SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

- Low Supply Voltage Range 1.8 V to 3.6 V
- Ultralow-Power Consumption
- Active Mode: 250 μA at 1 MHz, 2.2 V
 Standby Mode: 0.7 μA
 - Off Mode (RAM Retention): 0.1 μA
- Ultrafast Wake-Up From Standby Mode in less than 1 μs
- 16-Bit RISC Architecture, 62.5 ns Instruction Cycle Time
- Basic Clock Module Configurations:
 - Internal Frequencies up to 16MHz with 4 calibrated Frequencies to ±1%
 - 32-kHz Crystal
 - High-Frequency Crystal up to 16MHz
 - Resonator
 - External Digital Clock Source
- 16-Bit Timer_A With Three Capture/Compare Registers
- On-Chip Comparator for Analog Signal Compare Function or Slope A/D Conversion

Security FuseBootstrap LoaderOn Chip Emulation Module

Programmable Code Protection by

Serial Onboard Programming,

 Family Members Include: MSP430F2101: 1KB + 256B Flash Memory 128B RAM
 MSP430F2111: 2KB + 256B Flash Memory 128B RAM
 MSP430F2121: 4KB + 256B Flash Memory 256B RAM

No External Programming Voltage Needed

- MSP430F2131: 8KB + 256B Flash Memory 256B RAM
- Available in a 20-Pin Plastic Small-Outline Wide Body (SOWB) Package, 20-Pin Plastic Small-Outline Thin (TSSOP) Package, 20-Pin TVSOP and 24-Pin QFN
- For Complete Module Descriptions, Refer to the *MSP430x2xx Family User's Guide*

Brownout Detector

description

The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1µs.

•

The MSP430x21x1 series is an ultralow-power mixed signal microcontroller with a built-in 16-bit timer, versatile analog comparator and sixteen I/O pins.

Typical applications include sensor systems that capture analog signals, convert them to digital values, and then process the data for display or for transmission to a host system. Stand alone RF sensor front end is another area of application. The analog comparator provides slope A/D conversion capability.

AVAILARIE OPTIONS

AVAILABLE OF TIONS							
	PACKAGED DEVICES						
T _A	PLASTIC	PLASTIC	PLASTIC	PLASTIC			
	20-PIN SOWB	20-PIN TSSOP	20-PIN TVSOP	24-PIN QFN			
	(DW)	(PW)	(DGV)	(RGE)			
-40°C to 85°C	MSP430F2101IDW	MSP430F2101IPW	MSP430F2101IDGV	MSP430F2101IRGE			
	MSP430F2111IDW	MSP430F2111IPW	MSP430F2111IDGV	MSP430F2111IRGE			
	MSP430F2121IDW	MSP430F2121IPW	MSP430F2121IDGV	MSP430F2121IRGE			
	MSP430F2131IDW	MSP430F2131IPW	MSP430F2131IDGV	MSP430F2131IRGE			
-40°C to 105°C	MSP430F2101TDW	MSP430F2101TPW	MSP430F2101TDGV	MSP430F2101TRGE			
	MSP430F2111TDW	MSP430F2111TPW	MSP430F2111TDGV	MSP430F2111TRGE			
	MSP430F2121TDW	MSP430F2121TPW	MSP430F2121TDGV	MSP430F2121TRGE			
	MSP430F2131TDW	MSP430F2131TPW	MSP430F2131TDGV	MSP430F2131TRGE			

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

device pinout

Note: NC pins not internally connected Power Pad connection to V_{SS} recommended

functional block diagram

NOTE: See port schematics section for detailed I/O information.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

Terminal Functions

	TERMINAL			
NAME	DW, PW, or DGV	RGE	1/0	DESCRIPTION
NAME	NO.	NO.	"0	
P1.0/TACLK	13	13	I/O	General-purpose digital I/O pin Timer_A, clock signal TACLK input
P1.1/TA0	14	14	I/O	General-purpose digital I/O pin Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit
P1.2/TA1	15	15	I/O	General-purpose digital I/O pin Timer_A, capture: CCI1A input, compare: Out1 output
P1.3/TA2	16	16	I/O	General-purpose digital I/O pin Timer_A, capture: CCI2A input, compare: Out2 output
P1.4/SMCLK/TCK	17	17	I/O	General-purpose digital I/O pin / SMCLK signal output Test Clock input for device programming and test
P1.5/TA0/TMS	18	18	I/O	General-purpose digital I/O pin / Timer_A, compare: Out0 output Test Mode Select input for device programming and test
P1.6/TA1/TDI/TCLK	19	20	I/O	General-purpose digital I/O pin / Timer_A, compare: Out1 output Test Data Input or Test Clock Input for programming and test
P1.7/TA2/TDO/TDI [†]	20	21	I/O	General-purpose digital I/O pin / Timer_A, compare: Out2 output Test Data Output or Test Data Input for programming and test
P2.0/ACLK/CA2	8	6	I/O	General-purpose digital I/O pin / ACLK output Comparator_A+, CA2 input
P2.1/INCLK/CA3	9	7	I/O	General-purpose digital I/O pin / Timer_A, clock signal at INCLK Comparator_A+, CA3 input
P2.2/CAOUT/ TA0/CA4	10	8	I/O	General-purpose digital I/O pin Timer_A, capture: CCI0B input/BSL receive Comparator_A+, output / CA4 input
P2.3/CA0/TA1	11	10	I/O	General-purpose digital I/O pin / Timer_A, compare: Out1 output Comparator_A+, CA0 input
P2.4/CA1/TA2	12	11	I/O	General-purpose digital I/O pin / Timer_A, compare: Out2 output Comparator_A+, CA1 input
P2.5/CA5	3	24	I/O	General-purpose digital I/O pin Comparator_A+, CA5 input
XIN/P2.6/CA6	6	4	I/O	Input terminal of crystal oscillator General-purpose digital I/O pin Comparator_A+, CA6 input
XOUT/P2.7/CA7	5	3	I/O	Output terminal of crystal oscillator general-purpose digital I/O pin Comparator_A+, CA7 input
RST/NMI	7	5	1	Reset or nonmaskable interrupt input
TEST	1	22	I	Selects test mode for JTAG pins on Port1. The device protection fuse is connected to TEST.
VCC	2	23		Supply voltage
V _{SS}	4	2		Ground reference
QFN Pad	NA	Package Pad	NA	QFN package pad connection to V _{SS} recommended.

[†]TDO or TDI is selected via JTAG instruction.

NOTE: If XOUT/P2.7/CA7 is used as an input, excess current will flow until P2SEL.7 is cleared. This is due to the oscillator output driver connection to this pad after reset.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

short-form description

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

instruction set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2.

Program Counter	PC/R0
Stack Pointer	SP/R1
Status Register	SR/CG1/R2
Constant Generator	CG2/R3
General-Purpose Register	R4
General-Purpose Register	R5
General-Purpose Register	R6
General-Purpose Register	R7
General-Purpose Register	R8
General-Purpose Register	R9
General-Purpose Register	R10
General-Purpose Register	R11
General-Purpose Register	R12
General-Purpose Register	R13
General-Purpose Register	R14
General-Purpose Register	R15

Table 1. Instruction Word Formats

Dual operands, source-destination	e.g. ADD R4,R5	R4 + R5> R5
Single operands, destination only	e.g. CALL R8	PC>(TOS), R8> PC
Relative jump, un/conditional	e.g. JNE	Jump-on-equal bit = 0

ADDRESS MODE	s	D	SYNTAX	EXAMPLE	OPERATION
Register			MOV Rs,Rd	MOV R10,R11	R10> R11
Indexed			MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)> M(6+R6)
Symbolic (PC relative)			MOV EDE,TONI		M(EDE)> M(TONI)
Absolute			MOV &MEM,&TCDAT		M(MEM)> M(TCDAT)
Indirect			MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)
Indirect autoincrement	•		MOV @Rn+,Rm	MOV @R10+,R11	M(R10)> R11 R10 + 2> R10
Immediate			MOV #X,TONI	MOV #45,TONI	#45> M(TONI)

