

5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER[®] SRAM

FEATURES SUMMARY

- INTEGRATED, ULTRA LOW POWER SRAM, POWER-FAIL CONTROL CIRCUIT, AND BATTERIES
- CONVENTIONAL SRAM OPERATION; UNLIMITED WRITE CYCLES
- 10 YEARS OF DATA RETENTION IN THE ABSENCE OF POWER
- AUTOMATIC POWER-FAIL CHIP DESELECT AND WRITE PROTECTION
- WRITE PROTECT VOLTAGES (V_{PFD} = Power-fail Deselect Voltage):
 - M48Z2M1Y: V_{CC} = 4.5 to 5.5V $4.2V \le V_{PFD} \le 4.5V$
 - M48Z2M1V: V_{CC} = 3.0 to 3.6V $2.8V \leq V_{PFD} \leq 3.0V$
- BATTERIES ARE INTERNALLY ISOLATED UNTIL POWER IS APPLIED
- PIN AND FUNCTION COMPATIBLE WITH JEDEC STANDARD 2Mb x 8 SRAMs

TABLE OF CONTENTS

FEATURES SUMMARY	1
Figure 1. 36-pin, DIP Module	1
SUMMARY DESCRIPTION	4
Figure 2. Logic Diagram	
Table 1. Signal Names	
Figure 3. DIP Connections	
Figure 4. Block Diagram	2
OPERATION MODES	5
Table 2. Operating Modes 4	5
READ Mode	6
Figure 5. Address Controlled, READ Mode AC Waveforms	
Figure 6. Chip Enable or Output Enable Controlled, READ Mode AC Waveforms	
Table 3. READ Mode AC Characteristics	
WRITE Mode	
Figure 7. WRITE Enable Controlled, WRITE Mode AC Waveforms.	
Figure 8. Chip Enable Controlled, WRITE Mode AC Waveforms	
Table 4. WRITE Mode AC Characteristics Data Retention Mode	
V _{CC} Noise And Negative Going Transients	
Figure 9. Supply Voltage Protection	
MAXIMUM RATING	D
Table 5. Absolute Maximum Ratings	C
DC AND AC PARAMETERS1	1
Table 6. Operating and AC Measurement Conditions 1	1
Figure 10.AC Testing Load Circuit	
Table 7. Capacitance 12	2
Table 8. DC Characteristics 12	2
Figure 11.Power Down/Up Mode AC Waveforms 13	
Table 9. Power Down/Up AC Characteristics 13	
Table 10. Power Down/Up Trip Points DC Characteristics 13	3
PACKAGE MECHANICAL INFORMATION	4
Figure 12.PLDIP36 – 36-pin Plastic DIP Long Module, Package Outline	4
Table 11. PLDIP36 – 36-pin Plastic DIP Long Module, Package Mechanical Data 14	4
PART NUMBERING	5
Table 12. Ordering Information Scheme 15	5
REVISION HISTORY	6

Table 13. Document Revision History		16
-------------------------------------	--	----

SUMMARY DESCRIPTION

The M48Z2M1Y/V ZEROPOWER[®] RAM is a nonvolatile 16,777,216-bit, Static RAM organized as 2,097,152 words by 8 bits. The device combines two internal lithium batteries, CMOS SRAMs and a control circuit in a plastic 36-pin DIP, long Module.

Figure 2. Logic Diagram

The ZEROPOWER RAM replaces industry stan-							
dard SRAMs. It provides the nonvolatility of							
PROMs without any requirement for special							
WRITE timing or limitations on the number of							
WRITEs that can be performed.							
•							

0	
A0-A20	Address Inputs
DQ0-DQ7	Data Inputs / Outputs
Ē	Chip Enable
G	Output Enable
W	WRITE Enable
V _{CC}	Supply Voltage
V _{SS}	Ground
NC	Not Connected Internally

