	-	-	-	CC3OF	CC2OF	CC10F	-
00 330311	Reset value	0	0	0	0	0	0	0	0
00 5304h	TIM2_EGR	-	-	-	-	CC3G	CC2G	CC1G	UG
00 000411	Reset value	0	0	0	0	0	0	0	0
	TIM2_CCMR1 (output mode)	-	OC1M2	OC1M1	OC1M0	OC1PE	-	CC1S1	CC1S0
00 5305h	Reset value	0	0	0	0	0	0	0	0
00 53051	TIM2_CCMR1 (input mode)	IC1F3	IC1F2	IC1F1	IC1F0	IC1PSC1	IC1PSC0	CC1S1	CC1S0
	Reset value	0	0	0	0	0	0	0	0
	TIM2_CCMR2 (output mode)	-	OC2M2	OC2M1	OC2M0	OC2PE	-	CC2S1	CC2S0
00 5306h	Reset value	0	0	0	0	0	0	0	0
00 330011	TIM2_CCMR2 (input mode)	IC2F3	IC2F2	IC2F1	IC2F0	IC2PSC1	IC2PSC0	CC2S1	CC2S0
	Reset value	0	0	0	0	0	0	0	0
	TIM2_CCMR3 (output mode)	-	OC3M2	OC3M1	OC3M0	OC3PE	-	CC3S1	CC3S0
00 50076	Reset value	0	0	0	0	0	0	0	0
00 5307h	TIM2_CCMR3 (input mode)	IC3F3	IC3F2	IC3F1	IC3F0	IC3PSC1	IC3PSC0	CC3S1	CC3S0
	Reset value	0	0	0	0	0	0	0	0

Address	Register name	7	6	5	4	3	2	1	0
00 5308h	TIM2_CCER1	-	-	CC2P	CC2E	-	-	CC1P	CC1E
00 53080	Reset value	0	0	0	0	0	0	0	0
00 5309h	TIM2_CCER2	-	-	-	-	-	-	CC3P	CC3E
00 23090	Reset value	0	0	0	0	0	0	0	0
00 520 A b	TIM2_CNTRH	CNT15	CNT14	CNT13	CNT12	CNT11	CNT10	CNT9	CNT8
00 530Ah	Reset value	0	0	0	0	0	0	0	0
	TIM2_CNTRL	CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0
00 530Bh	Reset value	0	0	0	0	0	0	0	0
00 530Ch	TIM2_PSCR	-	-	-	-	PSC3	PSC2	PSC1	PSC0
00 53001	Reset value	0	0	0	0	0	0	0	0
00 530Dh	TIM2_ARRH	ARR15	ARR14	ARR13	ARR12	ARR11	ARR10	ARR9	ARR8
00 550DH	Reset value	1	1	1	1	1	1	1	1
00 530Eh	TIM2_ARRL	ARR7	ARR6	ARR5	ARR4	ARR3	ARR2	ARR1	ARR0
00 550EH	Reset value	1	1	1	1	1	1	1	1
00 530Fh	TIM2_CCR1H	CCR115	CCR114	CCR113	CCR112	CCR111	CCR110	CCR19	CCR18
00 550FH	Reset value	0	0	0	0	0	0	0	0
00 5310h	TIM2_CCR1L	CCR17	CCR16	CCR15	CCR14	CCR13	CCR12	CCR11	CCR10
00 55 1011	Reset value	0	0	0	0	0	0	0	0
00 5311h	TIM2_CCR2H	CCR215	CCR214	CCR213	CCR212	CCR211	CCR210	CCR29	CCR28
00 55111	Reset value	0	0	0	0	0	0	0	0
00 5312h	TIM2_CCR2L	CCR27	CCR26	CCR25	CCR24	CCR23	CCR22	CCR21	CCR20
00 551211	Reset value	0	0	0	0	0	0	0	0
00 5313h	TIM2_CCR3H	CCR315	CCR314	CCR313	CCR312	CCR311	CCR310	CCR39	CCR38
00 00 101	Reset value	0	0	0	0	0	0	0	0
00 5314h	TIM2_CCR3L	CCR37	CCR36	CCR35	CCR34	CCR33	CCR32	CCR31	CCR30
00 55 1411	Reset value	0	0	0	0	0	0	0	0

Table 23. TIM2 register map (continued)

TIM3

Table 24. TIM3 register map

Address	Register name	7	6	5	4	3	2	1	0
00 5320h	TIM3_CR1	ARPE	-	-	-	OPM	URS	UDIS	CEN
00 552011	Reset value	0	0	0	0	0	0	0	0
00 5321h	TIM3_IER	-	-	-	-	-	CC2IE	CC1IE	UIE
00 552 11	Reset value	0	0	0	0	0	0	0	0
00 5322h	TIM3_SR1	-	-	-	-	-	CC2IF	CC1IF	UIF
00 552211	Reset value	0	0	0	0	0	0	0	0
00 5323h	TIM3_SR2	-	-	-	-	-	CC2OF	CC10F	-
00 002011	Reset value	0	0	0	0	0	0	0	0

Address	Register name	7	6	5	4	3	2	1	0
00 500 41	TIM3_EGR	-	-	-	-	-	CC2G	CC1G	UG
00 5324h	Reset value	0	0	0	0	0	0	0	0
	TIM3_CCMR1 (output mode)	-	OC1M2	OC1M1	OC1M0	OC1PE	-	CC1S1	CC1S0
00 5325h	Reset value	0	0	0	0	0	0	0	0
00 532511	TIM3_CCMR1 (input mode)	IC1F3	IC1F2	IC1F1	IC1F0	IC1PSC1	IC1PSC0	CC1S1	CC1S0
	Reset value	0	0	0	0	0	0	0	0
	TIM3_CCMR2 (output mode)	-	OC2M2	OC2M1	OC2M0	OC2PE	-	CC2S1	CC2S0
00 5326h	Reset value	0	0	0	0	0	0	0	0
00 53261	TIM3_CCMR2 (input mode)	IC2F3	IC2F2	IC2F1	IC2F0	IC2PSC1	IC2PSC0	CC2S1	CC2S0
	Reset value	0	0	0	0	0	0	0	0
00 5327h	TIM3_CCER1	-	-	CC2P	CC2E	-	-	CC1P	CC1E
	Reset value	0	0	0	0	0	0	0	0
00 5000h	TIM3_CNTRH	CNT15	CNT14	CNT13	CNT12	CNT11	CNT10	CNT9	CNT8
00 5328h	Reset value	0	0	0	0	0	0	0	0
00 5329h	TIM3_CNTRL	CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0
00 552911	Reset value	0	0	0	0	0	0	0	0
00 532Ah	TIM3_PSCR	-	-	-	-	PSC3	PSC2	PSC1	PSC0
00 552AH	Reset value	0	0	0	0	0	0	0	0
00 532Bh	TIM3_ARRH	ARR15	ARR14	ARR13	ARR12	ARR11	ARR10	ARR9	ARR8
00 332 BH	Reset value	1	1	1	1	1	1	1	1
00 532Ch	TIM3_ARRL Reset value	ARR7 1	ARR6 1	ARR5 1	ARR4 1	ARR3 1	ARR2 1	ARR1 1	ARR0 1
	TIM3_CCR1H	CCR115	CCR114	CCR113	CCR112	CCR111	CCR110	CCR19	CCR18
00 532Dh	Reset value	0	0	0	0	0	0	0	0
	TIM3_CCR1L	CCR17	CCR16	CCR15	CCR14	CCR13	CCR12	CCR11	CCR10
00 532Eh	Reset value	0	0	0	0	0	0	0	0
	TIM3_CCR2H	CCR215	CCR214	CCR213	CCR212	CCR211	CCR210	CCR29	CCR28
00 532Fh	Reset value	0	0	0	0	0	0	0	0
00 5330h	TIM3_CCR2L	CCR27	CCR26	CCR25	CCR24	CCR23	CCR22	CCR21	CCR20
00 555011	Reset value	0	0	0	0	0	0	0	0

Table 24. TIM3 register map (continued)

TIM4

Table 25.	TIM4 register ma	р
-----------	------------------	---

Address	Register name	7	6	5	4	3	2	1	0
00 5340h	TIM4_CR1	ARPE	-	-	-	OPM	URS	UDIS	CEN
00 554011	Reset value	0	0	0	0	0	0	0	0
00 5341h	TIM4_IER	-	-	-	-	-	-	-	UIE
00 554 11	Reset value	0	0	0	0	0	0	0	0
00 5342h	TIM4_SR1	-	-	-	-	-	-	-	UIF
00 554211	Reset value	0	0	0	0	0	0	0	0
00 5343h	TIM4_EGR	-	-	-	-	-	-	-	UG
00 554511	Reset value	0	0	0	0	0	0	0	0
00 5344h	TIM4_CNTR	CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0
00 554411	Reset value	0	0	0	0	0	0	0	0
00 5345h	TIM4_PSCR	-	-	-	-	-	PSC2	PSC1	PSC0
00 554511	Reset value	0	0	0	0	0	0	0	0
00 5346h	TIM4_ARR	ARR7	ARR6	ARR5	ARR4	ARR3	ARR2	ARR1	ARR0
00 55400	Reset value	1	1	1	1	1	1	1	1

7.2.8 Communication interfaces

Serial peripheral interface (SPI)

Address	Register name	7	6	5	4	3	2	1	0
005200h	SPI_CR1	LSBFIRST	SPE	BR2	BR1	BR1	MSTR	CPOL	CPHA
00520011	Reset value	0	0	0	0	0	0	0	0
005201h	SPI_CR2	BDM	BDOE	CRCEN	CRCNEXT	Reserved	RXONLY	SSM	SSI
0052011	Reset value	0	0	0	0	0	0	0	0
005202h	SPI_ICR	TXIE	RXIE	ERRIE	WKIE	Reserved	Reserved	Reserved	Reserved
00520211	Reset value	0	0	0	0	0	0	0	0
005203h	SPI_SR	BSY	OVR	MODF	CRCERR	WKUP	Reserved	TXE	RXNE
00520311	Reset value	0	0	0	0	0	0	1	0
005204h	SPI_DR	MSB	-	-	-	-	-	-	LSB
00520411	Reset value	0	0	0	0	0	0	0	0
005205h	SPI_CRCPR	MSB	-	-	-	-	-	-	LSB
0052050	Reset value	0	0	0	0	0	1	1	1

Table 26. SPI register map and reset value

Address	Register name	7	6	5	4	3	2	1	0
005206h	SPI_ RXCRCR	MSB	-	-	-	-	-	-	LSB
	Reset value	0	0	0	0	0	0	0	0
005207h	SPI_ TXCRCR	MSB	-	-	-	-	-	-	LSB
	Reset value	0	0	0	0	0	0	0	0

Table 26. SPI register map and reset value (continued)