Table 2. Address Mode Descriptions

NOTE: S = source D = destination

operating modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode AM;
 - All clocks are active
- Low-power mode 0 (LPM0);
 - CPU is disabled ACLK and SMCLK remain active. MCLK is disabled
- Low-power mode 1 (LPM1);
 - CPU is disabled
 ACLK and SMCLK remain active. MCLK is disabled
 DCO's dc-generator is disabled if DCO not used in active mode
- Low-power mode 2 (LPM2);
 - CPU is disabled MCLK and SMCLK are disabled DCO's dc-generator remains enabled ACLK remains active
- Low-power mode 3 (LPM3);
 - CPU is disabled MCLK and SMCLK are disabled DCO's dc-generator is disabled ACLK remains active
- Low-power mode 4 (LPM4);
 - CPU is disabled ACLK is disabled MCLK and SMCLK are disabled DCO's dc-generator is disabled Crystal oscillator is stopped

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

interrupt vector addresses

The interrupt vectors and the power-up starting address are located in the address range of 0FFFh–0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.

If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g. flash is not programmed) the CPU will go into LPM4 immediately after power–up.

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-up External reset Watchdog Flash key violation PC out-of-range (see Note 1)	PORIFG RSTIFG WDTIFG KEYV (see Note 2)	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG (see Notes 2 & 4)	(non)-maskable, (non)-maskable, (non)-maskable	0FFFCh	30
			0FFFAh	29
			0FFF8h	28
Comparator_A+	CAIFG	maskable	0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer_A2	TACCR0 CCIFG (see Note 3)	maskable	0FFF2h	25
Timer_A2	TACCR1 CCIFG, TAIFG (see Notes 2 & 3)	maskable	0FFF0h	24
			0FFEEh	23
			0FFECh	22
			0FFEAh	21
			0FFE8h	20
I/O Port P2 (eight flags)	P2IFG.0 to P2IFG.7 (see Notes 2 & 3)	maskable	0FFE6h	19
I/O Port P1 (eight flags)	P1IFG.0 to P1IFG.7 (see Notes 2 & 3)	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
(see Note 5)			0FFDEh	15
(see Note 6)			0FFDCh 0FFC0h	14 0, lowest

NOTES: 1. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h–01FFh).

2. Multiple source flags

3. Interrupt flags are located in the module

4. (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.

 This location is used as bootstrap loader security key (BSLSKEY). A value of 0AA55h at this location disables the BSL completely.

A value of 0h disables the erasure of the flash if an invalid password is supplied.

6. The interrupt vectors at addresses 0FFDCh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

special function registers

Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement.

interrupt enable 1 and 2

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

memory organization

		MSP430F2101	MSP430F2111	MSP430F2121	MSP430F2131
Memory	Size	1KB Flash	2KB Flash	4KB Flash	8KB Flash
Main: interrupt vector	Flash	0FFFFh–0FFE0h	0FFFFh–0FFE0h	0FFFFh–0FFE0h	0FFFFh-0FFE0h
Main: code memory	Flash	0FFFFh–0FC00h	0FFFFh–0F800h	0FFFFh–0F000h	0FFFFh-0E000h
Information memory	Size	256 Byte	256 Byte	256 Byte	256 Byte
	Flash	010FFh – 01000h	010FFh – 01000h	010FFh – 01000h	010FFh – 01000h
Boot memory	Size	1KB	1KB	1KB	1KB
	ROM	0FFFh – 0C00h	0FFFh – 0C00h	0FFFh – 0C00h	0FFFh – 0C00h
RAM	Size	128 Byte 027Fh – 0200h	128 Byte 027Fh – 0200h	256 Byte 02FFh – 0200h	256 Byte 02FFh – 0200h
Peripherals	16-bit	01FFh – 0100h	01FFh – 0100h	01FFh – 0100h	01FFh – 0100h
	8-bit	0FFh – 010h	0FFh – 010h	0FFh – 010h	0FFh – 010h
	8-bit SFR	0Fh – 00h	0Fh – 00h	0Fh – 00h	0Fh – 00h

bootstrap loader (BSL)

The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. A bootstrap loader security key is provided at address 0FFDEh to disable the BSL completely or to disable the erasure of the flash if an invalid password is supplied. For complete description of the features of the BSL and its implementation, see the Application report *Features of the MSP430 Bootstrap Loader*, Literature Number SLAA089.

BSLKEY	Description
00000h	Erasure of flash disabled if an invalid password is supplied
0AA55h	BSL disabled
any other value	BSL enabled

BSL Function	DW, PW & DGV Package Pins	RGE Package Pins
Data Transmit	14 - P1.1	14 - P1.1
Data Receive	10 - P2.2	8 - P2.2

flash memory

The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually, or as a group with segments 0–n. Segments A to D are also called *information memory.*
- Segment A contains calibration data. After reset segment A is protected against programming or erasing. It can be unlocked but care should be taken not to erase this segment if the calibration data is required.

peripherals

Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the *MSP430x2xx Family User's Guide*.

oscillator and system clock

The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 μ s. The basic clock module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.
- Main clock (MCLK), the system clock used by the CPU.
- Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.

DCO Calibration	DCO Calibration Data (provided from factory in flash info memory segment A)						
DCO Frequency	Calibration Register	Size	Address				
1 MHz	CALBC1_1MHZ	byte	010FFh				
	CALDCO_1MHZ	byte	010FEh				
8 MHz	CALBC1_8MHZ byte		010FDh				
	CALDCO_8MHZ	byte	010FCh				
12 MHz	CALBC1_12MHZ	byte	010FBh				
	CALDCO_12MHZ	byte	010FAh				
16 MHz	CALBC1_16MHZ	byte	010F9h				
	CALDCO_16MHZ	byte	010F8h				

brownout

The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off.

digital I/O

There are two 8-bit I/O ports implemented—ports P1 and P2:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Edge-selectable interrupt input capability for all the eight bits of port P1 and P2.
- Read/write access to port-control registers is supported by all instructions.
- Each I/O has an individually programmable pull-up/pull-down resistor.

WDT+ watchdog timer

The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

comparator_A+

The primary function of the Comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals.

timer_A3

Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

			Timer_A3 Signal	Connections			
Inpu Pin Num		Device Input Signal	Module Input Name	Module Block	Module Output Signal	Outpu Pin Num	
DW, PW, DGV	RGE					DW, PW, DGV	RGE
13 - P1.0	13 - P1.0	TACLK	TACLK				
		ACLK	ACLK	1_			
		SMCLK	SMCLK	Timer	NA		
9 - P2.1	7 - P2.1	INCLK	INCLK				
14 - P1.1	14 - P1.1	TA0	CCI0A			14 - P1.1	14 - P1.1
10 - P2.2	8 - P2.2	TA0	CCI0B			18 - P1.5	18 - P1.5
		V _{SS}	GND	CCR0	TAO		
		VCC	VCC				
15 - P1.2	15 - P1.2	TA1	CCI1A			11 - P2.3	10 - P2.3
		CAOUT (internal)	CCI1B			15 - P1.2	15 - P1.2
		V _{SS}	GND	CCR1	TA1	19 - P1.6	20 - P1.6
		VCC	VCC	1			
16 - P1.3	16 - P1.3	TA2	CCI2A			12 - P2.4	11 - P2.4
		ACLK (internal)	CCI2B	1		16 - P1.3	16 - P1.3
		V _{SS}	GND	CCR2	TA2	20 - P1.7	21 - P1.7
		VCC	VCC]			