57

Table 1. Signal Names

Figure 3. DIP Connections

	<u> </u>		L.,
NC [1		l∨cc
A20 [2	35] A19
A18 [3	34] NC
A16 [4	33	A15
A14 [5	32	A17
A12 [6	31	j₩
A7 [7	30	A13
A6 [8	29] A8
A5 [M48Z2M1Y ²⁸ M48Z2M1V ²⁸] A9
A4 [10	27	A11
A3 [11	26]G
A2 [12		A10
A1 [13	24	ΔĒ
A0 [14	23	DQ7
DQ0 [15	22	DQ6
DQ1 [16	21	DQ5
DQ2 [17	20	DQ4
Vss [18	19	DQ3
		AI02049	I

Figure 4. Block Diagram

OPERATION MODES

The M48Z2M1Y/V has its own Power-fail Detect Circuit. The control circuitry constantly monitors the single 5V supply for an out of tolerance condition. When V_{CC} is out of tolerance, the circuit write protects the SRAM, providing a high degree of data security in the midst of unpredictable system operations brought on by low V_{CC}. As V_{CC} falls below approximately 3V, the control circuitry connects the batteries which sustain data until valid power returns.

Mode	Vcc	Ē	G	W	DQ0-DQ7	Power
Deselect		VIH	Х	Х	High Z	Standby
WRITE	3.0 to 3.6V	VIL	Х	V _{IL}	D _{IN}	Active
READ	or 4.5 to 5.5V	VIL	VIL	VIH	D _{OUT}	Active
READ		VIL	VIH	V _{IH}	High Z	Active
Deselect	V_{SO} to V_{PFD} (min)^{(1)}	Х	Х	X High Z CMOS		CMOS Standby
Deselect	$\leq V_{SO}^{(1)}$	Х	Х	Х	High Z	Battery Back-up Mode

Table 2. Operating Modes

Note: X = V_{IH} or V_{IL}; V_{SO} = Battery Back-up Switchover Voltage.

1. See Table 10., page 13 for details.

READ Mode

The M48Z2M1Y/V is in the READ Mode whenever \overline{W} (WRITE Enable) is high and \overline{E} (Chip Enable) is low. The device architecture allows ripple-through access of data from eight of 16,777,216 locations in the static storage array. Thus, the unique address specified by the 21 Address Inputs defines which one of the 2,097,152 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within Address Access time (t_{AVQV}) after the last address input signal is stable, providing that the \overline{E} (Chip Enable) and \overline{G} (Output Enable) access times are also satisfied. If the \overline{E} and \overline{G} ac-

cess times are not met, valid data will be available after the later of Chip Enable Access time (t_{ELQV}) or Output Enable Access Time (t_{GLQV}). The state of the eight three-state Data I/O signals is controlled by \overline{E} and \overline{G} . If the outputs are activated before t_{AVQV} , the data lines will be driven to an indeterminate state until t_{AVQV} . If the Address Inputs are changed while \overline{E} and \overline{G} remain low, output data will remain valid for Output Data Hold time (t_{AXQX}) but will go indeterminate until the next Address Access.

Note: Chip Enable (\overline{E}) and Output Enable (\overline{G}) = Low, WRITE Enable (\overline{W}) = High.

Figure 6. Chip Enable or Output Enable Controlled, READ Mode AC Waveforms

Note: WRITE Enable (\overline{W}) = High.

		M48Z	2M1Y	M48Z	2M1V	
Symbol	Parameter ⁽¹⁾	-7	0	-85		Unit
		Min	Max	Min	Max	
t _{AVAV}	READ Cycle Time	70		85		ns
t _{AVQV} ⁽²⁾	Address Valid to Output Valid		70		85	ns
t _{AXQX} ⁽²⁾	Address Transition to Output Transition	5		5		ns
t _{EHQZ} ⁽³⁾	Chip Enable High to Output Hi-Z		30		35	ns
t _{ELQV} ⁽²⁾	Chip Enable Low to Output Valid		70		85	ns
t _{ELQX} ⁽³⁾	Chip Enable Low to Output Transition	5		5		ns
t _{GHQZ} ⁽³⁾	Output Enable High to Output Hi-Z		25		35	ns
t _{GLQV} ⁽²⁾	Output Enable Low to Output Valid		35		45	ns
t _{GLQX} ⁽³⁾	Output Enable Low to Output Transition	5		5		ns

Table 3. READ Mode AC Characteristics

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70°C; $V_{CC} = 4.5$ to 5.5V or 3.0 to 3.6V (except where noted). 2. $C_L = 100$ pF or 50pF (see Figure 10., page 11).