Inter integrated circuit (I²C) interface

Address	Register name	7	6	5	4	3	2	1	0
00 5210h	I2C_CR1	NO STRETCH	ENGC	-	-	-	-	-	PE
	Reset value	0	0	0	0	0	0	0	0
00 5211h	I2C_CR2	SWRST	-	-	-	POS	ACK	STOP	START
	Reset value	0	0	0	0	0	0	0	0
00 5212h	I2C_ FREQR	-	-	FREQ5	FREQ4	FREQ3	FREQ2	FREQ1	FREQ0
	Reset value	0	0	0	0	0	0	0	0
00 5213h	I2C_OARL	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
	Reset value	0	0	0	0	0	0	0	0
00 5214h	I2C_OARH	ADD MODE	ADD CONF	-	-	-	ADD9	ADD8	-
	Reset value	0	0	0	0	0	0	0	0
00 5215h				F	leserved				
00 5216h	I2C_DR	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0
	Reset value	0	0	0	0	0	0	0	0
00 5217h	I2C_SR1	TxE	RxNE	-	STOPF	ADD10	BTF	ADDR	SB
	Reset value	0	0	0	0	0	0	0	0
00 5218h	I2C_SR2	-	-	WUFH	-	OVR	AF	ARLO	BERR
	Reset value	0	0	0	0	0	0	0	0

Table 27. I²C register map

Address	Register name	7	6	5	4	3	2	1	0
00 5219h	I2C_SR3	-	-	-	GEN CALL	-	TRA	BUSY	MSL
00 02 1011	Reset value	0	0	0	0	0	0	0	0
00 521Ah	I2C_ITR	-	-	-	-	-	ITBUFEN	ITEVTEN	ITERREN
00021741	Reset value	0	0	0	0	0	0	0	0
00 521Bh	I2C_CCRL	CCR7	CCR6	CCR5	CCR4	CCR3	CCR2	CCR1	CCR0
00 52 1611	Reset value	0	0	0	0	0	0	0	0
00 521Ch	I2C_CCRH	FS	DUTY	-	-	CCR11	CCR10	CCR9	CCR8
00 521011	Reset value	0	0	0	0	0	0	0	0
00 521Dh	I2C_ TRISER	-	-	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0
	Reset value	0	0	0	0	0	0	1	0

Table 27. I²C register map (continued)

Universal synchronous/asynchronous receiver transmitter (USART)

Table 28.USART register map

Address	Register name	7	6	5	4	3	2	1	0
00 5230h	USART_SR	TXE	TC	RXNE	IDLE	OR	NF	FE	PE
	Reset value	1	1	0	0	0	0	0	0
00 5231h	USART_DR	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0
	Reset value	x	x	x	x	x	x	x	x
00 5232h	USART_BRR1 Reset value			U	SART_DI 000000				
00 5233h	USART_BRR2 Reset value			_DIV[15:12])000			USART_I 000		
00 5234h	USART_CR1	R8	Т8	USARTD	M	-	PCEN	PS	PIEN
	Reset value	0	0	0	0	0	0	0	0
00 5235h	USART_CR2	TIEN	TCIEN	RIEN	ILIEN	TEN	REN	RWU	SBK
	Reset value	0	0	0	0	0	0	0	0
00 5236h	USART_CR3	-	LINEN	STOP CKEN 0			CPOL	CPHA	LBCL
	Reset value	0	0	00 0			0	0	0
00 5237h	USART_CR4	-	LBDIEN	LBDL	LBDF	-	-	-	-
	Reset value	0	0	0	0	0	0	0	0

Universal asynchronous receiver/transmitter with LIN support (LINUART)

Address	Register name	7	6	5	4	3	2	1	0	
00 5240h	LINUART_SR	TXE	TC	RXNE	IDLE	OR/LHE	NF	FE	PE	
00 524011	Reset value	1	1	0	0	0	0	0	0	
005241h	LINUART_DR	DR7	DR6	DR5	DR4	DR3	DR2	DR1	DR0	
00524111	Reset value	0	0	0	0	0	0	0	0	
00 5242h	LINUART_BRR1				LDIV	/[11:8]				
00 524211	Reset value				0000	0000				
00 5243h	LINUART_BRR2		LDIV[15:12]			LDIV	/[3:0]		
00 524511	Reset value		00	00		0000				
00 5244h	LINUART_CR1	R8	T8	UARTD	М	WAKE	PCEN	PS	PIEN	
00 524411	Reset value	0	0	0	0	0	0	0	0	
00 5245h	LINUART_CR2	TIEN	TCIEN	RIEN	ILIEN	TEN	REN	RWU	SBK	
00 524511	Reset value	0	0	0	0	0	0	0	0	
00 5046h	LINUART_CR3	-	LINEN	ST	TOP	-	-	-	-	
00 5246h	Reset value	0	0	(00	0	0	0	0	
00 5247h	LINUART_CR4	-	LBDIEN	LBDL	LBDF		ADD	[3:0]		
00 524711	Reset value	0	0	0	0	0000				
00 5248h				Re	served	·				
00 5249h	LINUART_CR6	LDUM	-	LSLV	LASE	-	LHDIEN	LHDF	LSF	
00 524911	Reset value	0	0	0	0	0	0	0	0	

 Table 29.
 LINUART register map and reset value

CAN

	Page 0	Page 1	Page 2	Page 3	Page 4
00h	CAN_MCSR	CAN_MCSR	CAN_F0R1	CAN_F2R1	CAN_F4R1
01h	CAN_MDLCR	CAN_MDLCR	CAN_F0R2	CAN_F2R2	CAN_F4R2
02h	CAN_MIDR1	CAN_MIDR1	CAN_F0R3	CAN_F2R3	CAN_F4R3
03h	CAN_MIDR2	CAN_MIDR2	CAN_F0R4	CAN_F2R4	CAN_F4R4
04h	CAN_MIDR3	CAN_MIDR3	CAN_F0R5	CAN_F2R5	CAN_F4R5
05h	CAN_MIDR4	CAN_MIDR4	CAN_F0R6	CAN_F2R6	CAN_F4R6
06h	CAN_MDAR1	CAN_MDAR1	CAN_F0R7	CAN_F2R7	CAN_F4R7
07h	CAN_MDAR2	CAN_MDAR5	CAN_F0R8	CAN_F2R8	CAN_F4R8
08h	CAN_MDAR3	CAN_MDAR6	CAN_F1R1	CAN_F3R1	CAN_F5R1
09h	CAN_MDAR4	CAN_MDAR4	CAN_F1R2	CAN_F3R2	CAN_F5R2
0Ah	CAN_MDAR5	CAN_MDAR5	CAN_F1R3	CAN_F3R3	CAN_F5R3
0Bh	CAN_MDAR6	CAN_MDAR6	CAN_F1R4	CAN_F3R4	CAN_F5R4
0Ch	CAN_MDAR7	CAN_MDAR7	CAN_F1R5	CAN_F3R5	CAN_F5R5
0Dh	CAN_MDAR8	CAN_MDAR8	CAN_F1R6	CAN_F3R6	CAN_F5R6
0Eh	CAN_MTSRL	CAN_MTSRL	CAN_F1R7	CAN_F3R7	CAN_F5R7
0Fh	CAN_MTSRH	CAN_MTSRH	CAN_F1R8	CAN_F3R8	CAN_F5R8
_	Tx mailbox 0	Tx mailbox 1	Acceptance filter 0:1	Acceptance filter 2:3	Acceptance filter 4:
_	Page 5	Page 6	Page 7		
00h	CAN_MCSR	CAN_ESR	CAN_MFMIR		
01h	CAN_MDLCR	CAN_EIER	CAN_MDLCR		
02h	CAN_MIDR1	CAN_TECR	CAN_MIDR1		
03h	CAN_MIDR2	CAN_RECR	CAN_MIDR2		
04h	CAN_MIDR3	CAN_BTR1	CAN_MIDR3		
05h	CAN_MIDR4	CAN_BTR2	CAN_MIDR4		
06h	CAN_MDAR1	Reserved	CAN_MDAR1		
07h	CAN_MDAR2	Reserved	CAN_MDAR2		
08h	CAN_MDAR3	CAN_FMR1	CAN_MDAR3		
09h	CAN_MDAR4	CAN_FMR2	CAN_MDAR4		
0Ah	CAN_MDAR5	CAN_FCR1	CAN_MDAR5		
0Bh	CAN_MDAR6	CAN_FCR2	CAN_MDAR6		
0Ch	CAN_MDAR7	CAN_FCR3	CAN_MDAR7		
0Dh	CAN_MDAR8	Reserved	CAN_MDAR8		
0Eh	CAN_MTSRL	Reserved	CAN_MTSRL		
0Fh	CAN_MTSRH	Reserved	CAN_MTSRH		
	Tx Mailbox 2 (if TXM2E = 1 in CAN_DGR register)	Configuration/diagnostic	c Receive FIFO	<u>.</u>	

Figure 9. CAN page mapping

7.3 Analog to digital converter (ADC)

Address	Register name	7	6	5	4	3	2	1	0
005400h	ADC _CSR	EOC	-	EOCIE	-	CH3	CH2	CH1	CH0
00540011	Reset value	0	0	0	0	0	0	0	0
005401h	ADC_CR1	-	SPSEL2	SPSEL1	SPSEL0	-	-	CONT	ADON
00540111	Reset value	0	0	0	0	0	0	0	0
005402h	ADC_CR2	-	EXTTRIG	EXTSEL1	EXTSEL0	ALIGN	-	-	-
00540211	Reset value	0	0	0	0	0	0	0	0
00 5403h				Res	erved				
005404h	ADC_DRH1	DATA9	DATA8	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2
00540411	Reset value	0	0	0	0	0	0	0	0
00 E 40 E h	ADC_DRL1	-	-	-	-	-	-	DATA1	DATA0
005405h	Reset value	0	0	0	0	0	0	0	0
005406h	ADC_TDRH	TD15	TD14	TD13	TD12	TD11	TD10	TD9	TD8
0054060	Reset value	0	0	0	0	0	0	0	0
005407h	ADC_TDRL	TD7	TD6	TD5	TD4	TD3	TD2	TD1	TD0
00540711	Reset value	0	0	0	0	0	0	0	0

Table 30. ADC register map and reset value

8 Interrupt table

Priority	Source block	Description	Interrupt vector address	Wakeup from halt	Comments	
_	Reset	Reset	6000h	Yes	Reset vector in ROM	
_	TRAP	SW interrupt	8004h		—	
0	TLI	External top level interrupt	8008h	_	_	
1	AWU	Auto-wakeup from halt	800Ch	Yes	_	
2	Clock controller	Main clock controller	8010h	_	_	
3	MISC	External interrupt E0	8014h	Yes	Port A interrupts	
4	MISC	External interrupt E1	8018h	Yes	Port B interrupts	
5	MISC	External interrupt E2	801Ch	Yes	Port C interrupts	
6	MISC	External interrupt E3	8020h	Yes	Port D interrupts	
7	MISC	External interrupt E4	8024h	Yes	Port E interrupts	
8	CAN	CAN interrupt Rx	8028h	Yes		
9	CAN	CAN interrupt TX/ER/SC	802Ch	_	_	
10	SPI	End of transfer	8030h	Yes	—	
11	Timer 1	Update/overflow/ trigger/break	8034h	_	_	
12	Timer 1	Capture/compare	8038h		—	
13	Timer 2	Update/overflow	803Ch	_	—	
14	Timer 2	Capture/compare	8040h	_	_	
15	Timer 3	Update/overflow	8044h		—	
16	Timer 3	Capture/compare	8048h	_	—	
17	USART (SCI1)	Tx complete	804Ch	_	_	
18	USART (SCI1)	Receive data full reg.	8050h		_	
19	I ² C	I ² C interrupts	8054h	Yes	—	
20	LINUART (SCI2)	Tx complete/error	8058h		_	
21	LINUART (SCI2)	Receive data full reg.	805Ch		_	
22	ADC	End of conversion	8060h	_	—	

Table 31. STM8A interrupt table⁽¹⁾

Priority	Source block	Description	Interrupt vector address	Wakeup from halt	Comments
23	Timer 4	Update/overflow	8064h	_	_
24	EEPROM	End of programming/ write in not allowed area	8068h		—

 Table 31.
 STM8A interrupt table⁽¹⁾ (continued)

1. All unused interrupts must be initialized with 'IRET' for robust programming.

9 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Each option byte has to be stored twice, for redundancy, in a regular form (OPTx) and a complemented one (NOPTx), except for the ROP (read-out protection) option byte and option bytes 8 to 16.

Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in *Table 32: Option bytes* below.

Option bytes can also be modified 'on the fly' by the application in IAP mode, except the ROP and UBC options that can only be changed in ICP mode (via SWIM).

Refer to the STM8 Flash programming manual (PM0047) and STM8 SWIM communication protocol and debug module user manual (UM0470) for information on SWIM programming procedures.

A -1 -1	Option	Option				Opt	ion bits				Factory
Addr.	name	byte no.	7	6	5	4	3	2	1	0	default setting
4800h	Read-out protection (ROP)	OPT0		ROP[7:0]							00h
4801h	User boot	OPT1		UBC[7:0]						00h	
4802h	code (UBC)	NOPT1		NUBC[7:0]						FFh	
4803h	Alternate	OPT2	AFR7	FR7 AFR6 AFR5 AFR4 AFR3 AFR2 AFR1 AFR0				AFR0	00h		
4804h	function remapping (AFR)	NOPT2	NAFR7	NAFR6	NAFR5	NAFR4	NAFR3	NAFR2	NAFR1	NAFR0	FFh
4805h	Watchdog	OPT3		Rese	erved		LSI_ EN	IWDG _HW	WWD G_HW	WWDG _HALT	00h
4806h	option	NOPT3		Rese	erved		NLSI_ EN	NIWD G_HW	NWWD G_HW	NWWG _HALT	FFh
4807h	Clock	OPT4		Rese	erved		EXT CLK	CKAW USEL	PRSC1	PRSC0	00h
4808h	option	NOPT4						NPRSC 0	FFh		
4809h	HSE clock	OPT5		HSECNT[7:0]					00h		
480Ah	startup	NOPT5				NHSE	CNT[7:0]			FFh
480Bh	тми	OPT6				ΤM	1U[3:0]				00h
480Ch		NOPT6				NTI	MU[3:0]				FFh
480Dh	Flash wait	OPT7				Reserve	ed			WAIT STATE	00h
480Eh	states	NOPT7				Reserve	ed			NWAIT STATE	FFh
480Fh						Reserved	ł				-
4810h		OPT8				TMU_ł	KEY 1 [7:	0]			00h
4811h		OPT9				TMU_ł	KEY 2 [7:	0]			00h
4812h		OPT10				TMU_ł	KEY 3 [7:	0]			00h
4813h		OPT11		TMU_KEY 4 [7:0]					00h		
4814h	TMU	OPT12		TMU_KEY 5 [7:0]				00h			
4815h	-	OPT13		TMU_KEY 6 [7:0]					00h		
4816h	-	OPT14				TMU_ł	U_KEY 7 [7:0]				
4817h		OPT15		TMU_KEY 8 [7:0]				00h			
4818h		OPT16				TMU MA	X_ATT [7	7:0]			00h
4819h to 487D						Reserved	1				

Table 32.Option bytes

Addu	Option Option Option bits							Factory			
Addr.	name	byte no.	7	6	5	4	3	2	1	0	default setting
487E	Boot-	OPT17		BL [7:0]					00h		
487F	loader ⁽¹⁾	NOPT 17		NBL [7:0]					00h		

Table 32. Option bytes (continued)

1. This option consists of two bytes that must have a complementary value in order to be valid. If the option is invalid, it has no effect.

Table 33.	Option byte description	n
-----------	-------------------------	---

Option byte no.	Description
	ROP[7:0]: Memory readout protection (ROP)
OPT0	AAh: Enable readout protection (write access via SWIM protocol) Note: Refer to the STM8A microcontroller family reference manual (RM0009) section on Flash/EEPROM memory readout protection for details.
OPT1	UBC[7:0]: User boot code area 00h: No UBC, no write-protection 01h: Page 0 to 1 defined as UBC, memory write-protected 02h: Page 0 to 3 defined as UBC, memory write-protected 03h to FFh: Pages 4 to 255 defined as UBC, memory write-protected Note: Refer to the STM8A microcontroller family reference manual (RM0009) section on Flash/EEPROM write protection for more details.
	AFR7: Alternate function remapping option 7
	0: Port D4 alternate function = TIM2_CC1 1: Port D4 alternate function = BEEP
	AFR6: Alternate function remapping option 6
	0: Port B5 alternate function = AIN5, port B4 alternate function = AIN4 1: Port B5 alternate function = I^2C_SDA , port B4 alternate function = I^2C_SCL .
	AFR5: Alternate function remapping option 5
	 0: Port B3 alternate function = AIN3, port B2 alternate function = AIN2, port B1 alternate function = AIN1, port B0 alternate function = AIN0. 1: Port B3 alternate function = TIM1_ETR, port B2 alternate function = TIM1_NCC3, port B1 alternate function = TIM1_NCC2, port B0 alternate function = TIM1_NCC1.
	AFR4: Alternate function remapping option 4
OPT2	0: Port D7 alternate function = TLI 1: Reserved
	AFR3: Alternate function remapping option 3
	0: Port D0 alternate function = TIM3_CC2
	1: Port D0 alternate function = TIM1_BKIN
	AFR2: Alternate function remapping option 2
	0: Port D0 alternate function = TIM3_CC2 1: Port D0 alternate function = CLK_CCO
	Note: AFR2 option has priority over AFR3 if both are activated
	AFR1: Alternate function remapping option 1
	0: Port A3 alternate function = TIM2_CC3, port D2 alternate function TIM3_CC1.
	1: Port A3 alternate function = TIM3_CC1, port D2 alternate function TIM2_CC3.
	AFR0: Alternate function remapping option 0
	0: Port D3 alternate function = TIM2_CC2
	1: Port D3 alternate function = ADC_ETR

Option byte no.	Description
	LSI_EN: Low speed internal clock enable
	0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
	IWDG_HW: Independent watchdog
OPT3	0: IWDG Independent watchdog activated by software1: IWDG Independent watchdog activated by hardware
OF13	WWDG_HW: Window watchdog activation
	0: WWDG window watchdog activated by software1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on halt
	0: No reset generated on halt if WWDG active1: Reset generated on halt if WWDG active
	EXTCLK: External clock selection
	0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
	CKAWUSEL: Auto-wakeup unit/clock
OPT4	0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0]: AWU clock prescaler
	00: 24 MHz to 128 kHz prescaler
	01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler
	11: 4 MHz to 128 kHz prescaler
	HSECNT[7:0]: HSE crystal oscillator stabilization time
OPT5	This configures the stabilization time to 0.5, 8, 128, and 2048 HSE cycles with corresponding option byte values of E1h, D2h, B4h, and 00h.
	TMU[3:0]: Enable temporary memory unprotection
OPT6	0101: TMU disabled (permanent ROP). Any other value: TMU enabled.
	WAIT STATE: Wait state configuration
0.077	This option configures the number of wait states inserted when reading
OP17	from the Flash/data EEPROM memory. 0: No wait state
	1: One wait state
	TMU_KEY 1 [7:0]: Temporary unprotection key 0
OPT8	Temporary unprotection key: Must be different from 00h or FFh
	TMU_KEY 2 [7:0]: Temporary unprotection key 1
OPT9	Temporary unprotection key: Must be different from 00h or FFh
OPT10	TMU_KEY 3 [7:0]: Temporary unprotection key 2
	Temporary unprotection key: Must be different from 00h or FFh
OPT11	TMU_KEY 4 [7:0]: Temporary unprotection key 3 Temporary unprotection key: Must be different from 00h or FFh
	remporary unprotection key. Must be unierent from out of FFN

Table 33. Option byte description (continued)

Option byte no.	Description
OPT12	TMU_KEY 5 [7:0]: Temporary unprotection key 4
01112	Temporary unprotection key: Must be different from 00h or FFh
OPT13	TMU_KEY 6 [7:0]: Temporary unprotection key 5
OFTIS	Temporary unprotection key: Must be different from 00h or FFh
OPT14	TMU_KEY 7 [7:0]: Temporary unprotection key 6
	Temporary unprotection key: Must be different from 00h or FFh
OPT15	TMU_KEY 8 [7:0]: Temporary unprotection key 7
OF ITS	Temporary unprotection key: Must be different from 00h or FFh
	TMU_MAXATT [7:0]: TMU access failure counter
OPT16	Every unsuccessful trial to enter the temporary unprotection procedure increments the counter. More than eight unsuccessful trials trigger the global erase of the code and data memory.
	BL[7:0]: Bootloader enable
OPT17	If this option byte is set to 55h (complementary value AAh) the bootloader program is activated also in case of a programmed code memory (for more details, see the bootloader user manual, UM0500).

Table 33. Option byte description (continued)

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

10.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = -40$ °C, $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.

10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

Figure 10. Pin loading conditions

10.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

Figure 11. Pin input voltage

10.2 Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

	•			
Symbol	Ratings	Min	Max	Unit
V _{DDx} - V _{DD}	Supply voltage (including $V_{DDA and} V_{DDIO}$) ⁽¹⁾	-0.3	6.5	V
Input voltage on true open drain pins (PE1, P		V _{SS} - 0.3	6.5	v
V _{IN}	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	v
V _{DDx} - V _{DD}	Variations between different power pins	_	50	mV
$ V_{SSx} - V_{SS} $	Variations between all the different ground pins	—	50	IIIV
V _{ESD}	Electrostatic discharge voltage		ite maximum cal sensitivity, page 93	

Table 34. Voltage characteristics

1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external power supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

Symbol	Ratings	Max.	Unit
I _{VDDIO}	Total current into V_{DDIO} power lines (source) ⁽¹⁾⁽²⁾⁽³⁾	100	
I _{VSSIO}	Total current out of $V_{SS IO}$ ground lines (sink) ⁽¹⁾⁽²⁾⁽³⁾	100	
1	Output current sunk by any I/O and control pin	20	mA
IIO	Output current source by any I/Os and control pin	-20	IIIA
I _{INJ(PIN)} ⁽⁴⁾	Injected current on any pin	±10	
I _{INJ(TOT)}	Sum of injected currents	50	

Table 35.Current characteristics

1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external supply.

- 2. The total limit applies to the sum of operation and injected currents.
- 3. V_{DDIO} includes the sum of the positive injection currents. V_{SSIO} includes the sum of the negative injection currents.
- 4. This condition is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain pads, there is no positive injection current allowed and the corresponding VIN maximum must always be respected.</p>

Table 36. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to 150	ŝ
Т _Ј	Maximum junction temperature	160	0

10.3 Operating conditions

Table 37.	General operating conditions
-----------	------------------------------

Symbol	Parameter	Conditions	Min	Max	Unit
f.	Internal CPU clock frequency	1 wait state T _A = -40 °C to 145 °C	16	24 ⁽¹⁾	MHz
f _{CPU}		0 wait state T _A = -40 °C to 145 °C	0	16	
V _{DD/} V _{DDIO}	Standard operating voltage	—	3.0	5.5	V
C _{EXT}	V _{CAP} external capacitor ⁽²⁾	$\text{ESR} \leq \ 0.3 \ \Omega \ \text{at} \ 1 \ \text{MHz}$	470	3300	nF
		Suffix A		85	
т	Ambient temperature	Suffix B	105		
T _A		Suffix C		125	°C
		Suffix D	40	145	
		A suffix version	-40	90	
Тյ	lunction tomporature range	B suffix version		110	
	Junction temperature range	C suffix version		130	
		D suffix version		150	

1. For devices with less than 96 Kbyte of program memory, the 24 MHz are only achievable using the super set silicon (salestype contains SSS)

 Care should be taken when selecting the capacitor, due to its tolerance, as well as its dependency on temperature, DC bias and frequency in addition to other factors. 470 nF ± 10 % is acceptable, taking into account all tolerances.