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

peripheral file map

	PERIPHERALS WITH WORD ACCESS	S	
Timer_A	Capture/compare register	TACCR2	0176h
	Capture/compare register	TACCR1	0174h
	Capture/compare register	TACCR0	0172h
	Timer_A register	TAR	0170h
	Capture/compare control	TACCTL2	0166h
	Capture/compare control	TACCTL1	0164h
	Capture/compare control	TACCTL0	0162h
	Timer_A control	TACTL	0160h
	Timer_A interrupt vector	TAIV	012Eh
Flash Memory	Flash control 3	FCTL3	012Ch
	Flash control 2	FCTL2	012Ah
	Flash control 1	FCTL1	0128h
Watchdog TImer+	Watchdog/timer control	WDTCTL	0120h
	PERIPHERALS WITH BYTE ACCESS	6	
Comparator_A+	Comparator_A+ port disable	CAPD	05Bh
	Comparator_A+ control 2	CACTL2	05Ah
	Comparator_A+ control 1	CACTL1	059h
Basic Clock	Basic clock system control 3	BCSCTL3	053h
	Basic clock system control 2	BCSCTL2	058h
	Basic clock system control 1	BCSCTL1	057h
	DCO clock frequency control	DCOCTL	056h
Port P2	Port P2 resistor enable	P2REN	02Fh
	Port P2 selection	P2SEL	02Eh
	Port P2 interrupt enable	P2IE	02Dh
	Port P2 interrupt edge select	P2IES	02Ch
	Port P2 interrupt flag	P2IFG	02Bh
	Port P2 direction	P2DIR	02Ah
	Port P2 output	P2OUT	029h
	Port P2 input	P2IN	028h
Port P1	Port P1 resistor enable	P1REN	027h
	Port P1 selection	P1SEL	026h
	Port P1 interrupt enable	P1IE	025h
	Port P1 interrupt edge select	P1IES	024h
	Port P1 interrupt flag	P1IFG	023h
	Port P1 direction	P1DIR	022h
	Port P1 output	P1OUT	021h
	Port P1 input	P1IN	020h
Special Function	SFR interrupt flag 2	IFG2	003h
	SFR interrupt flag 1	IFG1	002h
	SFR interrupt enable 2	IE2	001h
	SFR interrupt enable 1	IE1	000h

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

absolute maximum ratings (see Note 1)

Voltage applied at V _{CC} to V _{SS}	–0.3 V to 4.1 V
Voltage applied to any pin (see Note 2)	
Diode current at any device terminal	±2 mA
Storage temperature, T _{stg} (unprogrammed device, see Note 3)	––––––––––––––––––––––––––––––––––––––
Storage temperature, T _{stg} (programmed device, see Note 3)	–40°C to 85°C

- NOTES: 1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 - 2. All voltages referenced to V_{SS}. The JTAG fuse-blow voltage, V_{FB}, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse.
 - 3. Higher temperature may be applied during board soldering process according to the current JEDEC J–STD–020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage during program execution, V_{CC}		1.8		3.6	V
Supply voltage during program/erase flash memory, V_{C}	C	2.2		3.6	V
Supply voltage, V _{SS}			0		V
upply voltage, V _{SS} perating free-air temperature range, T _A	I Version	-40		85	°C
Operating free-air temperature range, 1A	T Version	-40		105	°C
apply voltage during program/erase flash memory, apply voltage, V _{SS} berating free-air temperature range, T _A ocessor frequency f _{SYSTEM} laximum MCLK frequency)	V_{CC} = 1.8 V, Duty Cycle = 50% ±10%	0		6	
Processor frequency fSYSTEM (Maximum MCLK frequency)	V_{CC} = 2.7 V, Duty Cycle = 50% ±10% (see Note 3)	0		12	MHz
(see Notes 1, 2 and Figure 1)	V _{CC} = 3.3 V, Duty Cycle = 50% ±10% (see Note 4)	0		16	

NOTES: 1. The MSP430 CPU is clocked directly with MCLK.

Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency.

2. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this datasheet.

- 3. This includes using the provided DCO calibration value for 12 MHz for V_{CC} = 2.7 V to 3.6 V over the operating temperature range.
- 4. This includes using the provided DCO calibration value for 16 MHz for V_{CC} = 3.3 V to 3.6 V over the operating temperature range.

Supply Voltage -V

NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V_{CC} of 2.2 V.

Figure 1. Operating Area

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PAF	RAMETER	TEST CONDITIONS	TA	VCC	MIN	TYP	MAX	UNIT
	IAM,1MHz Active mode (AM) current (1MHz) $f_{DCO} = f_{MCLK} = f_{SMCLK} = 1MHz,$ $f_{ACLK} = 32,768Hz,$ Program executes in flash, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 $f_{DCO} = f_{MCLK} = 1MHz.$		2.2 V		250	300	μA	
'AM, TMHZ		CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0		3 V		350	410	μΛ
	Active mode (AM)	$f_{DCO} = f_{MCLK} = f_{SMCLK} = 1MHz,$ $f_{ACLK} = 32,768Hz,$ Program executes in RAM, BCSCTL1 = CALBC1_1MHZ,		2.2 V		200		μA
AM,1MHz current (1MHz)	$DCOCTL = CALBCI_IMHZ,$ $DCOCTL = CALDCO_IMHZ,$ CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0		3 V		300		per t	
		^f MCLK = ^f SMCLK = f _{ACLK} = 32,768Hz/8 = 4,096Hz,	-40–85°C	2.2 V		2	5	
	Active mode (AM)	$f_{DCO} = 0Hz$, Program executes in flash,	105°C	2.2 V			6	
IAM,4kHz	current (4kHz)	SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11,	-40-85°C	3 V		3	9	μA
		CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0	105°C	3 V			9	
, Active mode (AM)		$f_{MCLK} = f_{SMCLK} = f_{DCO(0,0)} \approx 100 kHz$, $f_{ACLK} = 0Hz$, Program executes in flash,		2.2 V		60	85	
'AM,100kHz	ACIVE Indue (AW) AM,100kHz current (100kHz)	RSELx = 0, DCOx = 0, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 1		3 V		72	95	μA

active mode supply current (into V_{CC}) excluding external current (see Notes 1 and 2)

NOTES: 1. All inputs are tied to 0 V or V_{CC} . Outputs do not source or sink any current.

2. The currents are characterized with a Micro Crystal CC4V–T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9pF.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

typical characteristics – active mode supply current (into V_{CC})

Figure 2. Active mode current vs V_{CC}, T_A = 25°C

Figure 3. Active mode current vs DCO frequency

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

PAR	AMETER	TEST CONDITIONS	Τ _Α	VCC	MIN TYI	P MAX	UNIT
ILPM0,1MHz	Low-power mode 0 (LPM0) current,	$f_{MCLK} = 0MHz$, $f_{SMCLK} = f_{DCO} = 1MHz$, $f_{ACLK} = 32,768Hz$, $BCSCTL1 = CALBC1_1MHZ$,		2.2 V	6	5 80	μA
	see Note 3	$DCOCTL = CALDCO_1MHZ,$ CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0		3 V	8	5 100	
	Low-power mode 0 (LPM0) current,	$\label{eq:mclk} \begin{array}{l} {}^{f}MCLK = 0MHz, \\ {}^{f}SMCLK = {}^{f}DCO(0, \ 0) \approx 100kHz, \\ {}^{f}ACLK = 0Hz, \end{array}$		2.2 V	3	7 48	μA
LPM0,100kHz 0 (LPM0) current, see Note 3	RSELx = 0, DCOx = 0, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 1 $f_{MOL} = f_{MOL} = 0$ MHz f_{DOO} = 1MHz		3 V	4	1 52	μΛ	
		fMCLK =fSMCLK = 0MHz, fDCO = 1MHz, fACLK = 32,768Hz,	-40-85°C	2.2 V	2	2 29	μA
	Low-power mode	ACLK = 32,70002, BCSCTL1 = CALBC1_1MHZ,	105°C	2.2 V		31	
ILPM2	see Note 4	DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0	-40-85°C	3 V	2	5 32	
			105°C	- 3 V		34	
			-40°C	2.2 V	0.	7 1.2	μA
			25°C		0.	7 1.0	
	Low-power mode	fDCO = fMCLK = fSMCLK = 0MHz,	85°C	2.2 V	1.	5 2.3	μ
ILPM3,LFXT1	3 (LPM3) current,	f _{ACLK} = 32,768Hz,	105°C			36	
	see Note 4	CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0	-40°C		0.	9 1.2	
		030011 = 0	25°C	3 V	0.	-	μA
			85°C		1.		μ
			105°C		:	37	
	1	fDCO = fMCLK = fSMCLK = 0MHz,	-40°C		0.		5 μΑ
I _{LPM4}	Low-power mode 4 (LPM4) current,	f _{ACLK} = 0Hz,	25°C	2.2 V/3 V	0.		
	see Note 5	CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1	85°C		0.		
			105°C			2 4	

low power mode supply currents (into V_{CC}) excluding external current (see Notes 1 and 2)

