

M48Z08 M48Z18

5V, 64 Kbit (8Kb x 8) ZEROPOWER[®] SRAM

FEATURES SUMMARY

- INTEGRATED, ULTRA LOW POWER SRAM AND POWER-FAIL CONTROL CIRCUIT
- UNLIMITED WRITE CYCLES
- READ CYCLE TIME EQUALS WRITE CYCLE TIME
- AUTOMATIC POWER-FAIL CHIP DESELECT AND WRITE PROTECTION
- WRITE PROTECT VOLTAGES
 (V_{PFD} = Power-fail Deselect Voltage):
 - M48Z08: V_{CC} = 4.75 to 5.5V 4.5V $\leq V_{PFD} \leq$ 4.75V
 - M48Z18: V_{CC} = 4.5 to 5.5V 4.2V $\leq V_{PFD} \leq 4.5V$
- SELF-CONTAINED BATTERY IN THE CAPHAT[™] DIP PACKAGE
- PIN AND FUNCTION COMPATIBLE WITH JEDEC STANDARD 8K x 8 SRAMs
- RoHS COMPLIANCE
 Lead-free components are compliant with the RoHS Directive.

Figure 1. 28-pin CAPHAT, DIP Package

TABLE OF CONTENTS

FEATURES SUMMARY1
Figure 1. 28-pin CAPHAT, DIP Package1
SUMMARY DESCRIPTION
Figure 2. Logic Diagram 3 Table 1. Signal Names 3 Figure 3. DIP Connections 3 Figure 4. Block Diagram 4
OPERATION MODES
Table 2. Operating Modes4READ Mode5Figure 5. READ Mode AC Waveforms5Table 3. READ Mode AC Characteristics5WRITE Mode6Figure 6. WRITE Enable Controlled, WRITE Mode AC Waveform6Figure 7. Chip Enable Controlled, WRITE Mode AC Waveforms6Table 4. WRITE Mode AC Characteristics7Data Retention Mode8Vcc Noise And Negative Going Transients8Figure 8. Supply Voltage Protection8
MAXIMUM RATING
MAXIMUM RATING. 9 Table 5. Absolute Maximum Ratings. 9
Table 5. Absolute Maximum Ratings
Table 5. Absolute Maximum Ratings9DC AND AC PARAMETERS.10Table 6. Operating and AC Measurement Conditions10Figure 9. AC Testing Load Circuit.10Table 7. Capacitance.10Table 8. DC Characteristics.11Figure 10.Power Down/Up Mode AC Waveforms12Table 9. Power Down/Up AC Characteristics.12
Table 5. Absolute Maximum Ratings9DC AND AC PARAMETERS.10Table 6. Operating and AC Measurement Conditions10Figure 9. AC Testing Load Circuit.10Table 7. Capacitance.10Table 8. DC Characteristics.11Figure 10.Power Down/Up Mode AC Waveforms12Table 9. Power Down/Up AC Characteristics12Table 10. Power Down/Up Trip Points DC Characteristics12
Table 5. Absolute Maximum Ratings.9DC AND AC PARAMETERS.10Table 6. Operating and AC Measurement Conditions.10Figure 9. AC Testing Load Circuit.10Table 7. Capacitance.10Table 8. DC Characteristics.11Figure 10.Power Down/Up Mode AC Waveforms.12Table 9. Power Down/Up AC Characteristics12Table 10. Power Down/Up Trip Points DC Characteristics12PACKAGE MECHANICAL INFORMATION.13Figure 11.PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Outline13
Table 5. Absolute Maximum Ratings.9DC AND AC PARAMETERS.10Table 6. Operating and AC Measurement Conditions.10Figure 9. AC Testing Load Circuit.10Table 7. Capacitance.10Table 8. DC Characteristics.11Figure 10.Power Down/Up Mode AC Waveforms.12Table 9. Power Down/Up AC Characteristics12Table 10. Power Down/Up Trip Points DC Characteristics12PACKAGE MECHANICAL INFORMATION13Figure 11.PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Outline13Table 11. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Mechanical Data.13
Table 5. Absolute Maximum Ratings9DC AND AC PARAMETERS.10Table 6. Operating and AC Measurement Conditions10Figure 9. AC Testing Load Circuit10Table 7. Capacitance10Table 8. DC Characteristics11Figure 10.Power Down/Up Mode AC Waveforms12Table 9. Power Down/Up AC Characteristics.12Table 10. Power Down/Up Trip Points DC Characteristics.12PACKAGE MECHANICAL INFORMATION.13Figure 11.PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Outline.13Table 11. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Mechanical Data14PART NUMBERING.14

__

SUMMARY DESCRIPTION

The M48Z08/18 ZEROPOWER[®] RAM is a 8K x 8 non-volatile static RAM which is pin and functional compatible with the DS1225.