Figure 12. f_{CPUmax} versus V_{DD}

 For devices with less than 96 Kbyte of program memory, the 24 MHz are only achievable using the super set silicon (salestype contains SSS)

	operating conditions at power up/power down					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
+	$\rm V_{\rm DD}$ rise time rate	—	2 ⁽¹⁾	—	8	
t _{VDD}	V _{DD} fall time rate	—	2 ⁽¹⁾	—	- ∞	µs/V
+	Reset release delay	V _{DD} rising	—	3	—	ms
t _{TEMP}	Reset generation delay	V _{DD} falling	—	3	—	μs
V _{IT+}	Power-on reset threshold ⁽²⁾	_	2.65	2.8	2.95	v
V _{IT-}	Brown-out reset threshold	_	2.58	2.73	2.88	v
V _{HYS(BOR)}	Brown-out reset hysteresis	_	_	70 ⁽¹⁾		mV

Table 38. Operating conditions at power-up/power-down

1. Guaranteed by design, not tested in production.

2. If V_{DD} is below 3 V, the code execution is guaranteed above the V_{IT} and V_{IT} thresholds. RAM content is kept. The EEPROM programming sequence must not be initiated.

10.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 37*. Care should be taken to limit the series inductance to less than 15 nH.

Figure 13. External capacitor C_{EXT}

1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as described in *Figure 10 on page 64* and *Figure 11 on page 65*.

If not explicitly stated, general conditions of temperature and voltage apply.

Symbol	Parameter	Con	Conditions			Unit		
		All peripherals clocked, code executed from	f _{CPU} = 24 MHz 1 ws	8.7	16.8 ⁽²⁾⁽³⁾			
			f _{CPU} = 16 MHz	7.4	14			
I _{DD(RUN)} ⁽¹⁾	Supply current in run mode		f _{CPU} = 8 MHz	4.0	7.4 ⁽²⁾			
		EEPROM, HSE external clock	f _{CPU} = 4 MHz	2.4	4.1 ⁽²⁾			
			f _{CPU} = 2 MHz	1.5	2.5			
			f _{CPU} = 24 MHz	4.4	6.0 ⁽²⁾⁽³⁾			
	Supply current in run mode	All peripherals clocked, code executed from RAM, HSE external clock	f _{CPU} = 16 MHz	3.7	5.0			
I _{DD(RUN)} ⁽¹⁾			f _{CPU} = 8 MHz	2.2	3.0 ⁽²⁾			
			f _{CPU} = 4 MHz	1.4	2.0 ⁽²⁾			
			f _{CPU} = 2 MHz	1.0	1.5	mA		
		CPU stopped, all peripherals off, HSE external clock	f _{CPU} = 24 MHz	2.4	3.1 ⁽²⁾⁽³⁾			
			f _{CPU} = 16 MHz	1.65	2.5			
I _{DD(WFI)} ⁽¹⁾	Supply current in wait mode		f _{CPU} = 8 MHz	1.15	1.9 ⁽²⁾			
	external cl		f _{CPU} = 4 MHz	0.90	1.6 ⁽²⁾			
						f _{CPU} = 2 MHz	0.80	1.5
I _{DD(SLOW)} ⁽¹⁾	Supply current in	ent in $ \begin{array}{c} f_{CPU} \text{ scaled down,} \\ all \text{ peripherals off,} \\ code \text{ executed from} \\ RAM \end{array} \begin{array}{c} \text{External clock 16 MHz} \\ f_{CPU} = 125 \text{ kHz} \\ \hline \\ \text{LSI internal RC} \\ f_{CPU} = 128 \text{ kHz} \end{array} $		1.50	1.95			
	slow mode code exe		1.50	1.80 ⁽²⁾				

Table 39.Total current consumption in run, wait and slow mode. General conditions for V_{DD}
apply. $T_A = -40$ °C to 145 °C

1. The current due to I/O utilization is not taken into account in these values.

2. Values not tested in production. Design guidelines only.

3. For devices with less than 96 Kbyte of program memory, the 24 MHz are only achievable using the super set silicon (salestype contains SSS)

Table 40.Total current consumption in halt and active halt modes. General conditions for V_{DD} apply. $T_A = -40$ °C to 55 °C unless otherwise stated

Symbol	Parameter	Conditions	Тур	Max	Unit
		Clocks stopped, Flash in power-down mode	e 5 35 ⁽¹⁾	35 ⁽¹⁾	
I _{DD(H)}	Supply current in halt mode	Clocks stopped, Flash in power-down mode, $T_A = 25 \ ^\circ C$	5	25	
I _{DD(FAH)}	Supply current in fast active halt mode	External clock 16 MHz f _{MASTER} = 125 kHz	770	900 ⁽¹⁾	μA
		LSI clock 128 kHz	150	230 ⁽¹⁾	
		LSI clock 128 kHz	25	42 ⁽¹⁾	
I _{DD(SAH)}	Supply current in slow active halt mode	LSI clock 128 kHz, T _A = 25 °C	25	30	
t _{WU(FAH)}	Wakeup time from fast active halt mode	T _A = -40 °C to 145 °C	10	30 ⁽¹⁾	116
t _{WU(SAH)}	Wakeup time from slow active halt mode	IA40 010 143 0	50	80 ⁽¹⁾	μs

1. Data based on characterization results. Not tested in production.

Current consumption for on-chip peripherals

Table 41. Oscillator current consumption

Symbol	Parameter	Conditions		Тур	Max ⁽¹⁾	Unit
		Quartz or	f _{OSC} = 24 MHz	1	2.0 ⁽³⁾	
I _{DD(OSC)}	HSE oscillator current	ceramic resonator,	f _{OSC} = 16 MHz	lz 0.6		
DD(030)	consumption ⁽²⁾	CL = 33 pF V _{DD} = 5 V	f _{OSC} = 8 MHz	0.57	_	
	Quartz or	f _{OSC} = 24 MHz	0.5	1.0 ⁽³⁾	mA	
I _{DD(OSC)}	HSE oscillator current	ceramic resonator,	nator, $f_{OSC} = 16 \text{ MHz}$ 0.25 33 pF $f_{OSC} = 8 \text{ MHz}$ 0.18	_		
DD(OSC)	consumption ⁽²⁾	CL = 33 pF V _{DD} = 3.3 V		0.18	—	

1. During startup, the oscillator current consumption may reach 6 mA.

2. The supply current of the oscillator can be further optimized by selecting a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Informative data.

Table 42. Programming current consumption

Symbol	Parameter	Conditions	Тур	Max	Unit
I _{DD(PROG)}	Programming current	V _{DD} = 5 V, -40 °C to 145 °C, erasing and programming data or program memory	1.0	1.7	mA

	Typical peripheral current consumption $v_{DD} = 5.0 \text{ V}^{-1}$				
Symbol	Parameter	Typ. f _{master} = 2 MHz	Typ. f _{master} = 16 MHz	Typ. f _{master} =24 MHz	Unit
I _{DD(TIM1)}	TIM1 supply current ⁽²⁾	0.03	0.23	0.34	
I _{DD(TIM2)}	TIM2 supply current ⁽²⁾	0.02	0.12	0.19	
I _{DD(TIM3)}	TIM3 supply current ⁽²⁾	0.01	0.1	0.16	
I _{DD(TIM4)}	TIM4 supply current ⁽²⁾	0.004	0.03	0.05	
I _{DD(USART)}	USART supply current ⁽²⁾	0.03	0.09	0.15	
I _{DD(LINUART)}	LINUART supply current ⁽²⁾	0.03	0.11	0.18	
I _{DD(SPI)}	SPI supply current ⁽²⁾	0.01	0.04	0.07	mA
I _{DD(I²C)}	I ² C supply current ⁽²⁾	0.02	0.06	0.91	
I _{DD(CAN)}	CAN supply current ⁽³⁾	0.06	0.30	0.40	
I _{DD(AWU)}	AWU supply current ⁽²⁾	0.003	0.02	0.05	
I _{DD(TOT_DIG)}	All digital peripherals on	0.22	1	2.4	
I _{DD(ADC)}	ADC supply current when converting ⁽⁴⁾	0.93	0.95	0.96	

Table 43. Typical peripheral current consumption $V_{DD} = 5.0 V^{(1)}$

1. Typical values not tested in production. Since the peripherals are powered by an internally regulated, constant digital supply voltage, the values are similar in the full supply voltage range.

2. Data based on a differential I_{DD} measurement between no peripheral clocked and a single active peripheral. This measurement does not include the pad toggling consumption.

3. Data based on a differential IDD measurement between reset configuration (CAN disabled) and a permanent CAN data transmit sequence in loopback mode at 1 MHz. This measurement does not include the pad toggling consumption.

4. Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions.

Current consumption curves

Figure 14 to *Figure 19* show typical current consumption measured with code executing in RAM.

10.3.3 External clock sources and timing characteristics

HSE external clock

An HSE clock can be generated by feeding an external clock signal of up to 24 MHz to the OSCIN pin.

Clock characteristics are subject to general operating conditions for V_{DD} and T_A .

Table 44. HSE external clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	T _A = -40 °C to 145 °C	0 ⁽¹⁾	_	24 ⁽²⁾	MHz
V _{HSEdHL}	Comparator hysteresis	_	0.1 x V _{DD}	_	_	
V _{HSEH}	OSCIN high-level input pin voltage	_	0.7 x V _{DD}		V _{DD}	V
V _{HSEL}	OSCIN low-level input pin voltage	_	V _{SS}	_	0.3 x V _{DD}	
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1	_	+1	μA

1. If CSS is used, the external clock must have a frequency above 500 kHz.

2. For devices with less than 96 Kbyte of program memory, the 24 MHz are only achievable using the super set silicon (salestype contains SSS)

Figure 20. HSE external clock source

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 24 MHz. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _F	Feedback resistor	—	_	220	—	kΩ
C _{L1} /C _{L2} ⁽¹⁾	Recommended load capacitance	—	_	_	20	pF
9 _m	Oscillator trans conductance	—	5	_	_	mA/V
t _{SU(HSE)} ⁽²⁾	Startup time	V _{DD} is stabilized	_	2.8	_	ms

Table 45. HSE oscillator characteristics

1. The oscillator needs two load capacitors, C_{L1} and C_{L2} , to act as load for the crystal. The total load capacitance (Cload) is $(C_{L1} * C_{L2})/(C_{L1} + C_{L2})$. If $C_{L1} = C_{L2}$, Cload = $C_{L1/2}$. Some oscillators have built-in load capacitors, C_{L1} and C_{L2} .

2. This value is the startup time, measured from the moment it is enabled (by software) until a stabilized 24 MHz oscillation is reached. It can vary with the crystal type that is used.

