

CMOS Static RAM 1 Meg (256K x 4-Bit)

Features

- 256K x 4 advanced high-speed CMOS static RAM
- Equal access and cycle times — Commercial and Industrial: 12/15/20ns
- One Chip Select plus one Output Enable pin
- Bidirectional data inputs and outputs directly TTL-compatible
- Low power consumption via chip deselect
- Available in 400 mil Plastic SOJ package.

Description

The IDT71028 is a 1,048,576-bit high-speed static RAM organized as 256K x 4. It is fabricated using IDT's high-perfomance, highreliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a costeffective solution for high-speed memory needs.

The IDT71028 has an output enable pin which operates as fast as 6ns, with address access times as fast as 12ns. All bidirectional inputs and outputs of the IDT71028 are TTL-compatible and operation is from a single 5V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.

The IDT71028 is packaged in a 28-pin 400 mil Plastic SOJ.

Functional Block Diagram

MARCH 2005

Pin Configuration

Truth Table^(1,2)

CS	ŌĒ	WE	I/O	Function
L	L	Н	DATAOUT	Read Data
L	Х	L	DATAIN	Write Data
L	Н	Н	High-Z	Output Disabled
Н	Х	Х	High-Z	Deselected – Standby (IsB)
VHC ⁽³⁾	Х	Х	High-Z	Deselected – Standby (IsB1)

NOTES:

1. $H = V_{IH}, L = V_{IL}, x = Don't care.$

2. $V_{LC} = 0.2V$, $V_{HC} = V_{CC} - 0.2V$.

3. Other inputs \geq VHC or \leq VLC.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	Vss	Vss
Commercial	0°C to +70°C	0V	5.0V ± 10%
Industrial	-40°C to +85°C	0V	5.0V ± 10%

2966 tbl 05

2966 tbl 01

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Value	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Та	Operating Temperature	0 to +70	٥C
Tbias	Temperature Under Bias	–55 to +125	°C
Tstg	Storage Temperature	–55 to +125	٥C
Рт	Power Dissipation	1.25	W
Ιουτ	DC Output Current	50	mA
NOTEC		2	966 tbl 02

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed Vcc + 0.5V.

Capacitance

(TA = +25°C, f = 1.0MHz, SOJ package)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	Vin = 3dV	8	pF
Ci/o	I/O Capacitance	Vout = 3dV	8	pF
			29	966 tbl 03

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Ground	0	0	0	V
Viн	Input High Voltage	2.2		Vcc+0.5	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾		0.8	V

2966 tbl 04

NOTE:

1. V_{IL} (min.) = -1.5V for pulse width less than 10ns, once per cycle.

DC Electrical Characteristics

(Vcc = 5.0V ± 10%, Commercial and Industrial Temperature Ranges)

			IDT71028		
Symbol	Parameter	Test Condition	Min.	Max.	Unit
lu	Input Leakage Current	Vcc = Max., VIN = GND to Vcc		5	μA
ILO	Output Leakage Current	Vcc = Max., \overline{CS} = VIH, Vout = GND to Vcc		5	μA
Vol	Output Low Voltage	Iol = 8mA, Vcc = Min.		0.4	V
Vон	Output High Voltage	Iон = -4mA, Vcc = Min.	2.4		V

2966 tbl 06

DC Electrical Characteristics⁽¹⁾

 $(VCC = 5.0V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$

		71028S12		71028\$15		71028S20		
Symbol	Parameters	Com'l.	Ind.	Com'l.	Ind.	Com'l.	Ind.	Unit
Icc	Dynamic Operating Current, $\overline{CS} \le ViL$, Outputs Open, $Vcc = Max., f = fmax^{(2)}$	155	170	150	165	145	160	mA
ISB	$ \begin{array}{l} Standby \ Power \ Supply \ Current \ (TTL \ Level) \\ \hline \overline{CS} \geq V_{IH}, \ Outputs \ Open, \\ V_{CC} = Max., \ f=f_{MAX}^{(2)} \end{array} $	40	40	40	40	40	40	mA
ISB1	Full Standby Power Supply Current (CMOS Level), $\overline{CS} \ge VHc$, Outputs Open, Vcc = Max., f = $0^{(2)}$, VIN $\le VLc$ or VIN $\ge VHc$	10	10	10	10	10	10	mA

NOTES:

1. All values are maximum guaranteed values.

2. fmax = 1/trc (all address inputs are cycling at fmax); f = 0 means no address input lines are changing.