The monolithic chip is available in two special packages to provide a highly integrated battery backed-up memory solution.

The M48Z08/18 is a non-volatile pin and function equivalent to any JEDEC standard 8K x 8 SRAM.

Figure 2. Logic Diagram

Figure 3. DIP Connections

NC [1	$\overline{\mathbf{O}}$	28]V _{CC}
A12 🛛 2		27 🛛 ₩
A7 🛛 3		26 🛛 NC
A6 🛛 4		25 🛛 A8
A5 🛽 5		24 🛛 A9
A4 🛛 6		23 🛛 A11
A3 🛛 7	M48Z08	22 🛛 🛱
A2 🛛 8	M48Z18	21 🛛 A10
A1 🛛 9		20 🛛 Ē
A0 🛛 10		19 🛛 DQ7
DQ0 [11		18 🛛 DQ6
DQ1 [12		17 🛛 DQ5
DQ2 [13		16 🛛 DQ4
V _{SS} [14		15 🛛 DQ3
	A	101183

It also easily fits into many ROM, EPROM, and EEPROM sockets, providing the non-volatility of PROMs without any requirement for special write timing or limitations on the number of writes that can be performed.

The 28-pin, 600mil DIP CAPHATTM houses the M48Z08/18 silicon with a long life lithium button cell in a single package.

Table 1. Signal Names

A0-A12	Address Inputs
DQ0-DQ7	Data Inputs / Outputs
Ē	Chip Enable
G	Output Enable
W	WRITE Enable
V _{CC}	Supply Voltage
V _{SS}	Ground
NC	Not Connected Internally

M48Z08, M48Z18

Figure 4. Block Diagram

OPERATION MODES

The M48Z08/18 also has its own Power-fail Detect circuit. The control circuitry constantly monitors the single 5V supply for an out of tolerance condition. When V_{CC} is out of tolerance, the circuit write protects the SRAM, providing a high degree of

data security in the midst of unpredictable system operation brought on by low V_{CC}. As V_{CC} falls below approximately 3V, the control circuitry connects the battery which maintains data until valid power returns.

57

Table 2	Operating	Modes
---------	-----------	-------

Mode	Vcc	Ē	G	W	DQ0-DQ7	Power
Deselect		VIH	Х	Х	High Z	Standby
WRITE	4.75 to 5.5V	VIL	Х	VIL	D _{IN}	Active
READ	or 4.5 to 5.5V	VIL	V _{IL}	VIH	D _{OUT}	Active
READ		VIL	VIH	VIH	High Z	Active
Deselect	V _{SO} to V _{PFD} (min) ⁽¹⁾	Х	Х	Х	High Z	CMOS Standby
Deselect	$\leq V_{SO}^{(1)}$	Х	Х	Х	High Z	Battery Back-up Mode

Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage.

1. See Table 10., page 12 for details.

READ Mode

The M48Z08/18 is in the READ Mode whenever \overline{W} (WRITE Enable) is high and \overline{E} (Chip Enable) is low. The device architecture allows ripple-through access of data from eight of 65,536 locations in the static storage array. Thus, the unique address specified by the 13 address inputs defines which one of the 8,192 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within address access time (t_{AVQV}) after the last address input signal is stable, providing that the \overline{E} and \overline{G} access times are also satisfied. If the \overline{E} and \overline{G} access times are not met, valid data will be

available after the latter of the Chip Enable Access time (t_{ELQV}) or Output Enable Access time (t_{GLQV}).

The state of the eight three-state Data I/O signals is controlled by \overline{E} and \overline{G} . If the outputs are activated before t_{AVQV} , the data lines will be driven to an indeterminate state until t_{AVQV} . If the address inputs are changed while \overline{E} and \overline{G} remain active, output data will remain valid for Output Data Hold time (t_{AXQX}) but will go indeterminate until the next address access.

Note: WRITE Enable (\overline{W}) = High.