HSE oscillator critical g_m formula

The crystal characteristics have to be checked with the following formula:

Equation 1

 $g_m \gg g_{mcrit}$

where g_{mcrit} can be calculated with the crystal parameters as follows:

Equation 2

$$g_{mcrit} = (2 \times \Pi \times {}^{f}HSE)^{2} \times R_{m}(2Co + C)^{2}$$

 R_m : Notional resistance (see crystal specification) L_m : Notional inductance (see crystal specification) C_m : Notional capacitance (see crystal specification) C_0 : Shunt capacitance (see crystal specification) $C_{L1} = C_{L2} = C$: Grounded external capacitance

10.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

High-speed internal RC oscillator (HSI)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	—	—	16	—	MHz
ACC _{HS}	HSI oscillator user trimming accuracy	Trimmed by the application for any V_{DD} and T_{A} conditions	-1	_	1	%
	HSI oscillator accuracy (factory calibrated)		-5	_	5	
t _{su(HSI)}	HSI oscillator wakeup time	—		_	2 ⁽¹⁾	μs

1. Guaranteed by characterization, not tested in production

Low-speed internal RC oscillator (LSI)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

 Table 47.
 LSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency	—	112	128	144	kHz
t _{su(LSI)}	LSI oscillator wakeup time		—	_	7 ⁽¹⁾	μs

1. Data based on characterization results, not tested in production.

Figure 23. Typical LSI frequency vs V_{DD}

10.3.5 Memory characteristics

Flash program memory/data EEPROM memory

General conditions: $T_A = -40$ °C to 145 °C.

Table 48. Flash program memory/data EEPROM memory

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit
V _{DD}	Operating voltage (all modes, execution/write/erase)	f _{CPU} is 16 to 24 MHz with 1 ws ⁽²⁾ f _{CPU} is 0 to 16 MHz with 0 ws	3.0		5.5	V
V _{DD}	Operating voltage (code execution)	f _{CPU} is 16 to 24 MHz with 1 ws ⁽²⁾ f _{CPU} is 0 to 16 MHz with 0 ws	2.6		5.5	v
t _{prog}	Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes)	_	_	6	6.6	ms
	Fast programming time for 1 block (128 bytes)	_	_	3 3.3		
t _{erase}	Erase time for 1 block (128 bytes)	—	_	3	3.3	ms

1. Guaranteed by characterization, not tested in production.

2. For devices with less than 96 Kbyte of program memory, the 24 MHz are only achievable using the super set silicon (salestype contains SSS)

Table 49.	Program memory
-----------	----------------

Symbol	Parameter	Condition	Min	Max	Unit
T _{WE}	Temperature for writing and erasing	—	-40	125	°C
N _{WE}	Program memory endurance (erase/write cycles) ⁽¹⁾	T _A = 25 °C	1000	_	cycles
+	Data retention time	T _A = 25 °C	40		voaro
t _{RET}		T _A = 55 °C	20	—	years

1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.

Symbol	Parameter	Condition	Min	Max	Unit		
T _{WE} Temperature for writing and erasin	Tomporature for writing and erasing			40	-40	125	°C
	—	-40	145 ⁽¹⁾	U			
N	Data memory endurance ⁽²⁾	T _A = 25 °C	300 k	—	ovoloo		
INWE	N _{WE} (erase/write cycles)	$T_A = -40^{\circ}C$ to 125 °C	100 k ⁽³⁾	_	cycles		
+	Data valuation time	T _A = 25 °C	40 ⁽³⁾⁽⁴⁾	—	Vooro		
t _{RET}	Data retention time	T _A = 55 °C	20 ⁽³⁾⁽⁴⁾	_	years		

Table 50. Data memory

1. Target value, to be confirmed.

2. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.

3. More information on the relationship between data retention time and number of write/erase cycles is available in a separate technical document.

4. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.

10.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.

 Table 51.
 I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL}	Low-level input voltage		-0.3 V		0.3 x V _{DD}	
V _{IH}	High-level input voltage		0.7 x V _{DD}		V _{DD} + 0.3 V	
V _{hys}	Hysteresis ⁽¹⁾			0.1 x V _{DD}	_	_
V		Standard I/0, $V_{DD} = 5 V$, I = 3 mA	V _{DD} - 0.5 V	_	_	
V _{OH}	High-level output voltage	Standard I/0, $V_{DD} = 3 V$, I = 1.5 mA	V _{DD} - 0.4 V	_	_	
		High sink and true open drain I/0, V _{DD} = 5 V I = 8 mA	_	_	0.5	
V _{OL}	Low-level output voltage	Standard I/0, $V_{DD} = 5 V$ I = 3 mA	_	_	0.6	V
		Standard I/0, $V_{DD} = 3 V$ I = 1.5 mA	_		0.4	
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	35	50	65	kΩ
	Rise and fall time	Fast I/Os Load = 50 pF	_	_	20 ⁽²⁾	20
t _R , t _F	(10% - 90%)	Standard and high sink I/Os Load = 50 pF	_	_	125 ⁽²⁾	ns
l _{lkg}	Digital input pad leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	_	_	±1	μA
I	Analog input pad leakage	$\begin{array}{c} V_{SS} \leq ~V_{IN} \leq ~V_{DD} \\ \text{-40 }^{\circ}\text{C} < T_{A} < 125 ~^{\circ}\text{C} \end{array}$	_	_	±250	54
l _{lkg ana}	current	$\begin{array}{c} V_{SS} \leq ~V_{IN} \leq ~V_{DD} \\ \text{-40 }^{\circ}\text{C} < T_{A} < 145 ~^{\circ}\text{C} \end{array}$	_		±500	– nA
l _{lkg(inj)}	Leakage current in adjacent I/O ⁽²⁾	Injection current ±4 mA			±1 ⁽²⁾	μA
I _{DDIO}	Total current on either V_{DDIO} or V_{SSIO}	Including injection currents	_		60	mA

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

2. Data based on characterization results, not tested in production.

Figure 24. Typical V_{IL} and V_{IH} vs V_{DD} @ four temperatures

Figure 25. Typical pull-up resistance $R_{PU} \mbox{ vs } V_{DD} \ensuremath{@}$ four temperatures

Figure 26. Typical pull-up current I_{pu} vs V_{DD} @ four temperatures⁽¹⁾

1. The pull-up is a pure resistor (slope goes through 0).

Typical output level curves

Figure 27 to Figure 36 show typical output level curves measured with output on a single pin.

Figure 29. Typ. $V_{OL} @ V_{DD} = 3.3 V$ (true open drain ports)

1.5

-40°C

25°C

Figure 31. Typ. V_{OL} @ V_{DD} = 3.3 V (high sink ports)

Figure 35. Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (high Figure 36. Typ. V_{DD} - V_{OH} @ V_{DD} = 5.0 V (high sink ports)

10.3.7 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST low-level input voltage ⁽¹⁾	—	V _{SS}	_	$0.3 \times V_{DD}$	
V _{IH(NRST)}	NRST high-level input voltage ⁽¹⁾	—	$0.7 \times V_{DD}$	—	V _{DD}	_
V _{OL(NRST)}	NRST low-level output voltage ⁽¹⁾	I _{OL} = 3 mA		_	0.6	V
R _{PU(NRST)}	NRST pull-up resistor	—	30	40	60	kΩ
V _{F(NRST)}	NRST input filtered pulse ⁽¹⁾	—	85		315	ns

Table 52.NRST pin characteristics

1. Data based on characterization results, not tested in production.

Figure 38. Typical NRST pull-up resistance R_{PU} vs V_{DD}

Figure 39. Typical NRST pull-up current I_{pu} vs V_{DD}

The reset network shown in *Figure 40* protects the device against parasitic resets.

10.3.8 TIM 1, 2, 3, and 4 electrical specifications

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{MASTER}}$ and $T_{\text{A}}.$

Table 53. TIM 1, 2, 3, and 4 electrical specifications

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{EXT}	Timer external clock frequency ⁽¹⁾				24	MHz

1. Not tested in production. For devices with less than 96 Kbyte of program memory, the 24 MHz are only achievable using the super set silicon (salestype contains SSS).

10.3.9 SPI interface

Unless otherwise specified, the parameters given in *Table 54* are derived from tests performed under ambient temperature, f_{MASTER} frequency, and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Cond	Min	Max	Unit			
		Master mode		0	10			
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	V _{DD} < 4.5 V	0	6 ⁽¹⁾	MHz		
		Slave mode	$V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$	0	8 ⁽¹⁾			
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		_	25 ⁽²⁾			
t _{su(NSS)} ⁽³⁾	NSS setup time	Slave mode		4 * t _{MASTER}	_			
t _{h(NSS)} ⁽³⁾	NSS hold time	Slave mode		70	_			
t _{w(SCKH)} ⁽³⁾ t _{w(SCKL)} ⁽³⁾	SCK high and low time	Master mode, f _{MASTER} = 8 MHz, f	110	140				
t _{su(MI)} (3)	Data input setup time	Master mode		5				
t _{su(MI)} ⁽³⁾ t _{su(SI)} ⁽³⁾	Data input setup time	Slave mode	5	_				
t _{h(MI)} ⁽³⁾	Data input hald time	Master mode		7	_	ns		
t _{h(MI)} ⁽³⁾ t _{h(SI)} ⁽³⁾	Data input hold time	Slave mode		10	_			
t _{a(SO)} ⁽³⁾⁽⁴⁾	Data output access time	Slave mode			3* t _{MASTER}			
t _{dis(SO)} ⁽³⁾⁽⁵⁾	Data output disable time	Slave mode		25				
t _{v(SO)} ⁽³⁾	Data output valid time	Slave mode	V _{DD} < 4.5 V	_	75			
^۱ v(SO)`´		(after enable edge)	V _{DD} = 4.5 V to 5.5 V	—	53			
t _{v(MO)} ⁽³⁾	Data output valid time	Master mode (after enable edge)		—	30			
t _{h(SO)} ⁽³⁾	Data autaut hold time	Slave mode (after enable edge)		Slave mode (after enable edge)		31	-	
t _{h(MO)} ⁽³⁾	Data output hold time	Master mode (after	enable edge)	12				

 Table 54.
 SPI characteristics

1. f_{MAX} is f_{MASTER}/2.