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

2966 tbl 08

AC Test Loads

*Including jig and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

Figure 1. AC Test Load

2966 tbl 07

2966 tbl 09

AC Electrical Characteristics

(Vcc = 5.0V ± 10%, Commercial and Industrial Temperature Ranges)

		710	28S12	71028S15		71028S20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle		•		•	•			
trc	Read Cycle Time	12	_	15	_	20	_	ns
taa	Address Access Time	_	12	_	15	_	20	ns
tacs	Chip Select Access Time	_	12	_	15	_	20	ns
tclz ⁽¹⁾	Chip Select to Output in Low-Z	3	_	3	_	3	_	ns
tснz ⁽¹⁾	Chip Deselect to Output in High-Z	0	6	0	7	0	8	ns
toe	Output Enable to Output Valid	_	6	_	7	_	8	ns
tolz ⁽¹⁾	Output Enable to Output in Low-Z	0	_	0	_	0	_	ns
tонz ⁽¹⁾	Output Disable to Output in High-Z	0	5	0	5	0	7	ns
toн	Output Hold from Address Change	4	_	4	_	4	_	ns
tpu ⁽¹⁾	Chip Select to Power-Up Time	0	_	0	_	0	_	ns
tpd ⁽¹⁾	Chip Deselect to Power-Down Time	_	12	_	15	_	20	ns
Write Cycle								-
twc	Write Cycle Time	12	_	15	_	20	_	ns
taw	Address Valid to End-of-Write	10	_	12	_	15	_	ns
tcw	Chip Select to End-of-Write	10	_	12	_	15	_	ns
tas	Address Set-Up Time	0	_	0	_	0	_	ns
twp	Write Pulse Width	10	_	12	_	15	_	ns
twr	Write Recovery Time	0	_	0	_	0	_	ns
tow	Data Valid to End-of-Write	7	_	8	_	9		ns
tdн	Data Hold Time	0	_	0	_	0	_	ns
tow ⁽¹⁾	Output Active from End-of-Write	3	_	3	_	4	_	ns
twHz ⁽¹⁾	Write Enable to Output in High-Z	0	5	0	5	0	8	ns

NOTE:

1. This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.

Timing Waveform of Read Cycle No. 1⁽¹⁾

Timing Waveform of Read Cycle No. 2^(1,2,4)

NOTES:

1. WE is HIGH for Read Cycle.

2. Device is continuously selected, \overline{CS} is LOW.

3. Address must be valid prior to or coincident with the later of \overline{CS} transition LOW; otherwise taa is the limiting parameter.

4. OEisLOW.

5. Transition is measured ±200mV from steady state.

Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)^(1,2,4)

Timing Waveform of Write Cycle No. 2 (\overline{CS} Controlled Timing)^(1,4)

NOTES:

- 1. A write occurs during the overlap of a LOW \overline{CS} and a LOW \overline{WE} .
- 2. OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, two must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified two.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the \overline{CS} LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 5. Transition is measured ±200mV from steady state.

Datasheet Document History

09/23/99:		Updated to new format
	Pg. 1–4, 7	Added industrial temperature range offerings
	Pg. 1, 3, 4, 7	Removed 17ns speed grade
	Pg. 6	Revised notes and footnotes on Write Cycle No. 1 and No. 2 diagrams
	Pg. 8	Added Datasheet Document History
03/14/00	Pg. 3	Revised IsB to accomidate speed functionality
08/09/00		Not recommended for new designs
02/01/01		Removed "Not recommended for new designs"
03/31/05	Pg. 7	Added "Restricted hazardous substance device" to ordering information.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com *for Tech Support:* ipchelp@idt.com 800-345-7015

The IDT logo is a registered trademark of Integrated Device Technology, Inc.