Table 3. READ Mode AC Characteristics

Symbol	Parameter ⁽¹⁾	M48Z08/	Unit	
Symbol		Min	Max	Onic
t _{AVAV}	READ Cycle Time	100		ns
t _{AVQV}	Address Valid to Output Valid		100	ns
t _{ELQV}	Chip Enable Low to Output Valid		100	ns
tGLQV	Output Enable Low to Output Valid		50	ns
t _{ELQX} ⁽²⁾	Chip Enable Low to Output Transition	10		ns
t _{GLQX} ⁽²⁾	Output Enable Low to Output Transition	5		ns
t _{EHQZ} ⁽²⁾	Chip Enable High to Output Hi-Z		50	ns
t _{GHQZ} ⁽²⁾	Output Enable High to Output Hi-Z		40	ns
t _{AXQX}	Address Transition to Output Transition	5		ns

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70°C; $V_{CC} = 4.75$ to 5.5V or 4.5 to 5.5V (except where noted). 2. $C_L = 30pF$.

WRITE Mode

The M48Z08/18 is in the WRITE Mode whenever \overline{W} and \overline{E} are active. The start of a WRITE is referenced from the latter occurring falling edge of \overline{W} or \overline{E} .

<u>A WRITE</u> is terminated by the earlier rising edge of \overline{W} or \overline{E} . The addresses must be held valid throughout the cycle. \overline{E} or \overline{W} must return high for a minimum of t_{EHAX} from Chip Enable or t_{WHAX} from

WRITE Enable prior to the initiation of another READ or WRITE cycle. Data-in must be valid t_{D-VWH} prior to the end of WRITE and remain valid for t_{WHDX} afterward. \overline{G} should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on \overline{E} and \overline{G} , a low on \overline{W} will disable the outputs t_{WLQZ} after \overline{W} falls.

Figure 6. WRITE Enable Controlled, WRITE Mode AC Waveform

Figure 7. Chip Enable Controlled, WRITE Mode AC Waveforms

Symphol	Parameter ⁽¹⁾	M48Z08	/M48Z18	Unit
Symbol		Min	Max	Unit
t _{AVAV}	WRITE Cycle Time	100		ns
t _{AVWL}	Address Valid to WRITE Enable Low	0		ns
t _{AVEL}	Address Valid to Chip Enable 1 Low	0		ns
t _{WLWH}	WRITE Enable Pulse Width	80		ns
t _{ELEH}	Chip Enable Low to Chip Enable 1 High	80		ns
t _{WHAX}	WRITE Enable High to Address Transition	10		ns
t _{EHAX}	Chip Enable High to Address Transition	10		ns
t _{DVWH}	Input Valid to WRITE Enable High	50		ns
t DVEH	Input Valid to Chip Enable 1 High	30		ns
t _{WHDX}	WRITE Enable High to Input Transition	5		ns
t _{EHDX}	Chip Enable High to Input Transition	5		ns
t _{WLQZ} ^(2,3)	WRITE Enable Low to Output Hi-Z		50	ns
t _{AVWH}	Address Valid to WRITE Enable High	80		ns
t _{AVEH}	Address Valid to Chip Enable High	80		ns
t _{WHQX} ^(2,3)	WRITE Enable High to Output Transition	10		ns

Table 4. WRITE Mode AC Characteristics

Note: 1. Valid for Ambient Operating Temperature: T_A = 0 to 70°C; V_{CC} = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
2. C_L = 30pF.
3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.

Data Retention Mode

With valid V_{CC} applied, the M48Z08/18 operates as a conventional BYTEWIDETM static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when V_{CC} falls within the V_{PFD} (max), V_{PFD} (min) window. All outputs become high impedance, and all inputs are treated as "Don't care."

Note: A power failure during a WRITE cycle may corrupt data at the currently addressed location, but does not jeopardize the rest of the RAM's content. At voltages below V_{PFD} (min), the user can be assured the memory will be in a write protected state, provided the V_{CC} fall time is not less than t_F. The M48Z08/18 may respond to transient noise spikes on V_{CC} that reach into the deselect window during the time the device is sampling V_{CC} . Therefore, decoupling of the power supply lines is recommended.

When V_{CC} drops below V_{SO} , the control circuit switches power to the internal battery which preserves data. The internal button cell will maintain data in the M48Z08/18 for an accumulated period of at least 11 years when V_{CC} is less than V_{SO} .