3. C_L = 5pF (see Figure 10., page 11).

WRITE Mode

The M48Z2M1Y/V is in the WRITE Mode whenever \overline{W} and \overline{E} are active. The start of a WRITE is referenced from the latter occurring falling edge of \overline{W} or \overline{E} . A WRITE is terminated by the earlier rising edge of \overline{W} or \overline{E} .

The addresses must be held valid throughout the cycle. \overline{E} or \overline{W} must return high for minimum of t_{E-HAX} from \overline{E} or t_{WHAX} from \overline{W} prior to the initiation

of another READ or WRITE cycle. Data-in must be valid t_{DVEH} or t_{DVWH} prior to the end of WRITE and remain valid for t_{EHDX} or t_{WHDX} afterward. \overline{G} should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on \overline{E} and \overline{G} , a low on \overline{W} will disable the outputs t_{WLQZ} after \overline{W} falls.

Note: Output Enable $(\overline{G}) = High$.

<u>ل</u>حک

Figure 8. Chip Enable Controlled, WRITE Mode AC Waveforms

Note: Output Enable (\overline{G}) = High.

Table 4. WRITE Mode AC Characteristics

		M482	Z2M1Y	M48Z	2M1V	
Symbol	Parameter ⁽¹⁾	-	-70		-85	
		Min	Max	Min	Max	
t _{AVAV}	WRITE Cycle Time	70		85		ns
t _{AVEH}	Address Valid to Chip Enable High	65		75		ns
t _{AVEL}	Address Valid to Chip Enable Low	0		0		ns
t _{AVWH}	Address Valid to WRITE Enable High	65		75		ns
t _{AVWL}	Address Valid to WRITE Enable Low	0		0		ns
t DVEH	Input Valid to Chip Enable High	30		35		ns
t _{DVWH}	Input Valid to WRITE Enable High	30		35		ns
t _{EHAX}	Chip Enable High to Address Transition	15		15		ns
t _{EHDX}	Chip Enable High to Input Transition	10		15		ns
t _{ELEH}	Chip Enable Low to Chip Enable High	55		75		ns
t _{WHAX}	WRITE Enable High to Address Transition	5		5		ns
t _{WHDX}	WRITE Enable High to Input Transition	0		0		ns
t _{WHQX} ^(2,3)	WRITE Enable High to Output Transition	5		5		ns
t _{WLQZ} ^(2,3)	WRITE Enable Low to Output Hi-Z		25		30	ns
twLwH	WRITE Enable Pulse Width	55		65		ns

Note: 1. Valid for Ambient Operating Temperature: T_A = 0 to 70°C; V_{CC} = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).
2. C_L = 5pF (see Figure 10., page 11).
3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.

Data Retention Mode

With valid V_{CC} applied, the M48Z2M1Y/V operates as a conventional BYTEWIDETM static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself t_{WP} after V_{CC} falls below V_{PFD}. All outputs become high impedance, and all inputs are treated as "Don't care."

If power fail detection occurs during a valid access, the memory cycle continues to completion. If the memory cycle fails to terminate within the time t_{WP} , write protection takes place. When V_{CC} drops below V_{SO} , the control circuit switches power to the internal energy source which preserves data.

The internal coin cells will maintain data in the M48Z2M1Y/V after the initial application of V_{CC} for an accumulated period of at least 10 years when V_{CC} is less than V_{SO}. As system power returns and V_{CC} rises above V_{SO}, the batteries are disconnected, and the power supply is switched to external V_{CC}. Write protection continues for t_{ER} after V_{CC} reaches V_{PFD} to allow for processor stabilization. After t_{ER}, normal RAM operation can resume.

For more information on Battery Storage life refer to the Application Note AN1012.