NOTES: 1. All inputs are tied to 0 V or V_{CC}. Outputs do not source or sink any current.

 The currents are characterized with a Micro Crystal CC4V–T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9pF.

Current for brownout and WDT clocked by SMCLK included.

Current for brownout and WDT clocked by ACLK included.

5. Current for brownout included.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Schmitt-trigger inputs – Ports P1 and P2

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
				0.45		0.75	VCC
VIT+	Positive-going input threshold voltage		2.2 V	1.00		1.65	N
	tollago		3 V	1.35		2.25	V
				0.25		0.55	VCC
VIT-	VIT- Voltage		2.2 V	0.55		1.20	
			3 V	0.75		1.65	V
14	Input voltage hysteresis (V _{IT+} –		2.2 V	0.2		1.0	v
V _{hys}	V _{IT} –)		3 V	0.3		1.0	v
R _{Pull}	Pull-up/pull-down resistor	For pull–up: $V_{IN} = V_{SS}$; For pull–down: $V_{IN} = V_{CC}$		20	35	50	kΩ
Cl	Input Capacitance	$V_{IN} = V_{SS} \text{ or } V_{CC}$			5		pF

inputs – Ports P1 and P2

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
^t (int)		Port P1, P2: P1.x to P2.x, External trigger puls width to set interrupt flag, (see Note 1)	2.2 V/3 V	20			ns

NOTES: 1. An external signal sets the interrupt flag every time the minimum interrupt puls width t_(int) is met. It may be set even with trigger signals shorter than t_(int).

leakage current – Ports P1 and P2

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
I _{lka(Px.x)}	High-impedance leakage current	see Notes 1 and 2	2.2 V/3 V			±50	nA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pull-up/pull-down resistor is disabled.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

outputs - Ports P1 and P2

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP MAX	UNIT
		$I_{(OHmax)} = -1.5 \text{ mA}$ (see Note 1)	2.2 V	V _{CC} -0.25	VCC	
V _{OH} High-level output voltage	I(OHmax) = -6 mA (see Note 2)	2.2 V	VCC-0.6	VCC		
	$I_{(OHmax)} = -1.5 \text{ mA}$ (see Note 1)	3 V	V _{CC} -0.25	VCC	V	
		$I_{(OHmax)} = -6 \text{ mA} \text{ (see Note 2)}$	3 V	VCC-0.6	VCC	
		I(OLmax) = 1.5 mA (see Note 1)	2.2 V	VSS	V _{SS} +0.25	
	Low-level output	I _(OLmax) = 6 mA (see Note 2)	2.2 V	VSS	V _{SS} +0.6	
VOL	voltage	I _(OLmax) = 1.5 mA (see Note 1)	3 V	VSS	V _{SS} +0.25	V
		I(OLmax) = 6 mA (see Note 2)	3 V	VSS	VSS+0.6	1

NOTES: 1. The maximum total current, I_{OHmax} and I_{OLmax}, for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified.

2. The maximum total current, I_{OHmax} and I_{OLmax}, for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

output frequency - Ports P1 and P2

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Port output frequency P1.4/SMCLK, CL = 20		P1.4/SMCLK, CL = 20 pF, RL = 1 kOhm	2.2 V			10	MHz
^f Px.y (with lo	(with load)	(see Note 1 and 2)	3 V			12	MHz
	Clock output frequency	P2.0/ACLK, P1.4/SMCLK, CL = 20 pF	2.2 V			12	MHz
[†] Port_CLK	Clock output hequency	(see Note 2)	3 V			16	MHz

NOTES: 1. A resistive divider with 2 times 0.5 kΩ between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.
 2. The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics – outputs

NOTE: One output loaded at a time.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

POR/brownout reset (BOR) (see Notes 1 and 2)

	PARAMETER	TEST CONDITIONS	Τ _Α	VCC	MIN	TYP	MAX	UNIT
VCC(start)	(see Figure 8)	$dV_{CC}/dt \le 3 V/s$			0.7	×V(B_I	T–)	V
V(B_IT-)	(see Figure 8 through Figure 10)	$dV_{CC}/dt \le 3 V/s$					1.71	V
	(see Figure 8)	$dV_{CC}/dt \le 3 V/s$	-40–85°C		70	130	180	mV
V _{hys} (B_IT–)			105°C		70	130	210	mV
^t d(BOR)	(see Figure 8)						2000	μs
+()	Pulse length needed at RST/NMI			2.2 V/3 V	2			
^t (reset)	pin to accepted reset internally		2.2 V/3		2.2 V/3 V Z			μs

NOTES: 1. The current consumption of the brownout module is already included in the I_{CC} current consumption data. The voltage level $V_{(B_IT-)} + V_{hys(B_IT-)}$ is $\leq 1.8V$.

During power up, the CPU begins code execution following a period of t_{d(BOR)} after V_{CC} = V_(B_IT-) + V_{hys(B_IT-)}. The default DCO settings must not be changed until V_{CC} ≥ V_{CC(min)}, where V_{CC(min)} is the minimum supply voltage for the desired operating frequency.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - POR/brownout reset (BOR)

Figure 9. V_{CC(drop)} Level With a Square Voltage Drop to Generate a POR/Brownout Signal

Figure 10. V_{CC(drop)} Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

main DCO characteristics

- All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15.
- DCO control bits DCOx have a step size as defined by parameter S_{DCO}.
- Modulation control bits MODx select how often f_{DCO(RSEL,DCO+1)} is used within the period of 32 DCOCLK cycles. The frequency f_{DCO(RSEL,DCO)} is used for the remaining cycles. The frequency is an average equal to:

$$f_{average} = \frac{32 \times f_{DCO(RSEL,DCO)} \times f_{DCO(RSEL,DCO+1)}}{MOD \times f_{DCO(RSEL,DCO)} + (32 - MOD) \times f_{DCO(RSEL,DCO+1)}}$$