As system power returns and V_{CC} rises above V_{SO}, the battery is disconnected, and the power supply is switched to external V_{CC}. Write protection continues until V_{CC} reaches V_{PFD} (min) plus t_{rec} (min). \overline{E} should be kept high as V_{CC} rises past V_{PFD} (min) to prevent inadvertent write cycles prior to system stabilization. Normal RAM operation can resume t_{rec} after V_{CC} exceeds V_{PFD} (max).

For more information on Battery Storage Life refer to the Application Note AN1012.

V_{CC} Noise And Negative Going Transients

I_{CC} transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the V_{CC} bus. These transients can be reduced if capacitors are used to store energy which stabilizes the V_{CC} bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1μ F (as shown in Figure 8.) is recommended in order to provide the needed filtering.

In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on V_{CC} that drive it to values below V_{SS} by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, STMicroelectronics recommends connecting a schottky diode from V_{CC} to V_{SS} (cathode connected to V_{CC}, anode to V_{SS}). Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount.

Figure 8. Supply Voltage Protection

Á7/

MAXIMUM RATING

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Symbol	Parameter	Value	Unit
T _A	Ambient Operating Temperature	0 to 70	°C
T _{STG}	Storage Temperature (V _{CC} Off, Oscillator Off)	-40 to 85	°C
T _{SLD} ⁽¹⁾	Lead Solder Temperature for 10 seconds	260	°C
V _{IO}	Input or Output Voltages	-0.3 to 7	V
V _{CC}	Supply Voltage	-0.3 to 7	V
lo	Output Current	20	mA
PD	Power Dissipation	1	W

 Table 5. Absolute Maximum Ratings

Note: 1. For DIP package: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).

CAUTION: Negative undershoots below -0.3V are not allowed on any pin while in the Battery Back-up mode.

A7

DC AND AC PARAMETERS

This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measurement Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters.

Table 6. Operating and AC Measurement Conditions

Parameter	M48Z08	M48Z18	Unit
Supply Voltage (V _{CC})	4.75 to 5.5	4.5 to 5.5	V
Ambient Operating Temperature (T _A)	0 to 70	0 to 70	°C
Load Capacitance (CL)	100	100	pF
Input Rise and Fall Times	≤ 5	≤ 5	ns
Input Pulse Voltages	0 to 3	0 to 3	V
Input and Output Timing Ref. Voltages	1.5	1.5	V

Note: Output Hi-Z is defined as the point where data is no longer driven.

Figure 9. AC Testing Load Circuit

Table 7. Capacitance

Symbol	Parameter ^(1,2)	Min	Max	Unit
C _{IN}	Input Capacitance		10	pF
C _{IO} ⁽³⁾	Input / Output Capacitance		10	pF

Note: 1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested.

2. At 25°C, f = 1MHz.

3. Outputs deselected.

Symbol	Parameter	Test Condition ⁽¹⁾	Min	Max	Unit
ILI	Input Leakage Current	$0V \le V_{IN} \le V_{CC}$		±1	μA
ILO ⁽²⁾	Output Leakage Current	$0V \le V_{OUT} \le V_{CC}$		±1	μA
ICC	Supply Current	Outputs open		80	mA
I _{CC1}	Supply Current (Standby) TTL	$\overline{E} = V_{IH}$		3	mA
I _{CC2}	Supply Current (Standby) CMOS	$\overline{E} = V_{CC} - 0.2V$		3	mA
VIL	Input Low Voltage		-0.3	0.8	V
VIH	Input High Voltage		2.2	V _{CC} + 0.3	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -1mA	2.4		V

Table 8. DC Characteristics

 Note:
 1. Valid for Ambient Operating Temperature: T_A = 0 to 70°C; V_{CC} = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).

 2. Outputs deselected.

M48Z08, M48Z18

Figure 10. Power Down/Up Mode AC Waveforms

Note: Inputs may or may not be recognized at this time. Caution should be taken to keep E high as V_{CC} rises past V_{PFD} (min). Some systems may perform inadvertent WRITE cycles after V_{CC} rises above V_{PFD} (min) but before normal system operations begin. Even though a power on reset is being applied to the processor, a reset condition may not occur until after the system is running.