2. The pad has to be configured accordingly (fast mode).

3. Values based on design simulation and/or characterization results, and not tested in production.

4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

Figure 41. SPI timing diagram in slave mode and with CPHA = 0

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

Figure 42. SPI timing diagram in slave mode and with CPHA = 1

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Figure 43. SPI timing diagram - master mode

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

10.3.10 I²C interface characteristics

Symbol	Demonster	Standard	mode I ² C	Fast mod		
	Parameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit
t _{w(SCLL)}	SCL clock low time	4.7	—	1.3	—	
t _{w(SCLH)}	SCL clock high time	4.0	—	0.6	—	μs
t _{su(SDA)}	SDA setup time	250	—	100	—	
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾	—	0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time (V _{DD} 3 V to 5.5 V)	_	1000	1000 —		ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time (V _{DD} 3 V to 5.5 V)	_	300	_	300	
t _{h(STA)}	START condition hold time	4.0	—	0.6	—	
t _{su(STA)}	Repeated START condition setup time	4.7	—	0.6	_	μs
t _{su(STO)}	STOP condition setup time	4.0	—	0.6	—	μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	_	1.3	_	μs
Cb	Capacitive load for each bus line	_	400	_	400	pF

Table 55. I²C characteristics

1. $f_{MASTER},$ must be at least 8 MHz to achieve max fast l^2C speed (400 kHz)

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

10.3.11 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MASTER}}$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{ADC}	ADC clock frequency	—	111 kHz	—	4 MHz	kHz/MHz
V _{DDA}	Analog supply	_	3	_	5.5	
V _{REF+}	Positive reference voltage	_	2.75	_	V _{DDA}	
V _{REF-}	Negative reference voltage	_	V _{SSA}	_	0.5	V
		_	V _{SSA}	_	V _{DDA}	
V _{AIN}	Conversion voltage range ⁽¹⁾	Devices with external V _{REF+} / V _{REF-} pins	V _{REF-}	_	V _{REF+}	
C _{samp}	Internal sample and hold capacitor	_	—	_	3	pF
ts ⁽¹⁾	Sampling time	f _{ADC} = 2 MHz	—	1.5	—	
'S'	(3 x 1/f _{ADC})	f _{ADC} = 4 MHz	—	0.75	—	
	Wakaun tima from standby	f _{ADC} = 2 MHz	—	7	—	μs
t _{STAB}	Wakeup time from standby	f _{ADC} = 4 MHz		3.5		
	Total conversion time including	f _{ADC} = 2 MHz	—	7	—	
t _{CONV}	sampling time (14 x 1/f _{ADC})	f _{ADC} = 4 MHz	—	3.5	_	
R _{switch}	Equivalent switch resistance	_		_	30	kΩ

Table 56.ADC characteristics

 During the sample time, the sampling capacitance, C_{samp} (3 pF typ), can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result.

Figure 44. Typical application with ADC

1. Legend: R_{AIN} = external resistance, C_{AIN} = capacitors, C_{samp} = internal sample and hold capacitor.

	ADC accuracy for $v_{DDA} = 5$ v						
Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit		
IE _T I	Total unadjusted error ⁽²⁾		1.4	3 ⁽³⁾			
IE _O I	Offset error ⁽²⁾		0.8	3			
IE _G I	Gain error ⁽²⁾	f _{ADC} = 2 MHz	0.1	2			
IE _D I	Differential linearity error ⁽²⁾		0.9	1			
IELI	Integral linearity error ⁽²⁾		0.7	1.5	LSB		
IE _T I	Total unadjusted error ⁽²⁾		1.9 ⁽⁴⁾	4 ⁽⁴⁾	LOD		
IE _O I	Offset error ⁽²⁾		1.3 ⁽⁴⁾	4 ⁽⁴⁾			
IE _G I	Gain error ⁽²⁾	f _{ADC} = 4 MHz	0.6 ⁽⁴⁾	3 ⁽⁴⁾			
IE _D I	Differential linearity error ⁽²⁾		1.5 ⁽⁴⁾	2 ⁽⁴⁾			
IELI	Integral linearity error ⁽²⁾		1.2 ⁽⁴⁾	1.5 ⁽⁴⁾			

Table 57 ADC accuracy for $V_{DDA} = 5 V$

1. Max value is based on characterization, not tested in production.

ADC accuracy vs. injection current: Any positive or negative injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 10.3.6 does not affect the ADC accuracy.

3. TUE 2LSB can be reached on specific salestypes in the whole temperature range.

4. Target values.

Figure 45. ADC accuracy characteristics

1. Example of an actual transfer curve

2. The ideal transfer curve

End point correlation line З.

End point correlation line $E_T = Total unadjusted error: Maximum deviation between the actual and the ideal transfer curves.$ $<math>E_O = Offset error: Deviation between the first actual transition and the first ideal one.$ $<math>E_G = Gain error: Deviation between the last ideal transition and the last actual one.$ $<math>E_D = Differential linearity error: Maximum deviation between actual steps and the ideal one.$ $<math>E_L = Integral linearity error: Maximum deviation between any actual transition and the end point correlation line.$

10.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$\label{eq:VDD} \begin{array}{l} V_{DD} = 3.3 \text{ V}, T_{A} = 25 \ ^{\circ}\text{C}, \\ f_{MASTER} = 16 \ \text{MHz} \ (\text{HSI clock}), \\ \text{Conforms to IEC 1000-4-2} \end{array}$	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$\label{eq:VDD} \begin{array}{l} V_{DD} = 3.3 \ \text{V}, \ T_{\text{A}} = 25 \ ^{\circ}\text{C}, \\ f_{\text{MASTER}} = 16 \ \text{MHz} \ (\text{HSI clock}), \\ \text{Conforms to IEC 1000-4-4} \end{array}$	4A

Table 58. EMS data

92/118

Electromagnetic interference (EMI)

Emission tests conform to the SAE J 1752/3 standard for test software, board layout and pin loading.

Symbol		Conditions					
	Parameter	General	Monitored	м	Unit		
		conditions	frequency band	8 MHz	16 MHz	24 MHz	
		LQFP80 package conforming to SAE	0.1 MHz to 30 MHz	15	17	22	
6	Peak level		30 MHz to 130 MHz	18	22	16	dBµV
S _{EMI}			130 MHz to 1 GHz	-1	3	5	ubμv
	SAE EMI level		—	2	2.5	2.5	

Table 59. EMI data

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Table 60. ESD absolute maximum ratings

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = 25 \ ^{\circ}C$, conforming to JESD22-A114	ЗA	4000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = 25 \ ^{\circ}C$, conforming to JESD22-C101	3	500	v

1. Data based on characterization results, not tested in production

Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

- A supply overvoltage (applied to each power supply pin) and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾
		$T_A = 25 \ ^\circ C$	
	Static latch-up class	T _A = 85 °C	
LU		T _A = 125 °C	A
		$T_A = 145 \ ^\circ C$	

Table 61. Electrical sensitivities

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).

10.4 Thermal characteristics

In case the maximum chip junction temperature (T_{Jmax}) specified in *Table 37: General operating conditions on page 67* is exceeded, the functionality of the device cannot be guaranteed.

T_{Jmax}, in degrees Celsius, may be calculated using the following equation:

Equation 3

 $T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$

where:

TAmax is the maximum ambient temperature in °C

 Θ_{JA} is the package junction-to-ambient thermal resistance in ° C/W

 P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})$

 $\textbf{P}_{\textbf{INTmax}}$ is the product of I_{DD} and $V_{DD^{\text{,}}}$ expressed in Watts. This is the maximum chip internal power.

PI/Omax represents the maximum power dissipation on output pins

where:

Equation 4

$$\mathsf{P}_{\mathsf{I/Omax}} = \Sigma (\mathsf{V}_{\mathsf{OL}} * \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) * \mathsf{I}_{\mathsf{OH}})$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low- and high-level in the application.

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal resistance junction-ambient LQFP 80 - 14 x 14 mm	38	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm	46	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	57	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	59	°C/W

 Table 62.
 Thermal characteristics⁽¹⁾

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

10.4.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

10.4.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code (see *Figure 50: Ordering information scheme(1) on page 102*).

The following example shows how to calculate the temperature range needed for a given application.

Assuming the following application conditions:

- Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2)
- I_{DDmax} = 8 mA
- $V_{DD} = 5 V$
- maximum 20 I/Os used at the same time in output at low-level with I_{OL} = 8 mA
- $V_{OL} = 0.4 V$

Equation 5

 $P_{INTmax} = 8 \text{ mA x 5 V} = 400 \text{ mW}$

Equation 6

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives:

 $P_{INTmax} = 400 \text{ mW}$ and $P_{IOmax} 64 \text{ mW}$:

Equation 7

 $P_{Dmax} = 400 \text{ mW} + 64 \text{ mW}$

Thus:

 $P_{Dmax} = 464 \text{ mW}.$

Using the values obtained in *Table 62: Thermal characteristics on page 95* T_{Jmax} is calculated as follows:

For LQFP64 46 °C/W

Equation 8

 $T_{imax} = 82 \degree C + (46 \degree C/W x 464 mW) = 82 \degree C + 21 \degree C = 103 \degree C$

This is within the range of the suffix B version parts (-40 °C < T_j < 105 ° C). Parts must be ordered at least with the temperature range suffix B.

11 Package characteristics

11.1 ECOPACK[®]

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

11.2 Package mechanical data

Figure 46. 80-pin low profile quad flat package (14 x 14)

Table 63.	80-pin low profile quad flat package mechanical data
-----------	--

Dim		mm		inches ⁽¹⁾			
Dim.	Min	Тур	Max	Min	Тур	Max	
А	—	_	1.60	—	—	0.0630	
A1	0.05	_	0.15	0.0020	—	0.0060	
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571	
b	0.22	0.32	0.38	0.0087	0.0126	0.0150	
С	0.09	_	0.20	0.0035	_	0.0079	
D	15.80	16.00	16.20	0.6220	0.6299	0.6378	
D1	13.80	14.00	14.20	0.5433	0.5512	0.5591	
D3	—	12.35	_	—	0.4862	—	
E	15.80	16.00	16.20	0.6220	0.6299	0.6378	
E1	13.80	14.00	14.20	0.5433	0.5512	0.5591	
E3	_	12.35	_	—	0.4862	—	
е	—	0.65	_	—	0.0256	—	
L	0.45	0.60	0.75	0.0177	0.0236	0.0295	
L1	—	1.00	—	—	0.0394	—	
ccc	—	—	0.10	—	—	0.0039	
k	0°	3.5°	7°	0°	3.5°	7 °	

Figure 47. 64-pin low profile quad flat package (10 x 10)

 Table 64.
 64-pin low profile quad flat package mechanical data

Dim.		mm		inches ⁽¹⁾			
Dim.	Min	Тур	Max	Min	Тур	Max	
А	—	—	1.60	—	—	0.0630	
A1	0.05	—	0.15	0.0020	—	0.0059	
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571	
b	0.17	0.22	0.27	0.0067	0.0087	0.0106	
с	0.09	—	0.20	0.0035	—	0.0079	
D	—	12.00	_	—	0.4724	_	
D1	—	10.00	_	—	0.3937	_	
E	—	12.00	_	—	0.4724	_	
E1	—	10.00	_	—	0.3937	_	
е	—	0.50	_	—	0.0197	_	
θ	0°	3.5°	7 °	0°	3.5°	7 °	
L	0.45	0.60	0.75	0.0177	0.0236	0.0295	
L1	—	1.00	_	—	0.0394		

Figure 48. 48-pin low profile quad flat package (7 x 7)

 Table 65.
 48-pin low profile quad flat package mechanical data

Dim	Dim.			inches ⁽¹⁾			
Dim.	Min	Тур	Max	Min	Тур	Max	
А	—	—	1.60	—	—	0.0630	
A1	0.05	_	0.15	0.0020	—	0.0059	
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571	
b	0.17	0.22	0.27	0.0067	0.0087	0.0106	
с	0.09	_	0.20	0.0035	—	0.0079	
D	—	9.00	—	—	0.3543	_	
D1	—	7.00	—	—	0.2756	—	
E	—	9.00	—	—	0.3543	_	
E1	—	7.00	—	—	0.2756	—	
е	—	0.50	—	—	0.0197	—	
θ	0°	3.5°	7 °	0°	3.5°	7 °	
L	0.45	0.60	0.75	0.0177	0.0236	0.0295	
L1	_	1.00	_	_	0.0394		

Figure 49. 32-pin low profile quad flat package (7 x 7)