DCO frequency

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
		RSELx < 14		1.8		3.6	V
Vcc	Supply voltage range	RSELx = 14		2.2		3.6	V
		RSELx = 15]	3.0		3.6	V
fDCO(0,0)	DCO frequency (0, 0)	RSELx = 0, $DCOx = 0$, $MODx = 0$	2.2 V/3 V	0.06		0.14	MHz
fDCO(0,3)	DCO frequency (0, 3)	RSELx = 0, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	0.07		0.17	MHz
fDCO(1,3)	DCO frequency (1, 3)	RSELx = 1, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	0.10		0.20	MHz
fDCO(2,3)	DCO frequency (2, 3)	RSELx = 2, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	0.14		0.28	MHz
fDCO(3,3)	DCO frequency (3, 3)	RSELx = 3, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	0.20		0.40	MHz
fDCO(4,3)	DCO frequency (4, 3)	RSELx = 4, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	0.28		0.54	MHz
fDCO(5,3)	DCO frequency (5, 3)	RSELx = 5, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	0.39		0.77	MHz
fDCO(6,3)	DCO frequency (6, 3)	RSELx = 6, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	0.54		1.06	MHz
fDCO(7,3)	DCO frequency (7, 3)	RSELx = 7, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	0.80		1.50	MHz
fDCO(8,3)	DCO frequency (8, 3)	RSELx = 8, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	1.10		2.10	MHz
fDCO(9,3)	DCO frequency (9, 3)	RSELx = 9, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	1.60		3.00	MHz
fDCO(10,3)	DCO frequency (10, 3)	RSELx = 10, DCOx = 3, MODx = 0	2.2 V/3 V	2.50		4.30	MHz
fDCO(11,3)	DCO frequency (11, 3)	RSELx = 11, DCOx = 3, MODx = 0	2.2 V/3 V	3.00		5.50	MHz
fDCO(12,3)	DCO frequency (12, 3)	RSELx = 12, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	4.30		7.30	MHz
fDCO(13,3)	DCO frequency (13, 3)	RSELx = 13, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	6.00		9.60	MHz
fDCO(14,3)	DCO frequency (14, 3)	RSELx = 14, $DCOx = 3$, $MODx = 0$	2.2 V/3 V	8.60		13.9	MHz
fDCO(15,3)	DCO frequency (15, 3)	RSELx = 15, $DCOx = 3$, $MODx = 0$	3 V	12.0		18.5	MHz
fDCO(15,7)	DCO frequency (15, 7)	RSELx = 15, DCOx = 7, MODx = 0	3 V	16.0		26.0	MHz
S _{RSEL}	Frequency step between range RSEL and RSEL+1	S _{RSEL} = ^f DCO(RSEL+1,DCO) ^{/f} DCO(RSEL,DCO)	2.2 V/3 V			1.55	ratio
S _{DCO}	Frequency step between tap DCO and DCO+1	S _{DCO} = ^f DCO(RSEL,DCO+1) ^{/f} DCO(RSEL,DCO)	2.2 V/3 V	1.05	1.08	1.12	rauo
Duty Cycle		Measured at P1.4/SMCLK	2.2 V/3 V	40	50	60	%

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

calibrated DCO frequencies - tolerance at calibration

	PARAMETER	TEST CONDITIONS	TA	VCC	MIN	TYP	MAX	UNIT
Frequency to	plerance at calibration		25°C	3 V	-1	±0.2	+1	%
^f CAL(1MHz)	1MHz calibration value	BCSCTL1= CALBC1_1MHZ DCOCTL = CALDCO_1MHZ Gating time: 5ms	25°C	3 V	0.990	1	1.010	MHz
^f CAL(8MHz)	8MHz calibration value	BCSCTL1= CALBC1_8MHZ DCOCTL = CALDCO_8MHZ Gating time: 5ms	25°C	3 V	7.920	8	8.080	MHz
^f CAL(12MHz)	12MHz calibration value	BCSCTL1= CALBC1_12MHZ DCOCTL = CALDCO_12MHZ Gating time: 5ms	25°C	3 V	11.88	12	12.12	MHz
^f CAL(16MHz)	16MHz calibration value	BCSCTL1= CALBC1_16MHZ DCOCTL = CALDCO_16MHZ Gating time: 2ms	25°C	3 V	15.84	16	16.16	MHz

calibrated DCO frequencies – tolerance over temperature 0°C – +85°C

PARAMETER	TEST CONDITIONS	Τ _Α	VCC	MIN	TYP	MAX	UNIT
1 MHz tolerance over temperature		0–85°C	3.0 V	-2.5	±0.5	+2.5	%
8 MHz tolerance over temperature		0–85°C	3.0 V	-2.5	±1.0	+2.5	%
12 MHz tolerance over temperature		0–85°C	3.0 V	-2.5	±1.0	+2.5	%
16 MHz tolerance over temperature		0–85°C	3.0 V	-3.0	±2.0	+3.0	%
	BCSCTL1= CALBC1 1MHZ		2.2 V	0.970	1	1.030	MHz
fCAL(1MHz) 1MHz calibration value	DCOCTL = CALDCO_1MHZ	0–85°C	3.0 V	0.975	1	1.025	MHz
	Gating time: 5ms		3.6 V	0.970	1	1.030	MHz
	BCSCTL1= CALBC1 8MHZ		2.2 V	7.760	8	8.400	MHz
fCAL(8MHz) 8MHz calibration value	DCOCTL = CALDCO_8MHZ	0–85°C	3.0 V	7.800	8	8.200	MHz
	Gating time: 5ms		3.6 V	7.600	8	8.240	MHz
	BCSCTL1= CALBC1 12MHZ		2.2 V	11.70	12	12.30	MHz
fCAL(12MHz) 12MHz calibration value	DCOCTL = CALDCO_12MHZ	0–85°C	3.0 V	11.70	12	12.30	MHz
	Gating time: 5ms		3.6 V	11.70	12	12.30	MHz
fсді (16мнz) 16MHz calibration value	BCSCTL1= CALBC1_16MHZ DCOCTL = CALDCO 16MHZ	0–85°C	3.0 V	15.52	16	16.48	MHz
fCAL(16MHz) 16MHz calibration value	Gating time: 2ms	0-05 C	3.6 V	15.00	16	16.48	MHz

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

PARAMETER	TEST CONDITIONS	TA	VCC	MIN	TYP	MAX	UNIT
1 MHz tolerance over V _{CC}		25°C	1.8 V – 3.6 V	-3	<u>+2</u>	+3	%
8 MHz tolerance over V _{CC}		25°C	1.8 V – 3.6 V	-3	<u>+2</u>	+3	%
12 MHz tolerance over V _{CC}		25°C	2.2 V – 3.6 V	-3	<u>+2</u>	+3	%
16 MHz tolerance over V _{CC}		25°C	3.0 V – 3.6 V	-3	<u>+2</u>	+3	%
fCAL(1MHz) 1MHz calibration value	BCSCTL1= CALBC1_1MHZ DCOCTL = CALDCO_1MHZ Gating time: 5ms	25°C	1.8 V – 3.6 V	0.970	1	1.030	MHz
fCAL(8MHz) 8MHz calibration value	BCSCTL1= CALBC1_8MHZ DCOCTL = CALDCO_8MHZ Gating time: 5ms	25°C	1.8 V – 3.6 V	7.760	8	8.240	MHz
fCAL(12MHz) 12MHz calibration value	BCSCTL1= CALBC1_12MHZ DCOCTL = CALDCO_12MHZ Gating time: 5ms	25°C	2.2 V – 3.6 V	11.64	12	12.36	MHz
fCAL(16MHz) 16MHz calibration value	BCSCTL1= CALBC1_16MHZ DCOCTL = CALDCO_16MHZ Gating time: 2ms	25°C	3.0 V – 3.6 V	15.00	16	16.48	MHz

calibrated DCO frequencies – tolerance over supply voltage V_{CC}

calibrated DCO frequencies - overall tolerance

PARAMETER	TEST CONDITIONS	Τ _Α	VCC	MIN	TYP	MAX	UNIT
1 MHz tolerance overall		I: -40–85°C T: -40–105°C	1.8 V – 3.6 V	-5	<u>+</u> 2	+5	%
8 MHz tolerance overall		I: -40–85°C T: -40–105°C	1.8 V – 3.6 V	-5	<u>+2</u>	+5	%
12 MHz tolerance overall		I: -40–85°C T: -40–105°C	2.2 V – 3.6 V	-5	<u>+2</u>	+5	%
16 MHz tolerance overall		I: -40–85°C T: -40–105°C	3.0 V – 3.6 V	-6	±3	+6	%
fCAL(1MHz) 1MHz calibration value	BCSCTL1= CALBC1_1MHZ DCOCTL = CALDCO_1MHZ Gating time: 5ms	l: -40–85°C T: -40–105°C	1.8 V – 3.6 V	0.950	1	1.050	MHz
fCAL(8MHz) 8MHz calibration value	BCSCTL1= CALBC1_8MHZ DCOCTL = CALDCO_8MHZ Gating time: 5ms	l: -40–85°C T: -40–105°C	1.8 V – 3.6 V	7.600	8	8.400	MHz
fCAL(12MHz) 12MHz calibration value	BCSCTL1= CALBC1_12MHZ DCOCTL = CALDCO_12MHZ Gating time: 5ms	l: -40–85°C T: -40–105°C	2.2 V – 3.6 V	11.40	12	12.60	MHz
fCAL(16MHz) 16MHz calibration value	BCSCTL1= CALBC1_16MHZ DCOCTL = CALDCO_16MHZ Gating time: 2ms	l: -40–85°C T: -40–105°C	3.0 V – 3.6 V	15.00	16	17.00	MHz