Symbol	Parameter ⁽¹⁾	Min	Мах	Unit
t _{PD}	\overline{E} or \overline{W} at V_{IH} before Power Down	0		μs
t _F ⁽²⁾	V_{PFD} (max) to V_{PFD} (min) V_{CC} Fall Time	300		μs
t _{FB} ⁽³⁾	V_{PFD} (min) to V_{SS} V_{CC} Fall Time	10		μs
t _R	V_{PFD} (min) to V_{PFD} (max) V_{CC} Rise Time	0		μs
t _{RB}	V_{SS} to V_{PFD} (min) V_{CC} Rise Time	1		μs
t _{rec}	$\overline{E} \text{ or } \overline{W} \text{ at } V_{IH} \text{ before Power Up}$	2		ms

Table 9. Power Down/Up AC Characteristics

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70°C; $V_{CC} = 4.75$ to 5.5V or 4.5 to 5.5V (except where noted). 2. V_{PFD} (max) to V_{PFD} (min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after V_{CC} pass-

es V_{PFD} (min).

3. VPFD (min) to VSS fall time of less than tFB may cause corruption of RAM data.

Table 10. Power Down/Up Trip Points DC Characteristics

Symbol	Parameter ^(1,2)	Min	Тур	Max	Unit	
V _{PFD}	Power-fail Deselect Voltage	M48Z08	4.5	4.6	4.75	V
		M48Z18	4.2	4.3	4.5	V
V _{SO}	Battery Back-up Switchover Voltage		3.0		V	
t _{DR} ⁽³⁾	Expected Data Retention Time		11			YEARS

\$77

Note: 1. All voltages referenced to V_{SS}.

2. Valid for Ambient Operating Temperature: T_A = 0 to 70°C; V_{CC} = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).

3. At 25°C, $V_{CC} = 0V$.

PACKAGE MECHANICAL INFORMATION

Figure 11. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Outline

Note: Drawing is not to scale.

Table 11. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Mechanical Data

Symb	mm			inches			
	Тур	Min	Max	Тур	Min	Max	
А		8.89	9.65		0.350	0.380	
A1		0.38	0.76		0.015	0.030	
A2		8.38	8.89		0.330	0.350	
В		0.38	0.53		0.015	0.021	
B1		1.14	1.78		0.045	0.070	
С		0.20	0.31		0.008	0.012	
D		39.37	39.88		1.550	1.570	
Е		17.83	18.34		0.702	0.722	
e1		2.29	2.79		0.090	0.110	
e3		29.72	36.32		1.170	1.430	
eA		15.24	16.00		0.600	0.630	
L		3.05	3.81		0.120	0.150	
N		28			28		

PART NUMBERING

Table 12. Ordering Information Scheme

Example:	M48Z	08	-100	PC	1	TR
Device Туре						
M48Z						
Supply Voltage and Write Protect Voltage						
$08^{(1)} = V_{CC} = 4.75$ to 5.5V; $V_{PFD} = 4.5$ to 4.75V						
$18 = V_{CC} = 4.5$ to 5.5V; $V_{PFD} = 4.2$ to 4.5V						
Speed						
-100 = 100ns			<u>ı</u>			
Package						
PC = PCDIP28						
Temperature Range						
1 = 0 to 70°C						
Shipping Method						

blank = ECOPACK Package, Tubes

TR = ECOPACK Package, Tape & Reel

Note: 1. The M48Z08/18 part is offered with the PCDIP28 (e.g., CAPHAT[™]) package only.

For other options, or for more information on any aspect of this device, please contact the ST Sales Office nearest you.

REVISION HISTORY

Date	Version	Revision Details
March 1999	1.0	First issue
19-Jul-01	2.0	2-socket SOH and 2-pin SH packages removed; reformatted; temperature information added to tables (Table 7, 8, 3, 4, 9, 10)
19-Dec-01	2.1	Remove all references to "clock"
21-Dec-01	2.2	Changes to text to reflect addition of M48Z08Y option
20-May-02	2.3	Modify reflow time and temperature footnotes (Table 5)
10-Sep-02	2.4	Remove all references to "SNAPHAT" and M48Z08Y part (Figure 2; Table 5, 6, 3, 4, 10, 12)
01-Apr-03	3.0	v2.2 template applied; updated test condition (Table 10)
28-Aug-04	4.0	Reformatted; removed references to 'crystal' (Figure 1)
14-Dec-05	5.0	Updated template, Lead-free text, removed footnote (Table 8, 12)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