V_{CC} Noise And Negative Going Transients

 I_{CC} transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the V_{CC} bus. These transients can be reduced if capacitors are used to store energy which stabilizes the V_{CC} bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1μ F (as shown in Figure 9.) is recommended in order to provide the needed filtering.

In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on V_{CC} that drive it to values below V_{SS} by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, it is recommended to connect a schottky diode from V_{CC} to V_{SS} (cathode connected to V_{CC}, anode to V_{SS}). Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount.

Figure 9. Supply Voltage Protection

MAXIMUM RATING

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

\$77

Symbol	Parameter		Value	Unit
T _A	Ambient Operating Temperature		0 to 70	°C
T _{STG}	Storage Temperature (V _{CC} Off)		-40 to 85	°C
T _{BIAS}	Temperature Under Bias		-40 to 85	°C
T _{SLD} ⁽¹⁾	Lead Solder Temperature for 10 seconds		260	°C
V _{IO}	Input or Output Voltagoo	M48Z2M1Y	-0.3 to 7	V
VIO	Input or Output Voltages	M48Z2M1V	-0.3 to 4.6	V
Vee	Supply Voltage	M48Z2M1Y	-0.3 to 7	V
V CC	V _{CC} Supply Voltage		-0.3 to 4.6	V
Ι _Ο	Output Current		20	mA
PD	Power Dissipation		1	W

Table 5. Absolute Maximum Ratings

Note: 1. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds). No preheat above 150°C, or direct exposure to IR reflow (or IR preheat) allowed, to avoid damaging the Lithium battery.

CAUTION: Negative undershoots below -0.3V are not allowed on any pin while in the Battery Back-up mode.

DC AND AC PARAMETERS

This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measurement Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters.

Table 6. Operating and AC Measurement Conditions

Parameter	M48Z2M1Y	M48Z2M1V	Unit
Supply Voltage (V _{CC})	4.5 to 5.5	3.0 to 3.6	V
Ambient Operating Temperature (T _A)	0 to 70	0 to 70	°C
Load Capacitance (CL)	100	50	pF
Input Rise and Fall Times	≤ 5	≤ 5	ns
Input Pulse Voltages	0 to 3	0 to 3	V
Input and Output Timing Ref. Voltages	1.5	1.5	V

Note: Output Hi-Z is defined as the point where data is no longer driven.

Figure 10. AC Testing Load Circuit

Table 7. Capacitance

Symbol	Parameter ^(1,2)	Min	Мах	Unit
C _{IN}	Input Capacitance		40	pF
C _{IO} ⁽³⁾	Input / Output Capacitance		40	pF

Note: 1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested.

2. Outputs deselected.

3. At 25°C.

Table 8. DC Characteristics

Sym	Parameter	Test Condition ⁽¹⁾	M48	Z2M1Y	M48	Z2M1V	Unit
Sym	Falameter	Test Condition	Min	Max	Min	Max	Unit
I _{LI} ⁽²⁾	Input Leakage Current	$0V \leq V_{IN} \leq V_{CC}$		±4		±4	μΑ
I _{LO} ⁽²⁾	Output Leakage Current	$0V \leq V_{OUT} \leq V_{CC}$		±4		±4	μΑ
Icc	Supply Current	Ē = V _{IL} , Outputs open		140		70	mA
I _{CC1}	Supply Current (Standby) TTL	$\overline{E} = V_{IH}$		10		2	mA
I _{CC2}	Supply Current (Standby) CMOS	$\overline{E} \geq V_{CC} - 0.2V$		8		1	mA
VIL	Input Low Voltage		-0.3	0.8	-0.3	0.6	V
VIH	Input High Voltage		2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA		0.4		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -1mA	2.4		2.2		V

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70°C; $V_{CC} = 4.5$ to 5.5V or 3.0 to 3.6V (except where noted).