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics - calibrated 1MHz DCO frequency

Figure 11. Calibrated 1 MHz Frequency vs. Temperature

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

	PARAMETER	TEST CONDITIONS	VCC	MIN TYP I	MAX	UNIT
		BCSCTL1= CALBC1_1MHZ; DCOCTL = CALDCO_1MHZ	2.2 V/3 V		2	
	DCO clock wake-up time from	BCSCTL1= CALBC1_8MHZ; DCOCTL = CALDCO_8MHZ	2.2 V/3 V		1.5	
^t DCO,LPM3/4	LPM3/4 (see Note 1)	BCSCTL1= CALBC1_12MHZ; DCOCTL = CALDCO_12MHZ	2.2 V/3 V	1		μs
		BCSCTL1= CALBC1_16MHZ; DCOCTL = CALDCO_16MHZ	3 V		1	
^t CPU,LPM3/4	CPU wake–up time from LPM3/4 (see Note 2)			^{1/f} MCLK + ^t Clock,LPM3/4	Ļ	

wake-up from lower power modes (LPM3/4)

NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g. port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK).

2. Parameter applicable only if DCOCLK is used for MCLK.

typical characteristics - DCO clock wake-up time from LPM3/4

Figure 13. DCO wake-up time from LPM3 vs DCO frequency

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

crystal oscillator, LFXT1, low frequency modes (see Note 4)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
^f LFXT1,LF	LFXT1 oscillator crystal frequency, LF mode 0, 1	XTS = 0, LFXT1Sx = 0 or 1	1.8 V – 3.6 V		32,768		Hz
^f LFXT1,LF,logic	LFXT1 oscillator logic level square wave input frequency, LF mode	XTS = 0, LFXT1Sx = 3	1.8 V – 3.6 V	10,000	32,768	50,000	Hz
	Oscillation Allowance for LF	XTS = 0, LFXT1Sx = 0; fLFXT1,LF = 32,768 kHz, C _{L,eff} = 6 pF			500		kΩ
OALF	crystals	XTS = 0, LFXT1Sx = 0; fLFXT1,LF = 32,768 kHz, CL,eff = 12 pF			200		kΩ
		XTS = 0, XCAPx = 0			1		pF
	Integrated effective Load	XTS = 0, XCAPx = 1			5.5		pF
C _{L,eff}	Capacitance, LF mode (see Note 1)	XTS = 0, XCAPx = 2			8.5		pF
	(XTS = 0, XCAPx = 3			11		pF
Duty Cycle	LF mode	XTS = 0, Measured at P1.4/ACLK, fLFXT1,LF = 32,768 Hz	2.2 V/3 V	30	50	70	%
^f Fault,LF	Oscillator fault frequency, LF mode (see Note 3)	XTS = 0, LFXT1Sx = 3 (see Notes 2)	2.2 V/3 V	10		10,000	Hz

NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).

Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.

2. Measured with logic level input frequency but also applies to operation with crystals.

3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag. Frequencies in between might set the flag.

4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.

- Keep as short of a trace as possible between the device and the crystal.

- Design a good ground plane around the oscillator pins.

- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.

 Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
^f LFXT1,HF0	LFXT1 oscillator crystal frequency, HF mode 0	XTS = 1, LFXT1Sx = 0	1.8 V – 3.6 V	0.4		1	MHz
^f LFXT1,HF1	LFXT1 oscillator crystal frequency, HF mode 1	XTS = 1, LFXT1Sx = 1	1.8 V – 3.6 V	1		4	MHz
			1.8 V – 3.6 V	2		10	MHz
^f LFXT1,HF2	LFXT1 oscillator crystal frequency, HF mode 2	XTS = 1, LFXT1Sx = 2	2.2 V – 3.6 V	2		12	MHz
			3.0 V – 3.6 V	2		16	MHz
	LFXT1 oscillator logic level square		1.8 V – 3.6 V	0.4		10	MHz
^f LFXT1,HF,logic	wave input frequency,	XTS = 1, LFXT1Sx = 3	2.2 V – 3.6 V	0.4		12	MHz
, , , ,	HF mode		3.0 V – 3.6 V	0.4		16	MHz
		XTS = 0, LFXT1Sx = 0, fLFXT1,HF = 1 MHz, CL,eff = 15 pF			2700		Ω
OA _{HF}	Oscillation Allowance for HF crystals (refer to Figure 14 and Figure 15)	$\begin{array}{l} \text{XTS} = 0, \text{LFXT1Sx} = 1 \\ \text{f}_{\text{LFXT1,HF}} = 4 \text{MHz}, \\ \text{C}_{\text{L,eff}} = 15 \text{pF} \end{array}$			800		Ω
		$\begin{array}{l} \text{XTS} = 0, \text{LFXT1Sx} = 2 \\ \text{f}_{\text{LFXT1,HF}} = 16 \text{ MHz}, \\ \text{C}_{\text{L,eff}} = 15 \text{ pF} \end{array}$			300		Ω
C _{L,eff}	Integrated effective Load Capacitance, HF mode (see Note 1)	XTS = 1 (see Note 2)			1		pF
	HF mode	XTS = 1, Measured at P1.4/ACLK, fLFXT1,HF = 10 MHz	2.2 V/3 V	40	50	60	%
Duty Cycle	nr moue	XTS = 1, Measured at P1.4/ACLK, fLFXT1,HF = 16 MHz	2.2 V/3 V	40	50	60	%
^f Fault,HF	Oscillator fault frequency, HF mode (see Note 4)	XTS = 1, LFXT1Sx = 3 (see Notes 3)	2.2 V/3 V	30		300	kHz

crystal oscillator, LFXT1, high frequency modes (see Note 5)

NOTES: 1. Includes parasitic bond and package capacitance (approximately 2pF per pin).

Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal.

2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.

3. Measured with logic level input frequency but also applies to operation with crystals.

4. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag. Frequencies in between might set the flag.

5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed.