Table 66. 32-pin low profile quad flat package mechanical data
--

Dim	mm			inches ⁽¹⁾			
Dim.	Min	Тур	Max	Min	Тур	Max	
А	—	—	1.60	—	—	0.0630	
A1	0.05	—	0.15	0.0020	—	0.0059	
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571	
b	0.30	0.37	0.45	0.0118	0.0146	0.0177	
с	0.09	—	0.20	0.0035	—	0.0079	
D		9.00	_	_	0.3543	_	
D1	—	7.00	—	—	0.2756	—	
E	—	9.00	—	—	0.3543	—	
E1		7.00	_	_	0.2756	_	
е	—	0.80	—	—	0.0315	—	
θ	0°	3.5°	7 °	0°	3.5°	7°	
L	0.45	0.60	0.75	0.0177	0.0236	0.0295	
L1	—	1.00	—		0.0394	—	

12 Ordering information

	Fiaure 50.	Orderina	information	scheme ⁽¹⁾
--	------------	----------	-------------	-----------------------

Example:		STM8A	F	61	А	А	т	D	XXX ⁽¹⁾	Y
Product class 8-bit automotive microcontroller										
Program memory type F = Flash + EEPROM P = FASTROM H = Flash no EEPROM										
Device family 51 = CAN/LIN 61 = LIN only										
Program memory size 6 = 32 Kbytes 7 = 48 Kbytes 8 = 64 Kbytes 9 = 96 Kbytes A= 128 Kbytes										
Pin count 6 = 32 pins 8 = 48 pins 9= 64 pins A = 80 pins										
Package type T = LQFP										
Temperature range A = -40 to 85 °C B = -40 to 105 °C C = -40 to 125 °C D= -40 to 145 °C										
Packing Y = Tray U = Tube X = Tape and reel compliant with	n EIA 48	1-C								

1. Customer specific FASTROM code or custom device configuration. This field shows 'SSS' if the device contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed to be replaced later by the target silicon.

 For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest to you.

13 Known limitations

13.1 STM8A core

13.1.1 Wait for event instruction (WFE) not available

Description

The WFE instruction is not implemented in the devices covered by this datasheet. This instruction is used to synchronize the device with external computing resources. For further details on this instruction, refer to the STM8 CPU programming manual (PM0044) on *www.st.com*.

Workaround

None.

13.1.2 JRIL and JRIH instructions not available

Description

JRIL (jump if port INT pin = 0) and JRIH (jump if port INT pin = 1) are not supported by the devices covered by this datasheet. These instructions perform conditional jumps: JRIL and JRIH jump if one of the external interrupt lines is low and high, respectively.

In the devices covered by this datasheet, JRIL is equivalent to an unconditional jump and JRIH is equivalent to NOP. For further details on these instructions, refer to the STM8 CPU programming manual (PM0044) on *www.st.com*.

Workaround

None.

13.1.3 CPU not returning to Halt mode when the AL bit is set

Description

When the AL bit of the CFG_GCR register is set, the CPU does not return to Halt mode after exiting an interrupt service routine (ISR). It returns to the main program and executes the next instruction after the HALT instruction.

Workaround

None.

13.1.4 Main program not resuming after ISR has reset the AL bit

Description

If the CPU is in wait for interrupt state and the AL bit is set, the CPU returns to wait for interrupt state after executing an ISR. To continue executing the main program, the AL bit must be reset by the ISR. When AL is reset just before exiting the ISR, the CPU may remain stalled.

Doc ID 14395 Rev 6

Workaround

Reset the AL bit at least two instructions before the IRET instruction.

13.2 I²C interface

13.2.1 Misplaced NACK bit when receiving 2 bytes in master mode

Description

When receiving two bytes in master mode, the usual sequence is the following:

- 1. Set POS and ACK bits of the I2C_CR2 register to 1.
- 2. Wait for ADDR event (address sent bit in I2C_SR1 register). When ADDR is set to 1, program ACK to 0 and clear ADDR.
- 3. Wait for BTF event (byte transfer finished bit in I2C_SR1 register). When BTF is set to 1, program the STOP bit to 1 in the I2C_CR2 register, and read the 2 received bytes.

The NACK bit may be sent erroneously after the first byte.

Workaround

Use a different software sequence to clear ADDR and ACK bits:

- 1. Wait till ADDR flag is set.
- 2. Mask interrupts.
- 3. Clear ADDR bit.
- 4. Clear ACK bit.
- 5. Re-enable interrupts.

As the TLI interrupt is not maskable, this software workaround can not be implemented in applications using the TLI interrupt.

13.2.2 Data register corrupted

Description

The content of the shift register may be shifted to the left by 1 bit and the second read operation will return an incorrect value when the following conditions are met:

- BTF bit (last data received) set to 1
- Software sequence (SET STOP, READ N-1, READ N) delayed (for instance by an interrupt)
- N-1 byte not read before the next SCL rising edge.

Workaround

Mask all active interrupts between the SET STOP and the READ N-1 instructions. As TLI is not maskable, this software workaround can not be implemented in applications using the TLI interrupt.

13.2.3 Delay in STOP bit programming leading to reception of supplementary byte

Description

When receiving one byte in master mode, the STOP bit in the I2C_CR2 register is programmed just after ADDR bit is cleared in order to generate a STOP condition after the reception of the byte. If the programming of the STOP bit is delayed after the end of the first byte reception, the master may receive another byte before the STOP condition is generated and a wrong data will be received.

Workaround

Mask interrupts while clearing the ADDR bit and programming the STOP bit. As TLI is not maskable, this software workaround can not be implemented in applications using the TLI interrupt.

13.2.4 START condition badly generated after misplaced STOP

Description

When the START bit is set in the I2C_CR2 register and a misplaced STOP occurs on the bus thus leading to a bus error, the START condition on the bus may be badly generated by the I^2 C peripheral (glitch on SDA resulting in SDA and SCL tied low simultaneously).

Workaround

When a bus error is detected (through a flag and/or interrupt), check if a START condition was requested through the I2C_CR2 register. If so, a STOP condition should be generated followed by a new START condition. This does not avoid the badly generated START condition, but allows to resynchronize the network on the new START condition.

13.3 USART Interface

Parity error flag (PE) not correctly set when overrun condition occurs

Description

If an overrun condition occurs, the parity error flag (PE) of the UART_SR register is not set for the frame which caused the overrun condition. The PE flag represents the status of the last correctly received frame.

Workaround

None.

13.4 LINUART interface

13.4.1 Framing error with data byte 0x00

Description

If the LINUART interface is configured in LIN slave mode, and the active mode with break detection length is set to 11 (LBDL bit of UART_CR4 register set to 1), FE and RXNE flags are not set when receiving a 0x00 data byte with a framing error, followed by a recessive state. This occurs only if the dominant state length is between 9.56 and 10.56 times the baud rate.

Workaround

The LIN software driver can handle this exceptional case by implementing frame timeouts to comply with the LIN standard. This method has been implemented in ST LIN 2.1 driver package which passed the LIN compliance tests.

13.4.2 Framing error when receiving an identifier (ID)

Description

If an ID framing error occurs when the LINUART is in active mode, both LHE and LHDF flags are set at the end of the LIN header with ID framing error.

Workaround

The LIN software driver can handle this case by checking both LHE and LHDF flags upon header reception.

13.4.3 Parity error when receiving an identifier (ID)

Description

If an ID parity error occurs, the LINUART wakes up from mute mode and both LHE and LHDF are set at the end of the LIN header with parity error. The PE flag is also set.

Workaround

The LIN software driver can handle this case by checking all the flags upon header reception.

13.4.4 OR flag not correctly set in LIN master mode

Description

When the LINUART operates in master mode, the OR flag is not set if an overrun condition occurs.

Workaround

The LIN software driver can detect this case through a LIN protocol error.

13.4.5 LIN header error when automatic resynchronization is enabled

Description

If the LINUART is configured in LIN slave mode (LSLV bit set in LINUART_CR6 register) and the automatic resynchronization is enabled (LASE bit set in LINUART_CR6), the LHE flag may be set instead of LHDF flag when receiving a valid header.

Workaround

None.

13.5 Clock controller

13.5.1 HSI RC oscillator cannot be switched off in run mode

Description

The internal 16 MHz RC oscillator cannot be switched off in run mode, even if the HSIEN bit is programmed to 0.

Workaround

None.

13.6 SPI Interface

13.6.1 Last bit too short if SPI is disabled during communication

Description

When the SPI interface operates in master mode and the baud rate generator prescaler is equal to 2, the SPI is disabled during ongoing communications, and the data and clock output signals are switched off at the last strobing edge of the SPI clock.

As a consequence the length of the last bit is out of range and its reception on the bus is not ensured.

Workaround

Check if a communication is ongoing before disabling the SPI interface. This can be done by monitoring the BSY bit in the SPI_SR register.

13.7 beCAN interface

13.7.1 beCAN transmission error when sleep mode is entered during transmission

Description

If sleep mode entry is requested while a transmission is ongoing or a transmission request is pending, the beCAN T_x pin will have a spurious behavior incompliant with the CAN protocol.

No error frame will be sent and the device will enter sleep mode.

Workaround

Ensure that no transmission is ongoing and that no transmission request is pending before putting the beCAN in sleep mode. This can be done by checking the beCAN control and status registers before entering sleep mode. Refer to section 24.4.3 Sleep mode (low power) of the RM0009 reference manual.

13.7.2 beCAN woken up from sleep mode with automatic wakeup interrupt

Description

Waking up the beCAN from sleep mode using the automatic wakeup interrupt triggers an interrupt on each CAN Rx falling edge until the bus is idle.

Workaround

To have a wakeup interrupt triggered only on the first falling edge of the CAN Rx pin, perform the following actions:

- 1. Disable the automatic wakeup interrupt.
- 2. Clear the WKUI flag.
- 3. Disable the sleep mode in the ISR.

13.7.3 beCAN time triggered communication mode not supported

Description

The time triggered communication mode described in section 24.4.4 of the STM8A reference manual (RM0009) is not supported.

TTCM bit must be kept at 0 in the CAN_MCR register (time triggered communication mode disabled), and TGT bit in CAN_MDLCR must be initialized to 0 (CAN_MTSRH and CAN_MTSRL registers not sent).

Workaround

None.

13.7.4 be CAN read error in slow mode

Description

The read byte may be corrupted when the CPU is in slow mode and a FIFO read operation is performed while a message transmission is ongoing. This happens because the transmission mailboxes and the receive FIFOs share the same address/data lines for read and write operations.

Workaround

To prevent this problem from occurring, the CPU clock must be the master clock $(CLK_CKDIVR[2:0] = 000b)$ when the user application starts reading the FIFO (CPU clock divider changed to /1). After the FIFO read operation is complete, the CPU clock divider (slow mode) could be applied again.

14 STM8 development tools

Development tools for the STM8A microcontrollers include the

- STice emulation system offering tracing and code profiling
- STVD high-level language debugger including assembler and visual development environment - seamless integration of third party C compilers
- STVP Flash programming software

In addition, the STM8A comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

14.1 Emulation and in-circuit debugging tools

The STM8 tool line includes the STice emulation system offering a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8A application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full-featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including tracing, profiling and code coverage analysis to help detect execution bottlenecks and dead code.

In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet your development requirements and to adapt your emulation system to support existing and future ST microcontrollers.

14.1.1 STice key features

- Program and data trace recording up to 128 K records
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Real-time read/write of all device resources during emulation
- Occurrence and time profiling and code coverage analysis (new features)
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- USB 2.0 high-speed interface to host PC
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows you to specify the components you need to meet your development requirements and adapt to future requirements
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

14.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual programmer (STVP) software interface. STVD provides seamless integration of the Cosmic C compiler for STM8, which is available in a free version that outputs up to 16 Kbytes of code.

14.2.1 STM8 toolset

The STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at www.st.com/mcu. This package includes:

ST visual develop

Full-featured integrated development environment from STMicroelectronics, featuring:

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST visual programmer (STVP)

Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8A microcontroller's Flash memory. STVP also offers project mode for saving programming configurations and automating programming sequences.

14.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of your application directly from an easy-to-use graphical interface. Available toolchains include:

C compiler for STM8

Available in a free version that outputs up to 16 Kbytes of code. For more information, see www.cosmic-software.com, www.raisonance.com

STM8 assembler linker

Free assembly toolchain included in the STM8 toolset, which allows you to assemble and link your application source code.

14.3 **Programming tools**

During the development cycle, STice provides in-circuit programming of the STM8A Flash microcontroller on your application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming your STM8A.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

15 Revision history

Table 67.	Document revision history
-----------	---------------------------

Date	Revision	Changes
31-Jan-2008	Rev 1	Initial release
22-Aug-2008	Rev 2	Added 'H' products to the datasheet (Flash no EEPROM). <i>Features on page 1</i> : Updated <i>Memories, Reset and supply</i> <i>management, Communication interfaces</i> and <i>I/Os</i> ; reduced wakeup pins by 1. <i>Table 1</i> : Removed STM8AF6168, STM8AF6148, STM8AF6166, STM8AF6146, STM8AF5168, STM8AF5186, STM8AF5176, and STM8AF5166. <i>Section 1, Section 5, Section 6.2, Table 33,</i> and <i>Section 9</i> : Updated reference documentation: RM0009, PM0047, and UM0470. <i>Section 2</i> : Added information about peak performance. <i>Section 3</i> : Removed STM8AF5186T, STM8AF5176T, STM8AF5168T, and STM8AF5166T. <i>Table 2</i> : Removed STM8AF6168T, STM8AF6166T, STM8AF5168T, and STM8AF5166T. <i>Table 3</i> : Removed STM8AF6168T, STM8AF6166T, STM8AF6148T, and STM8AF6146T. <i>Section 5.5.3</i> : Major modification, TMU included. <i>Section 5.5.4</i> . Section <i>5.5.5</i> : Maximum frequency conditional 32 Kbyte/128 Kbyte. <i>Section 5.5.4</i> . Section <i>5.5.5</i> : Maximum frequency conditional 32 Kbyte/128 Kbyte. <i>Section 5.9, Section 5.9.3</i> : SPI 10 Mb/s. <i>Figure 3, Figure 4</i> , and <i>Figure 5</i> : Amended footnote 1. <i>Table 6</i> : HS output changed from 20 mA to 8 mA. <i>Section 10.3.2</i> Note on typical/WC values added. <i>Table 14</i> : Replaced the source blocks 'simple USART', 'very low-end timer (timer 4)', and 'EEPROM' with 'LINUART', 'timer4' and 'reserved' respectively, added TMU registers. <i>Table 32</i> : Updated OPT6 and NOPT6, added OPT7 to 17 (TMU, BL) <i>Table 33</i> : Amended footnotes. <i>Table 37</i> : Added parameter 'voltage and current operating conditions'. <i>Table 37</i> : Added anamended I _{DD(RUN)} data; amended I _{DD(WFI)} data; amended footnotes. <i>T</i>

Date	Revision	Changes
22-Aug-2008	Rev 2 cont'd	Table 46: Removed ACC _{HSI} parameters and replaced with ACC _{HS} parameters; amended data and footnotes.Amended data of ' <i>RAM and hardware registers</i> ' table.Table 48: Updated names and data of N _{RW} and t _{RET} parameters.Table 51: Added V _{OH} and V _{OL} parameters; Updated I _{Ikg ana} parameter.Removed: Output driving current (standard ports), Output driving current (true open drain ports), and Output driving current (high sink
16-Sep-2008	Rev 3	Replaced the salestype 'STM8H61xx' with 'STM8AH61xx on the first page. Added 'part numbers' to heading rows of <i>Table 1: Device summary</i> . Updated the 80-pin package silhouette <i>on page 1</i> in line with POA 0062342-revD. <i>Table 14</i> : Renamed 'TMU key registers 0-7 [7:0]' as 'TMU key registers 1-8 [7:0]' <i>Section 9</i> : Updated introductory text concerning option bytes which do not need to be saved in a complementary form. <i>Table 14</i> : Renamed the option bits 'TMU[0:3]', 'NTMU[0:3]', and 'TMU_KEY 0-7 [7:0]' as 'TMU[3:0]', 'NTMU[3:0]', and 'TMU_KEY 1-8 [7:0]' respectively. <i>Table 33</i> : Updated values of option byte 5 (HSECNT[7:0]); inverted the description of option byte 6 (TMU[3:0]); renamed option bytes 8 to 15 'TMU_KEY 0-7 [7:0]', as 'TMU_KEY 1-8 [7:0]'. Updated 80-pin package information in line with POA 0062342-revD in <i>Figure 46</i> and <i>Table 63</i> .

Table 67. Document revision history (continued)

Date	Revision	Changes
		Added 'STM8AH61xx' and 'STM8AH51xx to document header.
		Updated <i>Features on page 1</i> (memories, timers, operating temperature, ADC and I/Os).
		Updated Table 1: Device summary
		Updated Kbytes value of program memory in Chapter 1: Introduction
		Chapter 2: Description
		 Changed the first two lines from the top.
		Updated Figure 1: STM8A block diagram
		Updated Chapter 5: Product overview
		In <i>Figure 5: LQFP 48-pin pinout</i> , added USART function to pins 10,
		11, and 12; added CAN Tx and CAN Rx functions to pins 35 and 36 respectively.
		Section 6.2: Pin description
		- Deleted text below the Table 6: Legend/abbreviation for Table 7
		Table 7: STM8A microcontroller family pin description
		- 68th, 69th pin (LQFP80): replaced X with a dash for PP output
		 Added a table footnote
		Updated Figure 7: Register and memory map
		Table 8: Memory model 128K
		 Updated footnote
		Deleted the table "Stack and RAM partitioning"
		Table 31: STM8A interrupt table.
01-Jul-2009	Rev 4	- Updated priorities 13, 15, 17, 20 and 24
		 Changed table footnote
		Updated Chapter 7.2: Register map
		Updated <i>Table 50: Data memory, Table 51: I/O static characteristics,</i> and <i>Table 52: NRST pin characteristics.</i>
		Section 10.1.1: Minimum and maximum values.
		- Added ambient temperature $T_A = -40 \ ^{\circ}C$
		Updated Table 34: Voltage characteristics
		Updated Table 35: Current characteristics
		Updated Table 36: Thermal characteristics
		Updated Table 37: General operating conditions
		Updated Table 38: Operating conditions at power-up/power-down.
		Figure 12: fCPUmax versus VDD.
		 Updated temperature ranges in functional area Added a figure feature.
		 Added a figure footnote Removed 'total current consumption' and 'note on the run-current
		typical values'.
		Replaced Table 39: Total current consumption in run, wait and slow
		mode. General conditions for VDD apply. TA = $-40 ^{\circ}C$ to 145 $^{\circ}C$
		Replaced Table 40: Total current consumption in halt and active halt modes. General conditions for VDD apply. TA = -40 °C to 55 °C unless otherwise stated.
		Removed Table 21: Total current consumption in run, wait and slow
		mode. General conditions for V_{DD} apply. $T_A = -40 \ ^{\circ}C$ to 145 $^{\circ}C$

Table 67. Document revision history (continued)

Date	Revision	Changes
01-Jul-2009	Rev 4	Removed Table 22: Total current consumption and timing in halt, fast active halt and slow active halt modes at $V_{DD} = 3.3$ V. Added Table 41: Oscillator current consumption Added Table 42: Programming current consumption. Updated Table 43: Typical peripheral current consumption VDD = 5.0 V Changed Section : HSE external clock title from "HSE user external clock" Updated Table 44: HSE external clock characteristics Updated Table 45: HSE oscillator characteristics. Figure 21: HSE oscillator circuit diagram. – Changed 'consumption control' to 'current control' HSE oscillator critical gm formula. – Clarified formula Updated Table 48: HSI oscillator characteristics. Removed 'RAM and hardware registers' Removed 'RAM and hardware registers' Removed Table 48: Flash program memory/data EEPROM memory. Added Table 48: Flash program memory/data EEPROM memory. Added Table 50: Data memory. Updated Table 52: NRST pin characteristics Updated Table 52: NRST pin characteristics Updated Table 53: TIM 1, 2, 3, and 4 electrical specifications Section 10.3.9: SPI interface Changed title from "SPI serial peripheral interface" Updated Table 54: SPI characteristics. Figure 41: SPI timing diagram in slave mode and with CPHA = 0 – Changed title – Changed title Updated Table 56: ADC characteristics. Updated Table 56: ADC cacuracy for V _{DDA} = 3.3 V Updated Table 57: ADC accuracy for V _{DDA} = 5 V Updated Table 57: ADC accuracy for VDDA = 5 V Updated Table 59: EMI data Updated Table 59: EMI data Updated Table 50: Cordering information scheme(1).
22-Oct-2009	Rev 5	Added <i>Chapter 13: Known limitations.</i> Updated <i>Table 1: Device summary</i> : – Added STM8AF5178, STM8AF519A and STM8AF619A.

Table 67.	Document revision	history (continued)
-----------	-------------------	---------------------

Date	Revision	Changes
13-Apr-2010	Rev 6	Updated title on cover page. Modified cover page header to clarify the part numbers covered by the datasheets. Updated <i>Note 1</i> below <i>Table 1: Device summary</i> to add 'P' order codes. Changed definition of 'P' order codes. 'Q' order codes (FASTROM and EEPROM) removed. Content of <i>Section 5: Product overview</i> reorganized. <i>Table 7: STM8A</i> <i>microcontroller family pin description</i> : updated PD7/TLI alternate function, removed caution note for e, soit: PD6/ LINUART_RX, and added <i>Note 1</i> to PA1/OSCIN. Renamed <i>Section 7 Memory and register map</i> , and content merged with section 9. Register map. Updated <i>Figure 7: Register and</i> <i>memory map</i> . Renamed BL_EN and NBL_EN, BL and NBL, respectively, in <i>Table 32: Option bytes</i> . Updated AFR4 definition in <i>Table 33: Option byte description</i> .Added C _{EXT} in <i>Table 37: General operating conditions</i> , and <i>Section 10.3.1:</i> <i>VCAP external capacitor</i> . Updatet t _{VDD} in <i>Table 38: Operating conditions at power-up/power- down</i> . Moved <i>Table 43: Typical peripheral current consumption VDD = 5.0 V</i> to <i>Section : Current consumption for on-chip peripherals</i> . Removed V _{ESD(MM)} from <i>Table 60: ESD absolute maximum ratings</i> . Adapted <i>Section 12: Ordering information</i> to the devices supported by the datasheet. Updated <i>Section 13: Known limitations</i> .

 Table 67.
 Document revision history (continued)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 14395 Rev 6