2. Outputs deselected.

Figure 11. Power Down/Up Mode AC Waveforms

Table 9. Power Down/Up AC Characteristics

Symbol	Parameter ⁽¹⁾			Max	Unit
t _{ER}	E Recovery Time			120	ms
t _F (2)	V _{PFD} (max) to V _{PFD} (min) V _{CC} Fall Time				μs
t _{FB} ⁽³⁾	PFD (min) to V _{SO} V _{CC} Fall Time	M48Z2M1Y	10		μs
IFB(-)		M48Z2M1V	150		μs
t _R	V _{PFD} (min) to V _{PFD} (max) V _{CC} Rise Time				μs
twp	Write Protect Time from VCC = VPFD	M48Z2M1Y	40 150	μs	
WP		M48Z2M1V	40	150 250	μs

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70°C; $V_{CC} = 4.5$ to 5.5V or 3.0 to 3.6V (except where noted).

2. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after VCC passes V_{PFD} (min).

3. V_{PFD} (min) to V_{SS} fall time of less than t_{FB} may cause corruption of RAM data.

Table 10. Power Down/Up Trip Points DC Characteristics

Symbol	Parameter ^(1,2)		Min	Тур	Max	Unit
V _{PFD}	Power-fail Deselect Voltage	M48Z2M1Y	4.2	4.3	4.5	V
		M48Z2M1V	2.8	2.9	3.0	V
V _{SO}	Pottory Pook up Switchover Veltage	M48Z2M1Y		3.0		V
	Battery Back-up Switchover Voltage	M48Z2M1V		2.45		V
t _{DR} ⁽³⁾	Expected Data Retention Time		10			YEARS

Note: 1. All voltages referenced to V_{SS}.
2. Valid for Ambient Operating Temperature: T_A = 0 to 70°C; V_{CC} = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).
3. At 25°C; V_{CC} = 0V.

57

PACKAGE MECHANICAL INFORMATION

Figure 12. PLDIP36 – 36-pin Plastic DIP Long Module, Package Outline

Note: Drawing is not to scale.

Table 11. PLDIP36 – 36-pin Plastic DIP Long Module, Package Mechanical Data

Symb	mm			inches			
	Тур	Min	Max	Тур	Min	Max	
А		9.27	9.52		0.3650	0.3748	
A1		0.38			0.0150		
В		0.43	0.59		0.0169	0.0232	
С		0.20	0.33		0.0079	0.0130	
D		52.58	53.34		2.0701	2.1000	
E		18.03	18.80		0.7098	0.7402	
e1		2.30	2.81		0.0906	0.1106	
e3		38.86	47.50		1.5300	1.8701	
eA		14.99	16.00		0.5902	0.6299	
L		3.05	3.81		0.1201	0.1500	
S		4.45	5.33		0.1752	0.2098	
N		36			36		

PART NUMBERING

Table 12. Ordering Information Scheme

Example:	M48Z	2M1Y	-70	PL	1
Device Type					
M48Z					
Supply Voltage and Write Protect Voltage					
$2M1Y = V_{CC} = 4.5$ to 5.5V; $V_{PFD} = 4.2$ to 4.5V					
2M1V = V _{CC} = 3.0 to 3.6V; V _{PFD} = 2.8 to 3.0V					
Speed					
-70 = 70ns (Y)					
-85 = 85ns (V)					
Package					
PL = PLDIP36					
Temperature Range					
1 = 0 to 70°C					
9 ⁽¹⁾ = Extended Temperature					
Shipping Method					

blank = Tubes

Note: 1. Contact Sales Offices for availability of Extended Temperature.

For other options, or for more information on any aspect of this device, please contact the ST Sales Office nearest you.

REVISION HISTORY

Table 13. Document Revision History

Date	Rev. No.	Revision Details
July 1999	1.0	First Issue
31-Aug-00	2.0	From Preliminary Data to Data Sheet
20-Mar-02	3.0	Reformatted; Temperature information added to tables (Table 7, 8, 3, 4, 9, 10)
29-May-02	3.1	Modified "V _{CC} Noise and Negative Going Transients" text
28-Mar-03	3.2	Remove 5V/5%, add 3V part (Figure 2, 3, 10; Table 5, 6, 8, 2, 3, 4, 9, 10, 12)
02-Jul-03	3.3	Changed characteristic (Table 8)
18-Feb-05	4.0	Reformatted; IR reflow update (Table 5)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

5/