- Keep as short of a trace as possible between the device and the crystal.
- Design a good ground plane around the oscillator pins.
- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics – LFXT1 oscillator in HF mode (XTS = 1)

Figure 14. Oscillation Allowance vs Crystal Frequency, $C_{L,eff}$ = 15 pF, T_A = 25°C

Figure 15. XT Oscillator Supply Current vs Crystal Frequency, $C_{L,eff}$ = 15 pF, T_A = 25°C

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Timer_A

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
<u>6.</u>	Timer A clock frequency	Internal: SMCLK, ACLK;	2.2 V			10	MHz
f _{TA} Timer_A clock frequency	External: TACLK, INCLK; Duty Cycle = 50% ±10%	3 V			16	IVITIZ	
t _{TA,cap}	Timer_A, capture timing	TA0, TA1, TA2	2.2 V/3 V	20			ns

Comparator A+ (see Note 1)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
I			2.2 V		25	40	
l(DD)		CAON=1, CARSEL=0, CAREF=0	3 V		45	60	μA
		CAON=1, CARSEL=0,	2.2 V		30	50	
I(Refladder/R	efDiode)	CAREF=1/2/3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2	3 V		45	71	μA
V _(IC)	Common-mode input voltage	CAON=1	2.2 V/3 V	0	,	V _{CC} -1	V
V _(Ref025)	Voltage @ 0.25 V _{CC} node V _{CC}	PCA0=1, CARSEL=1, CAREF=1, No load at P2.3/CA0/TA1 and P2.4/CA1/TA2	2.2 V/3 V	0.23	0.24	0.25	
V _(Ref050)	Voltage @ 0.5V _{CC} node	PCA0=1, CARSEL=1, CAREF=2, No load at P2.3/CA0/TA1 and P2.4/CA1/TA2	2.2 V/3 V	0.47	0.48	0.5	
		PCA0=1, CARSEL=1, CAREF=3,	2.2 V	390	480	540	
V(RefVT)	(see Figure 19 and Figure 20)	No load at P2.3/CA0/TA1 and P2.4/CA1/TA2, $T_A = 85^{\circ}C$	3 V	400	490	550	mV
V _(offset)	Offset voltage	See Note 2	2.2 V/3 V	-30		30	mV
V _{hys}	Input hysteresis	CAON=1	2.2 V/3 V	0	0.7	1.4	mV
		$T_A = 25^{\circ}C$, Overdrive 10 mV, Without filter: CAF=0	2.2 V	80	165	300	
a	Response time	(see Note 3, Figure 16 and Figure 17)	3 V	70	120	240	ns
^t (response)	(low-high and high-low)	$T_A = 25^{\circ}C$, Overdrive 10 mV, With filter: CAF=1	2.2 V	1.4	1.9	2.8	
		(see Note 3, Figure 16 and Figure 17)	3 V	0.9	1.5	2.2	μs

 NOTES: 1. The leakage current for the Comparator_A+ terminals is identical to I_{lkg(Px.x)} specification.
 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together.

3. Response time measured at P2.2/CAOUT.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Figure 16. Block Diagram of Comparator_A+ Module

Figure 17. Overdrive Definition

Figure 18. Comparator_A+ Short Resistance Test Condition

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

typical characteristics – Comparator_A+

Figure 19. V_(RefVT) vs Temperature, V_{CC} = 3 V

Figure 20. V_(RefVT) vs Temperature, V_{CC} = 2.2 V

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Flash Memory

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
V _{CC(PGM/} ERASE)	Program and Erase supply voltage			2.2		3.6	V
fFTG	Flash Timing Generator frequency			257		476	kHz
IPGM	Supply current from V _{CC} during program		2.2 V/3.6 V		3	5	mA
IERASE	Supply current from V _{CC} during erase		2.2 V/3.6 V		3	7	mA
^t CPT	Cumulative program time (see Note 1)		2.2 V/3.6 V			10	ms
^t CMErase	Cumulative mass erase time		2.2 V/3.6 V	20			ms
	Program/Erase endurance			10 ⁴	10 ⁵		cycles
^t Retention	Data retention duration	TJ = 25°C		100			years
tWord	Word or byte program time				30		
^t Block, 0	Block program time for 1 St byte or word	1			25		
^t Block, 1-63	Block program time for each additional byte or word	1			18		
^t Block, End	Block program end-sequence wait time	see Note 2			6		^t FTG
^t Mass Erase	Mass erase time]			10593		
tSeg Erase	Segment erase time	1			4819		1

NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes.

RAM

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V(RAMh)	RAM retention supply voltage (see Note 1)	CPU halted	1.6			V

NOTE 1: This parameter defines the minimum supply voltage V_{CC} when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition.

JTAG Interface

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
4		and Note 4	2.2 V	0		5	MHz
ftck	TCK input frequency	see Note 1	3 V	0		10	MHz
R _{Internal}	Internal pull-down resistance on TEST		2.2 V/3 V	25	60	90	kΩ

NOTES: 1. f_{TCK} may be restricted to meet the timing requirements of the module selected.

JTAG Fuse (see Note 1)

	PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	UNIT
V _{CC(FB)}	Supply voltage during fuse-blow condition	$T_A = 25^{\circ}C$		2.5			V
V _{FB}	Voltage level on TEST for fuse-blow	$T_A = 25^{\circ}C$		6		7	V
I _{FB}	Supply current into TEST during fuse blow	$T_A = 25^{\circ}C$				100	mA
t _{FB}	Time to blow fuse	$T_A = 25^{\circ}C$				1	ms

NOTES: 1. Once the fuse is blown, no further access to the JTAG/Test and emulation feature is possible and is switched to bypass mode.

^{2.} These values are hardwired into the Flash Controller's state machine (tFTG = 1/fFTG).

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

APPLICATION INFORMATION

Port P1 pin schematic: P1.0 to P1.3, input/output with Schmitt-trigger

Port P1 (P1.0 to P1.3) pin functions

PIN NAME (P1.X)	V		CONTROL BITS / SIGNALS	
PIN NAME (PI.X)	X	FUNCTION	P1DIR.x	P1SEL.x
P1.0/TACLK	0	P1.0† (I/O)	I: 0; O: 1	0
		TACLK	0	1
		DV _{SS}	1	1
P1.1/TA0	1	P1.1† (I/O)	I: 0; O: 1	0
		Timer_A3.CCI0A	0	1
		Timer_A3.TA0	1	1
P1.2/TA1	2	P1.2† (I/O)	I: 0; O: 1	0
		Timer_A3.CCI0A	0	1
		Timer_A3.TA0	1	1
P1.3/TA2	3	P1.3† (I/O)	I: 0; O: 1	0
		Timer_A3.CCI0A	0	1
		Timer_A3.TA0	1	1

[†] Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable.

2. X: Don't care.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

	x		CONTROL BITS / SIGNALS			
PIN NAME (P1.X)		FUNCTION	P1DIR.x	P1SEL.x	TEST	
P1.4/SMCLK/TCK	4	P1.4† (I/O)	l: 0; 0: 1	0	0	
		SMCLK	1	1	0	
		ТСК	Х	Х	1	
P1.5/TA0/TMS	5	P1.5† (I/O)	l: 0; O: 1	0	0	
		Timer_A3.TA0	1	1	0	
		TMS	Х	Х	1	
P1.6/TA1/TDI/TCLK	6	P1.6† (I/O)	l: 0; 0: 1	0	0	
		Timer_A3.TA1	1	1	0	
		TDI/TCLK (see Note 3)	Х	Х	1	
P1.7/TA2/TDO/TDI	7	P1.7† (I/O)	l: 0; O: 1	0	0	
		Timer_A3.TA2	1	1	0	
		TDO/TDI (see Note 3)	Х	Х	1	

Port P1 (P1.4 to P1.7) pin functions

[†] Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable.

2. X: Don't care.

3. Function controlled by JTAG.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

Pad Logic To Comparator_A+ -From Comparator_A+ CAPD.x I P2REN.x DVSS 0 DVCC P2DIR.x■ Direction 0: Input 1: Output P2OUT.x 0 Module X OUT P2.0/ACLK/CA2 P2.1/INCLK/CA3 Bus P2SEL.x P2.2/CAOUT/TA0/CA4 Keeper P2.3/TA1/CA0 P2IN.x < ΕN P2.4/TA2/CA1 P2.5/CA5 ΕN Module X IN D l P2IE.x ΕN P2IRQ.x < Q P2IFG.x Set Interrupt P2SEL.x Edge P2IES.x Select

Port P2 pin schematic: P2.0 to P2.5, input/output with Schmitt-trigger

Control signal "From Comparator_A+"

PIN NAME	FUNCTION	SIGNAL "FROM COMPARATOR_A+" = 1					
		P2CA4	P2CA0		P2CA3	P2CA2	P2CA1
P2.0/ACLK/CA2	CA2	1	1	1	0	1	0
P2.1/INCLK/CA3	CA3	N/A	N/A	1	0	1	1
P2.2/CAOUT/TA0/CA4	CA4	N/A	N/A	OR	1	0	0
P2.3/TA1/CA0	CA0	0	1	7	N/A	N/A	N/A
P2.4/TA2/CA1	CA1	1	0	7	0	0	1
P2.5/CA5	CA5	N/A	N/A	1	1	0	1

NOTES: 1. N/A: Not available or not applicable.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

		FUNCTION	CONT	ROL BITS / SIG	NALS
PIN NAME (P2.X)	X	FUNCTION	P2DIR.x	P2SEL.x	CAPD.x
P2.0/ACLK/CA2	0	P2.0† (I/O)	l: 0; 0: 1	0	0
		ACLK	1	1	0
		CA2 (see Note 3)	Х	Х	1
P2.1/INCLK/CA3	1	P2.1† (I/O)	l: 0; 0: 1	0	0
		Timer_A3.INCLK	0	1	0
		DV _{SS}	1	1	0
		CA3 (see Note 3)	Х	Х	1
P2.2/CAOUT/TA0/CA4	2	P2.2† (I/O)	l: 0; 0: 1	0	0
		Timer_A3.CCI0B	0	1	0
		CAOUT	1	1	0
		CA4 (see Note 3)	Х	Х	1
P2.3/TA1/CA0	3	P2.3† (I/O)	l: 0; 0: 1	0	0
		Timer_A3.TA1	1	1	0
		CA0 (see Note 3)	Х	Х	1
P2.4/TA2/CA1	4	P2.4† (I/O)	l: 0; O: 1	0	0
		Timer_A3.TA2	1	1	0
		CA1 (see Note 3)	Х	Х	1
P2.5/CA5	5	P2.5† (I/O)	l: 0; O: 1	0	0
		CA5 (see Note 3)	Х	Х	1

Port P2 (P2.0 to P2.5) pin functions

† Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable.

2. X: Don't care.

3. Setting the CAPD.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

Pad Logic To Comparator_A+ From Comparator_A+ CAPD.x ľ LFXT1 Oscillator BCSCTL3.LFXT1Sx = 11 P2.7/XOUT/CA7 LFXT1 off 1 LFXT1CLK < P2SEL.7 P2REN.6 I DVSS 0 DVCC P2DIR.6 ■● Direction 0 0: Input I 1: Output P2OUT.6∎ 0 Module X OUT P2.6/XIN/CA6 Bus P2SEL.6 Keeper ΕN P2IN.6 ΕN Module X IN ┥ D P2IE.6 ΕN P2IRQ.6 Q Set P2IFG.6 Interrupt P2SEL.6 Edge P2IES.6 Select

Port P2 pin schematic: P2.6, input/output with Schmitt-trigger and crystal oscillator input

Control signal "From Comparator_A+"

	FUNCTION	SIGNAL "FROM COMPARATOR_A+" = 1				
PIN NAME	FUNCTION	P2CA3	P2CA2	P2CA1		
P2.6/XIN/CA6	CA6	1	1	0		

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

Port P2 pin schematic: P2.7, input/output with Schmitt-trigger and crystal oscillator output

Control signal "From Comparator_A+"

	FUNCTION	SIGNAL "FROM COMPARATOR_A+" = 1				
PIN NAME	FUNCTION	P2CA3	P2CA2	P2CA1		
P2.7/XOUT/CA7	CA7	1	1	1		

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

Port P2 (P2.6) pin functions

	v	FUNCTION	CONTROL BITS / SIGNALS				
PIN NAME (P2.X)		FUNCTION	P2DIR.x	P2SEL.x	CAPD.x		
P2.6/XIN/CA6	6	P2.6 (I/O)	I: 0; O: 1	0	0		
		XIN†	Х	1	0		
		CA6 (see Note 3)	Х	Х	1		

[†] Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable.

2. X: Don't care.

3. Setting the CAPD.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPDx bit.

Port P2 (P2.7) pin functions

PIN NAME (P2.X)	v		CONTROL BITS / SIGNALS					
FIN NAME (F2.A)	X	FUNCTION	P2DIR.x	P2SEL.x	CAPD.x			
P2.7/XOUT/CA7	6	P2.7 (I/O)	I: 0; O: 1	0	0			
		XOUT† (see Note 4)	Х	1	0			
		CA7 (see Note 3)	Х	Х	1			

[†] Default after reset (PUC/POR)

NOTES: 1. N/A: Not available or not applicable.

2. X: Don't care.

- 3. Setting the CAPD.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CAx input pin to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit.
- 4. If the pin XOUT/P2.7/CA7 is used as an input a current can flow until P2SEL.7 is cleared due to the oscillator output driver connection to this pin after reset.

JTAG fuse check mode

MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, I_{TF} , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.

When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense currents are terminated.

Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.

The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see Figure 22). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition).

Figure 22. Fuse Check Mode Current, MSP430F21x1

NOTE:

The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader access key is used. Also, see the *bootstrap loader* section for more information.

SLAS439C - SEPTEMBER 2004 - REVISED JULY 2006

Data Sheet Revision History

Literature Number	Summary
SLAS439	Preliminary PRODUCT PREVIEW datasheet release.
SLAS439A	MSP430x21x1 production datasheet release.
SLAS439B	Corrected instruction cycle time to 62.5ns, pg 1 Updated Figure 1. Operating Area, pg 12 Updated Figures 2 & 3, pg 13 R_{Pull} unit corrected from " Ω " to " $k\Omega$ ", pg 15 Max load current specification and Note 3 removed from "outputs" table, pg 16 MIN and MAX percentages for "calibrated DCO frequencies – tolerance over supply voltage VCC" corrected from 2.5% to 3% to match the specified frequency ranges., pg 22
SLAS439C	MSP430x21x1T production datasheet release. 105°C characterization results added.

NOTE: The referring page and figure numbers are referred to the respective document revision.

27-Feb-2008

PACKAGING INFORMATION

TEXAS INSTRUMENTS www.ti.com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSP430F2101IDGV	ACTIVE	TVSOP	DGV	20	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2101IDGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2101IDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2101IDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2101IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2101IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2101IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2101IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2101TDGV	ACTIVE	TVSOP	DGV	20	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2101TDGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2101TDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2101TDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2101TPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2101TPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2101TRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2101TRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2111IDGV	ACTIVE	TVSOP	DGV	20	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2111IDGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2111IDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2111IDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2111IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2111IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2111IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2111IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2111TDGV	ACTIVE	TVSOP	DGV	20	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

PACKAGE OPTION ADDENDUM

TEXAS INSTRUMENTS www.ti.com

27-Feb-2008

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSP430F2111TDGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2111TDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2111TDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2111TPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2111TPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2111TRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2111TRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2121IDGV	ACTIVE	TVSOP	DGV	20	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2121IDGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2121IDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2121IDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2121IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2121IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2121IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2121IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2121TDGV	ACTIVE	TVSOP	DGV	20	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2121TDGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2121TDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2121TDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2121TPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2121TPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2121TRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2121TRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2131IDGV	ACTIVE	TVSOP	DGV	20	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2131IDGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2131IDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSP430F2131IDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2131IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2131IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2131IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2131IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2131TDGV	ACTIVE	TVSOP	DGV	20	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2131TDGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2131TDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2131TDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2131TPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2131TPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F2131TRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F2131TRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- E. Falls within JEDEC MO-220.

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RGE (S-PQFP-N24)

NOTES:

- A. All linear dimensions are in millimeters. B. This drawing is subject to change without
 - B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at
- www.ti.com <http://www.ti.com>.
 E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AC.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated