
8-bit
Microcontroller
with 32K Bytes
In-System
Programmable
Flash

ATmega324PA

 8152A–AVR–11/08
Features
• High-performance, Low-power AVR® 8-bit Microcontroller
• Advanced RISC Architecture

– 131 Powerful Instructions – Most Single-clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 20 MIPS Throughput at 20 MHz
– On-chip 2-cycle Multiplier

• High Endurance Non-volatile Memory segments
– 32K Bytes of In-System Self-programmable Flash program memory
– 1K Bytes EEPROM
– 2K Bytes Internal SRAM
– Write/Erase Cycles: 10,000 Flash/ 100,000 EEPROM
– Data retention: 20 years at 85°C/ 100 years at 25°C(1)

– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation

– Programming Lock for Software Security
• JTAG (IEEE std. 1149.1 Compliant) Interface

– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

• Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
– Real Time Counter with Separate Oscillator
– Six PWM Channels
– 8-channel, 10-bit ADC

Differential mode with selectable gain at 1x, 10x or 200x
– Byte-oriented Two-wire Serial Interface
– Two Programmable Serial USART
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change

• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and

Extended Standby
• I/O and Packages

– 32 Programmable I/O Lines
– 40-pin PDIP, 44-lead TQFP, 44-pad VQFN/QFN/MLF
– 44-pad DRQFN
– 49-ball VFBGA

• Operating Voltages
– 1.8 - 5.5V

• Speed Grades
– 0 - 20MHz @ 1.8 - 5.5V

• Power Consumption at 1 MHz, 1.8V, 25°C
– Active: 0.4 mA
– Power-down Mode: 0.1µA
– Power-save Mode: 0.6µA (Including 32 kHz RTC)

1. Pin Configurations

1.1 Pinout - PDIP/TQFP/VQFN/QFN/MLF

Figure 1-1. Pinout

Note: The large center pad underneath the VQFN/QFN/MLF package should be soldered to ground on
the board to ensure good mechanical stability.

(PCINT8/XCK0/T0) PB0
(PCINT9/CLKO/T1) PB1

(PCINT10/INT2/AIN0) PB2
(PCINT11/OC0A/AIN1) PB3

(PCINT12/OC0B/SS) PB4
(PCINT13/MOSI) PB5
(PCINT14/MISO) PB6
(PCINT15/SCK) PB7

RESET
VCC
GND

XTAL2
XTAL1

(PCINT24/RXD0) PD0
(PCINT25/TXD0) PD1

(PCINT26/RXD1/INT0) PD2
(PCINT27/TXD1/INT1) PD3

(PCINT28/XCK1/OC1B) PD4
(PCINT29/OC1A) PD5

(PCINT30/OC2B/ICP) PD6

PA0 (ADC0/PCINT0)
PA1 (ADC1/PCINT1)
PA2 (ADC2/PCINT2)
PA3 (ADC3/PCINT3)
PA4 (ADC4/PCINT4)
PA5 (ADC5/PCINT5)
PA6 (ADC6/PCINT6)
PA7 (ADC7/PCINT7)
AREF
GND
AVCC
PC7 (TOSC2/PCINT23)
PC6 (TOSC1/PCINT22)
PC5 (TDI/PCINT21)
PC4 (TDO/PCINT20)
PC3 (TMS/PCINT19)
PC2 (TCK/PCINT18)
PC1 (SDA/PCINT17)
PC0 (SCL/PCINT16)
PD7 (OC2A/PCINT31)

PDIP

PA4 (ADC4/PCINT4)
PA5 (ADC5/PCINT5)
PA6 (ADC6/PCINT6)
PA7 (ADC7/PCINT7)
AREF
GND
AVCC
PC7 (TOSC2/PCINT23)
PC6 (TOSC1/PCINT22)
PC5 (TDI/PCINT21)
PC4 (TDO/PCINT20)

(PCINT13/MOSI) PB5
(PCINT14/MISO) PB6
(PCINT15/SCK) PB7

RESET
VCC
GND

XTAL2
XTAL1

(PCINT24/RXD0) PD0
(PCINT25/TXD0) PD1

(PCINT26/RXD1/INT0) PD2

(P
C

IN
T2

7/
TX

D
1/

IN
T1

)
PD

3
(P

C
IN

T2
8/

XC
K1

/O
C

1B
)

PD
4

(P
C

IN
T2

9/
O

C
1A

)
PD

5
(P

C
IN

T3
0/

O
C

2B
/IC

P)
 P

D
6

(P
C

IN
T3

1/
O

C
2A

)
PD

7
VC

C
G

N
D

(P
C

IN
T1

6/
SC

L)
 P

C
0

(P
C

IN
T1

7/
SD

A)
 P

C
1

(P
C

IN
T1

8/
TC

K)
 P

C
2

(P
C

IN
T1

9/
TM

S)
 P

C
3

PB
4

 (S
S/

O
C

0B
/P

C
IN

T1
2)

PB
3

 (A
IN

1/
O

C
0A

/P
C

IN
T1

1)
PB

2
 (A

IN
0/

IN
T2

/P
C

IN
T1

0)
PB

1
 (T

1/
C

LK
O

/P
C

IN
T9

)
PB

0
 (X

C
K0

/T
0/

PC
IN

T8
)

G
N

D
VC

C
PA

0
 (A

D
C

0/
PC

IN
T0

)
PA

1
 (A

D
C

1/
PC

IN
T1

)
PA

2
 (A

D
C

2/
PC

IN
T2

)
PA

3
 (A

D
C

3/
PC

IN
T3

)

TQFP/VQFN/QFN/MLF
2
8152A–AVR–11/08

ATmega324PA

ATmega324PA
1.2 Pinout - DRQFN

Figure 1-2. DRQFN - Pinout

Table 1-1. DRQFN - Pinout

A1 PB5 A7 PD3 A13 PC4 A19 PA3

B1 PB6 B6 PD4 B11 PC5 B16 PA2

A2 PB7 A8 PD5 A14 PC6 A20 PA1

B2 RESET B7 PD6 B12 PC7 B17 PA0

A3 VCC A9 PD7 A15 AVCC A21 VCC

B3 GND B8 VCC B13 GND B18 GND

A4 XTAL2 A10 GND A16 AREF A22 PB0

B4 XTAL1 B9 PC0 B14 PA7 B19 PB1

A5 PD0 A11 PC1 A17 PA6 A23 PB2

B5 PD1 B10 PC2 B15 PA5 B20 PB3

A6 PD2 A12 PC3 A18 PA4 A24 PB4

Top view Bottom view

 A1

B1

 A2

B2

 A3

B3

 A4

B4

 A5

B5

 A6

A18

 B15

A17

 B14

A16

 B13

A15

 B12

A14

 B11

A13

A
1
2

 B
1

0

A
1
1

B

9

A
1
0

B

8

A
9

B

7

A
8

B

6

A
7

A
2
4

 B
2

0

A
2
3

 B
1

9

A
2
2

 B
1

8

A
2
1

 B
1

7

A
2
0

 B
1

6

A
1
9

 A18

B15

 A17

B14

 A16

B13

 A15

B12

 A14

B11

 A13

A1

 B1

A2

 B2

A3

 B3

A4

 B4

A5

 B5

A6

A
7

B

6

A
8

B

7

A
9

B

8

A
1
0

B

9

A
1
1

B

1
0

A
1
2

A
1
9

 B
1

6

A
2
0

 B
1

7

A
2
1

 B
1

8

A
2
2

 B
1

9

A
2
3

 B
2

0

A
2
4

3
8152A–AVR–11/08

1.3 Pinout - VFBGA

Figure 1-3. VFBGA - Pinout

Table 1-2. BGA - Pinout

1 2 3 4 5 6 7

A GND PB4 PB2 GND VCC PA2 GND

B PB6 PB5 PB3 PB0 PA0 PA3 PA5

C VCC RESET PB7 PB1 PA1 PA6 AREF

D GND XTAL2 PD0 GND PA4 PA7 GND

E XTAL1 PD1 PD5 PD7 PC5 PC7 AVCC

F PD2 PD3 PD6 PC0 PC2 PC4 PC6

G GND PD4 VCC GND PC1 PC3 GND

A

B

C

D

E

F

G

1 2 3 4 5 6 7

A

B

C

D

E

F

G

7 6 5 4 3 2 1

Top view Bottom view
4
8152A–AVR–11/08

ATmega324PA

ATmega324PA
2. Overview

The ATmega324PA is a low-power CMOS 8-bit microcontroller based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega324PA
achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize
power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

 CPU

GND

VCC

RESET

Power
Supervision

POR / BOD &
RESET

Watchdog
Oscillator

Watchdog
Timer

Oscillator
Circuits /

Clock
Generation

XTAL1

XTAL2

PORT A (8)

PORT D (8)

PD7..0

PORT C (8)

PC5..0

TWI

SPIEEPROM

JTAG/OCD 16bit T/C 1

8bit T/C 2

8bit T/C 0

SRAMFLASH

USART 0

Internal
Bandgap reference

Analog
Comparator

A/D
Converter

PA7..0

PORT B (8)

PB7..0

USART 1

TOSC1/PC6TOSC2/PC7
5
8152A–AVR–11/08

The ATmega324PA provides the following features: 32K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 1K bytes EEPROM, 2K bytes SRAM, 32 general pur-
pose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), three flexible
Timer/Counters with compare modes and PWM, 2 USARTs, a byte oriented 2-wire Serial Inter-
face, a 8-channel, 10-bit ADC with optional differential input stage with programmable gain,
programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1
compliant JTAG test interface, also used for accessing the On-chip Debug system and program-
ming and six software selectable power saving modes. The Idle mode stops the CPU while
allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The
Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip
functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous
timer continues to run, allowing the user to maintain a timer base while the rest of the device is
sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchro-
nous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode,
the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows
very fast start-up combined with low power consumption. In Extended Standby mode, both the
main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-
chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program
running on the AVR core. The boot program can use any interface to download the application
program in the application Flash memory. Software in the Boot Flash section will continue to run
while the Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,
the Atmel ATmega324PA is a powerful microcontroller that provides a highly flexible and cost
effective solution to many embedded control applications.

The ATmega324PA AVR is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators,
and evaluation kits.
6
8152A–AVR–11/08

ATmega324PA

ATmega324PA
2.2 Pin Descriptions

2.2.1 VCC

Digital supply voltage.

2.2.2 GND

Ground.

2.2.3 Port A (PA7:PA0)

Port A serves as analog inputs to the Analog-to-digital Converter.

Port A also serves as an 8-bit bi-directional I/O port with internal pull-up resistors (selected for
each bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source current if
the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega324PA as listed on
page 81.

2.2.4 Port B (PB7:PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B also serves the functions of various special features of the ATmega324PA as listed on
page 83.

2.2.5 Port C (PC7:PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port C also serves the functions of the JTAG interface, along with special features of the
ATmega324PA as listed on page 86.

2.2.6 Port D (PD7:PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATmega324PA as listed on
page 88.
7
8152A–AVR–11/08

2.2.7 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in ”System and Reset
Characteristics” on page 329. Shorter pulses are not guaranteed to generate a reset.

2.2.8 XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.2.9 XTAL2

Output from the inverting Oscillator amplifier.

2.2.10 AVCC

AVCC is the supply voltage pin for Port A and the Analog-to-digital Converter. It should be exter-
nally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected
to VCC through a low-pass filter.

2.2.11 AREF

This is the analog reference pin for the Analog-to-digital Converter.
8
8152A–AVR–11/08

ATmega324PA

ATmega324PA
3. Resources

A comprehensive set of development tools, application notes and datasheetsare available for
download on http://www.atmel.com/avr.

4. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of
the device. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

The code examples assume that the part specific header file is included before compilation. For
I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instruc-
tions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and
"STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

Note: 1.

5. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.
9
8152A–AVR–11/08

6. AVR CPU Core

6.1 Overview

This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

Figure 6-1. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

I/O Lines

EEPROM

Data Bus 8-bit

Data
SRAM

D
ire

ct
 A

dd
re

ss
in

g

In
di

re
ct

 A
dd

re
ss

in
g

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

I/O Module 2

I/O Module1

I/O Module n
10
8152A–AVR–11/08

ATmega324PA

ATmega324PA
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - 0x5F. In addition, the ATmega324PA
has Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

6.2 ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

6.3 Status Register

The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
11
8152A–AVR–11/08

specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

6.3.1 SREG – Status Register

The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
12
8152A–AVR–11/08

ATmega324PA

ATmega324PA
6.4 General Purpose Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 6-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 6-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 6-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
13
8152A–AVR–11/08

6.4.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 6-3.

Figure 6-3. The X-, Y-, and Z-registers

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

6.5 Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. Note that the Stack is implemented as
growing from higher to lower memory locations. The Stack Pointer Register always points to the
top of the Stack. The Stack Pointer points to the data SRAM Stack area where the Subroutine
and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are
executed or interrupts are enabled. Initial Stack Pointer value equals the last address of the
internal SRAM and the Stack Pointer must be set to point above start of the SRAM, see Figure
7-2 on page 21.

See Table 6-1 for Stack Pointer details.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent, see Table 6-2 on page 15. Note that the data
space in some implementations of the AVR architecture is so small that only SPL is needed. In
this case, the SPH Register will not be present.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Table 6-1. Stack Pointer instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

CALL
ICALL
RCALL

Decremented by 2 Return address is pushed onto the stack with a subroutine call or
interrupt

POP Incremented by 1 Data is popped from the stack

RET
RETI

Incremented by 2 Return address is popped from the stack with return from
subroutine or return from interrupt
14
8152A–AVR–11/08

ATmega324PA

ATmega324PA
6.5.1 SPH and SPL – Stack Pointer High and Stack pointer Low

6.5.2 RAMPZ – Extended Z-pointer Register for ELPM/SPM

For ELPM/SPM instructions, the Z-pointer is a concatenation of RAMPZ, ZH, and ZL, as shown
in Figure 6-4. Note that LPM is not affected by the RAMPZ setting.

Figure 6-4. The Z-pointer used by ELPM and SPM

The actual number of bits is implementation dependent. Unused bits in an implementation will
always read as zero. For compatibility with future devices, be sure to write these bits to zero.

6.6 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 6-5 on page 16 shows the parallel instruction fetches and instruction executions enabled
by the Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions
per cost, functions per clocks, and functions per power-unit.

Bit 15 14 13 12 11 10 9 8

0x3E (0x5E) – – – SP12 SP11 SP10 SP9 SP8 SPH

0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R R R R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 1 0 0 0

1 1 1 1 1 1 1 1

Table 6-2. Stack Pointer size

Device Stack Pointer size

ATmega324PA SP[11:0]

Bit 7 6 5 4 3 2 1 0

0x3B (0x5B) RAMPZ7 RAMPZ6 RAMPZ5 RAMPZ4 RAMPZ3 RAMPZ2 RAMPZ1 RAMPZ0 RAMPZ

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit (
Individually)

7 0 7 0 7 0

RAMPZ ZH ZL

Bit (Z-pointer) 23 16 15 8 7 0
15
8152A–AVR–11/08

Figure 6-5. The Parallel Instruction Fetches and Instruction Executions

Figure 6-6 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 6-6. Single Cycle ALU Operation

6.7 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section ”Memory Program-
ming” on page 292 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in ”Interrupts” on page 62. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to ”Interrupts” on page 62 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see ”Memory Programming” on page 292.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
16
8152A–AVR–11/08

ATmega324PA

ATmega324PA
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction – RETI – is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-
tor in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence..

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMPE ; start EEPROM write

sbi EECR, EEPE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

__disable_interrupt();

EECR |= (1<<EEMPE); /* start EEPROM write */

EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */
17
8152A–AVR–11/08

6.7.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is five clock cycles minimum.
After five clock cycles the program vector address for the actual interrupt handling routine is exe-
cuted. During these five clock cycle period, the Program Counter is pushed onto the Stack. The
vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If an
interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before
the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt exe-
cution response time is increased by five clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes five clock cycles. During these five clock cycles,
the Program Counter (three bytes) is popped back from the Stack, the Stack Pointer is incre-
mented by three, and the I-bit in SREG is set.

Assembly Code Example

sei ; set Global Interrupt Enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending

; interrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */

__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
18
8152A–AVR–11/08

ATmega324PA

ATmega324PA
7. AVR Memories

7.1 Overview

This section describes the different memories in the ATmega324PA. The AVR architecture has
two main memory spaces, the Data Memory and the Program Memory space. In addition, the
ATmega324PA features an EEPROM Memory for data storage. All three memory spaces are
linear and regular.

7.2 In-System Reprogrammable Flash Program Memory

The ATmega324PA contains 32K bytes On-chip In-System Reprogrammable Flash memory for
program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as
32/64 x 16. For software security, the Flash Program memory space is divided into two sections,
Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega324PA
Program Counter (PC) is 15/16 bits wide, thus addressing the 32/64K program memory loca-
tions. The operation of Boot Program section and associated Boot Lock bits for software
protection are described in detail in ”Memory Programming” on page 292. ”Memory Program-
ming” on page 292 contains a detailed description on Flash data serial downloading using the
SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM
– Load Program Memory instruction description.

Timing diagrams for instruction fetch and execution are presented in ”Instruction Execution Tim-
ing” on page 15.
19
8152A–AVR–11/08

Figure 7-1. Program Memory Map

7.3 SRAM Data Memory

Figure 7-2 shows how the ATmega324PA SRAM Memory is organized.

The ATmega324PA is a complex microcontroller with more peripheral units than can be sup-
ported within the 64 location reserved in the Opcode for the IN and OUT instructions. For the
Extended I/O space from $060 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used.

The first 4,352 Data Memory locations address both the Register File, the I/O Memory,
Extended I/O Memory, and the internal data SRAM. The first 32 locations address the Register
file, the next 64 location the standard I/O Memory, then 160 locations of Extended I/O memory
and the next 4,096 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register file,
registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

Application Flash Section

Boot Flash Section

Program Memory

0x1FFF

0x0000
20
8152A–AVR–11/08

ATmega324PA

ATmega324PA
The 32 general purpose working registers, 64 I/O registers, 160 Extended I/O Registers and the
2048 bytes of internal data SRAM in the ATmega324PA are all accessible through all these
addressing modes. The Register File is described in ”General Purpose Register File” on page
13.

Figure 7-2. Data Memory Map

7.3.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clkCPU cycles as described in Figure 7-3.

Figure 7-3. On-chip Data SRAM Access Cycles

32 Registers
64 I/O Registers

Internal SRAM
(2048 x 8)

0x0000 - 0x001F
0x0020 - 0x005F

0x08FF

0x0060 - 0x00FF

Data Memory

160 Ext I/O Reg.
0x0100

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address

R
ea

d
W

rit
e

CPU

Memory Access Instruction Next Instruction
21
8152A–AVR–11/08

7.4 EEPROM Data Memory

The ATmega324PA contains 1K bytes of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at
least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described
in the following, specifying the EEPROM Address Registers, the EEPROM Data Register, and
the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see
page 307, page 311, and page 296 respectively.

7.4.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/O space. See ”Register Description” on
page 24 for details.

The write access time for the EEPROM is given in Table 7-2 on page 26. A self-timing function,
however, lets the user software detect when the next byte can be written. If the user code con-
tains instructions that write the EEPROM, some precautions must be taken. In heavily filtered
power supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the device for
some period of time to run at a voltage lower than specified as minimum for the clock frequency
used. See Section “7.4.2” on page 22. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

7.4.2 Preventing EEPROM Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low VCC reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.
22
8152A–AVR–11/08

ATmega324PA

ATmega324PA
7.5 I/O Memory

The I/O space definition of the ATmega324PA is shown in ”Register Summary” on page 362.

All ATmega324PA I/Os and peripherals are placed in the I/O space. All I/O locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32
general purpose working registers and the I/O space. I/O Registers within the address range
0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the I/O specific commands IN and OUT, the
I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using
LD and ST instructions, 0x20 must be added to these addresses. The ATmega324PA is a com-
plex microcontroller with more peripheral units than can be supported within the 64 location
reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 -
0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore
be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-
isters 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

The ATmega324PA contains three General Purpose I/O Registers, see ”Register Description”
on page 24. These registers can be used for storing any information, and they are particularly
useful for storing global variables and Status Flags. General Purpose I/O Registers within the
address range 0x00 - 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC
instructions.
23
8152A–AVR–11/08

7.6 Register Description

7.6.1 EEARH and EEARL – The EEPROM Address Register

• Bits 15:12 – Res: Reserved Bits
These bits are reserved bits in the ATmega324PA and will always read as zero.

• Bits 11:0 – EEAR8:0: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the 4K
bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 4096.
The initial value of EEAR is undefined. A proper value must be written before the EEPROM may
be accessed.

7.6.2 EEDR – The EEPROM Data Register

• Bits 7:0 – EEDR7:0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

7.6.3 EECR – The EEPROM Control Register

• Bits 7:6 – Res: Reserved Bits
These bits are reserved bits in the ATmega324PA and will always read as zero.

• Bits 5:4 – EEPM1 and EEPM0: EEPROM Programming Mode Bits
The EEPROM Programming mode bit setting defines which programming action that will be trig-
gered when writing EEPE. It is possible to program data in one atomic operation (erase the old
value and program the new value) or to split the Erase and Write operations in two different
operations. The Programming times for the different modes are shown in Table 7-1 on page 25.

Bit 15 14 13 12 11 10 9 8

0x22 (0x42) – – – – EEAR11 EEAR10 EEAR9 EEAR8 EEARH

0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X X X X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1F (0x3F) – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 X X 0 0 X 0
24
8152A–AVR–11/08

ATmega324PA

ATmega324PA
While EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be
reset to 0b00 unless the EEPROM is busy programming.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEPE is cleared.

• Bit 2 – EEMPE: EEPROM Master Programming Enable
The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written.
When EEMPE is set, setting EEPE within four clock cycles will write data to the EEPROM at the
selected address If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been
written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEPE bit for an EEPROM write procedure.

• Bit 1 – EEPE: EEPROM Programming Enable
The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEPE bit must be written to one to write the value into the
EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE, other-
wise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEPE becomes zero.

2. Wait until SPMEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See ”Memory Pro-
gramming” on page 292 for details about Boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

Table 7-1. EEPROM Mode Bits

EEPM1 EEPM0
Programming

Time Operation

0 0 3.4 ms Erase and Write in one operation (Atomic Operation)

0 1 1.8 ms Erase Only

1 0 1.8 ms Write Only

1 1 – Reserved for future use
25
8152A–AVR–11/08

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEPE has been set,
the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable
The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 7-2 on page 26 lists the
typical programming time for EEPROM access from the CPU.

Table 7-2. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles Typ Programming Time

EEPROM write
(from CPU)

26,368 3.3 ms
26
8152A–AVR–11/08

ATmega324PA

ATmega324PA
The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts glob-
ally) so that no interrupts will occur during execution of these functions. The examples also
assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Note: 1. See “About Code Examples” on page 9.

Assembly Code Example()

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_write

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to Data Register

out EEDR,r16

; Write logical one to EEMPE

sbi EECR,EEMPE

; Start eeprom write by setting EEPE

sbi EECR,EEPE

ret

C Code Example(1)

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address and Data Registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE);

/* Start eeprom write by setting EEPE */

EECR |= (1<<EEPE);

}

27
8152A–AVR–11/08

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Note: 1. See “About Code Examples” on page 9.

Assembly Code Example(1)

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from Data Register

in r16,EEDR

ret

C Code Example(1)

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

}

28
8152A–AVR–11/08

ATmega324PA

ATmega324PA
7.6.4 GPIOR2 – General Purpose I/O Register 2

7.6.5 GPIOR1 – General Purpose I/O Register 1

7.6.6 GPIOR0 – General Purpose I/O Register 0

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or
SRW00 (lower sector). The ALE pulse in period T4 is only present if the next instruction
accesses the RAM (internal or external).

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
29
8152A–AVR–11/08

8. System Clock and Clock Options

8.1 Clock Systems and their Distribution

Figure 8-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in ”Power Manage-
ment and Sleep Modes” on page 43. The clock systems are detailed below.

Figure 8-1. Clock Distribution

8.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

8.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART.
The I/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also note that start condition detection in the USI module is carried out asynchro-
nously when clkI/O is halted, TWI address recognition in all sleep modes.

General I/O
Modules

Asynchronous
Timer/Counter

CPU Core RAM

clkI/O

clkASY

AVR Clock
Control Unit

clkCPU

Flash and
EEPROM

clkFLASH

Source clock

Watchdog Timer

Watchdog
Oscillator

Reset Logic

Clock
Multiplexer

Watchdog clock

Calibrated RC
Oscillator

Timer/Counter
Oscillator

Crystal
Oscillator

Low-frequency
Crystal Oscillator

External Clock

ADC

clkADC

System Clock
Prescaler
30
8152A–AVR–11/08

ATmega324PA

ATmega324PA
8.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

8.1.4 Asynchronous Timer Clock – clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external clock or an external 32 kHz clock crystal. The dedicated clock domain allows
using this Timer/Counter as a real-time counter even when the device is in sleep mode.

8.1.5 ADC Clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

8.2 Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

8.2.1 Default Clock Source

The device is shipped with internal RC oscillator at 8.0MHz and with the fuse CKDIV8 pro-
grammed, resulting in 1.0MHz system clock. The startup time is set to maximum and time-out
period enabled. (CKSEL = "0010", SUT = "10", CKDIV8 = "0"). The default setting ensures that
all users can make their desired clock source setting using any available programming interface.

8.2.2 Clock Startup Sequence

Any clock source needs a sufficient VCC to start oscillating and a minimum number of oscillating
cycles before it can be considered stable.

To ensure sufficient VCC, the device issues an internal reset with a time-out delay (tTOUT) after
the device reset is released by all other reset sources. ”On-chip Debug System” on page 47
describes the start conditions for the internal reset. The delay (tTOUT) is timed from the Watchdog
Oscillator and the number of cycles in the delay is set by the SUTx and CKSELx fuse bits. The

Table 8-1. Device Clocking Options Select(1)

Device Clocking Option CKSEL3..0

Low Power Crystal Oscillator 1111 - 1000

Full Swing Crystal Oscillator 0111 - 0110

Low Frequency Crystal Oscillator 0101 - 0100

Internal 128 kHz RC Oscillator 0011

Calibrated Internal RC Oscillator 0010

External Clock 0000

Reserved 0001
31
8152A–AVR–11/08

selectable delays are shown in Table 8-2. The frequency of the Watchdog Oscillator is voltage
dependent as shown in ”Typical Characteristics” on page 336.

Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum Vcc. The
delay will not monitor the actual voltage and it will be required to select a delay longer than the
Vcc rise time. If this is not possible, an internal or external Brown-Out Detection circuit should be
used. A BOD circuit will ensure sufficient Vcc before it releases the reset, and the time-out delay
can be disabled. Disabling the time-out delay without utilizing a Brown-Out Detection circuit is
not recommended.

The oscillator is required to oscillate for a minimum number of cycles before the clock is consid-
ered stable. An internal ripple counter monitors the oscillator output clock, and keeps the internal
reset active for a given number of clock cycles. The reset is then released and the device will
start to execute. The recommended oscillator start-up time is dependent on the clock type, and
varies from 6 cycles for an externally applied clock to 32K cycles for a low frequency crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up time when
the device starts up from reset. When starting up from Power-save or Power-down mode, Vcc is
assumed to be at a sufficient level and only the start-up time is included.

8.2.3 Clock Source Connections

The pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which
can be configured for use as an On-chip Oscillator, as shown in Figure 8-2 on page 32. Either a
quartz crystal or a ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. For ceramic resonators, the capacitor values given by
the manufacturer should be used.

Figure 8-2. Crystal Oscillator Connections

Table 8-2. Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (VCC = 3.0V) Number of Cycles

0 ms 0 ms 0

4.1 ms 4.3 ms 512

65 ms 69 ms 8K (8,192)

XTAL2

XTAL1

GND

C2

C1
32
8152A–AVR–11/08

ATmega324PA

ATmega324PA
8.3 Low Power Crystal Oscillator

This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 out-
put. It gives the lowest power consumption, but is not capable of driving other clock inputs, and
may be more susceptible to noise in noisy environments. In these cases, refer to the ”Full Swing
Crystal Oscillator” on page 34.

Some initial guidelines for choosing capacitors for use with crystals are given in Table 8-3. The
crystal should be connected as described in ”Clock Source Connections” on page 32.

The Low Power Oscillator can operate in three different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 8-3.

Notes: 1. If 8 MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8. It must be ensured
that the resulting divided clock meets the frequency specification of the device.

2. This is the recommended CKSEL settings for the different frequency ranges.
3. This option should not be used with crystals, only with ceramic resonators.

The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table
8-4.

Table 8-3. Low Power Crystal Oscillator Operating Modes(1)

 Frequency Range (MHz) CKSEL3..1(2)
Recommended Range for Capacitors C1

and C2 (pF)

0.4 - 0.9 100(3) –

0.9 - 3.0 101 12 - 22

3.0 - 8.0 110 12 - 22

8.0 - 16.0 111 12 - 22

Table 8-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection

Oscillator Source /
Power Conditions

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) CKSEL0 SUT1..0

Ceramic resonator, fast
rising power

258 CK 14CK + 4.1 ms(1) 0 00

Ceramic resonator, slowly
rising power

258 CK 14CK + 65 ms(1) 0 01

Ceramic resonator, BOD
enabled

1K CK 14CK(2) 0 10

Ceramic resonator, fast
rising power

1K CK 14CK + 4.1 ms(2) 0 11

Ceramic resonator, slowly
rising power

1K CK 14CK + 65 ms(2) 1 00
33
8152A–AVR–11/08

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

8.4 Full Swing Crystal Oscillator

This Crystal Oscillator is a full swing oscillator, with rail-to-rail swing on the XTAL2 output. This is
useful for driving other clock inputs and in noisy environments. The current consumption is
higher than the ”Low Power Crystal Oscillator” on page 33. Note that the Full Swing Crystal
Oscillator will only operate for Vcc = 2.7 - 5.5 volts.

Some initial guidelines for choosing capacitors for use with crystals are given in Table 8-6. The
crystal should be connected as described in ”Clock Source Connections” on page 32.

The operating mode is selected by the fuses CKSEL3..1 as shown in Table 8-5.

Notes: 1. If 8 MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8. It must be ensured
that the resulting divided clock meets the frequency specification of the device.

Crystal Oscillator, BOD
enabled

16K CK 14CK 1 01

Crystal Oscillator, fast
rising power

16K CK 14CK + 4.1 ms 1 10

Crystal Oscillator, slowly
rising power

16K CK 14CK + 65 ms 1 11

Table 8-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection (Continued)

Oscillator Source /
Power Conditions

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) CKSEL0 SUT1..0

Table 8-5. Full Swing Crystal Oscillator Operating Modes

Frequency Range(1) (MHz) CKSEL3..1
Recommended Range for Capacitors C1

and C2 (pF)

0.4 - 20 011 12 - 22

Table 8-6. Start-up Times for the Full Swing Crystal Oscillator Clock Selection

Oscillator Source /
Power Conditions

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) CKSEL0 SUT1..0

Ceramic resonator, fast
rising power

258 CK 14CK + 4.1 ms(1) 0 00

Ceramic resonator, slowly
rising power

258 CK 14CK + 65 ms(1) 0 01

Ceramic resonator, BOD
enabled

1K CK 14CK(2) 0 10
34
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
quency of the device, and if frequency stability at start-up is not important for the application.

8.5 Low Frequency Crystal Oscillator

The Low-frequency Crystal Oscillator is optimized for use with a 32.768 kHz watch crystal.
When selecting crystals, load capasitance and crystal’s Equivalent Series Resistance, ESR
must be taken into consideration. Both values are specified by the crystal vendor.
ATmega324PA oscillator is optimized for very low power consumption, and thus when selecting
crystals, see Table 8-7 on page 35 for maximum ESR recommendations on 9 pF and 12.5 pF
crystals

Table 8-7. Maximum ESR Recommendation for 32.768 kHz Watch Crystal

Note: 1. Maximum ESR is typical value based on characterization

The Low-frequency Crystal Oscillator provides an internal load capacitance of typical 8.0 pF.
Crystals with recommended 8.0 pF load capacitance can be without external capacitors as
shown in Figure 8-3 on page 35.

Figure 8-3. Crystal Oscillator Connections

Ceramic resonator, fast
rising power

1K CK 14CK + 4.1 ms(2) 0 11

Ceramic resonator, slowly
rising power

1K CK 14CK + 65 ms(2) 1 00

Crystal Oscillator, BOD
enabled

16K CK 14CK 1 01

Crystal Oscillator, fast
rising power

16K CK 14CK + 4.1 ms 1 10

Crystal Oscillator, slowly
rising power

16K CK 14CK + 65 ms 1 11

Table 8-6. Start-up Times for the Full Swing Crystal Oscillator Clock Selection

Oscillator Source /
Power Conditions

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) CKSEL0 SUT1..0

Crystal CL (pF) Max ESR [kΩ](1)

9.0 65

12.5 30
35
8152A–AVR–11/08

Crystals specifying load capacitance (CL) higher than 8.0 pF, require external capacitors applied
as described in Figure 8-2 on page 32.

To find suitable load capacitance for a 32.768 kHz crysal, please consult the crystal datasheet.

When this oscillator is selected, start-up times are determined by the SUT Fuses and CKSEL0
as shown in Table 8-8.

Note: 1. These options should only be used if frequency stability at start-up is not important for the
application.

Table 8-8. Start-up Times for the Low Frequency Crystal Oscillator Clock Selection

Power Conditions

Start-up Time from
Power-down and

Power-save

Additional Delay
from Reset
(VCC = 5.0V) CKSEL0 SUT1..0

BOD enabled 1K CK 14CK(1) 0 00

Fast rising power 1K CK 14CK + 4.1 ms(1) 0 01

Slowly rising power 1K CK 14CK + 65 ms(1) 0 10

Reserved 0 11

BOD enabled 32K CK 14CK 1 00

Fast rising power 32K CK 14CK + 4.1 ms 1 01

Slowly rising power 32K CK 14CK + 65 ms 1 10

Reserved 1 11
36
8152A–AVR–11/08

ATmega324PA

ATmega324PA
8.6 Calibrated Internal RC Oscillator

By default, the Internal RC Oscillator provides an approximate 8 MHz clock. Though voltage and
temperature dependent, this clock can be very accurately calibrated by the the user. See Table
27-2 on page 328 and “Internal Oscillator Speed - TBD” for more details. The device is shipped
with the CKDIV8 Fuse programmed. See ”System Clock Prescaler” on page 39 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in
Table 8-9. If selected, it will operate with no external components. During reset, hardware loads
the pre-programmed calibration value into the OSCCAL Register and thereby automatically cal-
ibrates the RC Oscillator. The accuracy of this calibration is shown as Factory calibration in
Table 27-2 on page 328.

By changing the OSCCAL register from SW, see ”OSCCAL – Oscillator Calibration Register” on
page 41, it is possible to get a higher calibration accuracy than by using the factory calibration.
The accuracy of this calibration is shown as User calibration in Table 27-2 on page 328.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the
Watchdog Timer and for the Reset Time-out. For more information on the pre-programmed cali-
bration value, see the section ”Calibration Byte” on page 295.

Notes: 1. The device is shipped with this option selected.
2. If 8 MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8

Fuse can be programmed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 8-10 on page 37.

Note: 1. The device is shipped with this option selected.

Table 8-9. Internal Calibrated RC Oscillator Operating Modes

Frequency Range(2) (MHz) CKSEL3..0

7.3 - 8.1 0010(1)

Table 8-10. Start-up times for the Internal Calibrated RC Oscillator clock selection

Power Conditions
Start-up Time from Power-

down and Power-save
Additional Delay from

Reset (VCC = 5.0V) SUT1..0

BOD enabled 6 CK 14CK 00

Fast rising power 6 CK 14CK + 4.1 ms 01

Slowly rising power 6 CK 14CK + 65 ms 10(1)

Reserved 11
37
8152A–AVR–11/08

8.7 128 kHz Internal Oscillator

The 128 kHz internal Oscillator is a low power Oscillator providing a clock of 128 kHz. The fre-
quency is nominal at 3V and 25°C. This clock may be select as the system clock by
programming the CKSEL Fuses to “0011” as shown in Table 8-11.

Note: 1. Note that the 128kHz oscillator is a very low power clock source, and is not designed for high
accuracy.

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 8-12.

8.8 External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
8-4. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”.

Figure 8-4. External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 8-14.

Table 8-11. 128 kHz Internal Oscillator Operating Modes(2)

Nominal Frequency CKSEL3..0

128 kHz 0011

Table 8-12. Start-up Times for the 128 kHz Internal Oscillator

Power Conditions
Start-up Time from Power-

down and Power-save
Additional Delay from

Reset SUT1..0

BOD enabled 6 CK 14CK 00

Fast rising power 6 CK 14CK + 4 ms 01

Slowly rising power 6 CK 14CK + 64 ms 10

Reserved 11

Table 8-13. Crystal Oscillator Clock Frequency

Nominal Frequency CKSEL3..0

0 - 20 MHz 0000

NC

EXTERNAL
CLOCK
SIGNAL

XTAL2

XTAL1

GND
38
8152A–AVR–11/08

ATmega324PA

ATmega324PA
When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. If changes of more than 2% is
required, ensure that the MCU is kept in Reset during the changes.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to ”System Clock Prescaler” on page
39 for details.

8.9 Timer/Counter Oscillator

ATmega324PA uses the same type of crystal oscillator for Low-frequency Crystal Oscillator and
Timer/Counter Oscillator. See ”Low Frequency Crystal Oscillator” on page 35 for details on the
oscillator and crystal requirements.

The device can operate its Timer/Counter2 from an external 32.768 kHz watch crystal or a exter-
nal clock source. See ”Clock Source Connections” on page 32 for details.

Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR Register is
written to logic one. See ”The Output Compare Register B contains an 8-bit value that is contin-
uously compared with the counter value (TCNT2). A match can be used to generate an Output
Compare interrupt, or to generate a waveform output on the OC2B pin.” on page 158 for further
description on selecting external clock as input instead of a 32.768 kHz watch crystal.

8.10 Clock Output Buffer

The device can output the system clock on the CLKO pin. To enable the output, the CKOUT
Fuse has to be programmed. This mode is suitable when the chip clock is used to drive other cir-
cuits on the system. The clock also will be output during reset, and the normal operation of I/O
pin will be overridden when the fuse is programmed. Any clock source, including the internal RC
Oscillator, can be selected when the clock is output on CLKO. If the System Clock Prescaler is
used, it is the divided system clock that is output.

8.11 System Clock Prescaler

The ATmega324PA has a system clock prescaler, and the system clock can be divided by set-
ting the ”CLKPR – Clock Prescale Register” on page 41. This feature can be used to decrease
the system clock frequency and the power consumption when the requirement for processing
power is low. This can be used with all clock source options, and it will affect the clock frequency
of the CPU and all synchronous peripherals. clkI/O, clkADC, clkCPU, and clkFLASH are divided by a
factor as shown in Table 8-15 on page 42.

When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occurs in the clock system. It also ensures that no intermediate frequency is higher than

Table 8-14. Start-up Times for the External Clock Selection

Power Conditions
Start-up Time from Power-

down and Power-save
Additional Delay from

Reset (VCC = 5.0V) SUT1..0

BOD enabled 6 CK 14CK 00

Fast rising power 6 CK 14CK + 4.1 ms 01

Slowly rising power 6 CK 14CK + 65 ms 10

Reserved 11
39
8152A–AVR–11/08

neither the clock frequency corresponding to the previous setting, nor the clock frequency corre-
sponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU's clock frequency. Hence, it is not possible to determine the
state of the prescaler - even if it were readable, and the exact time it takes to switch from one
clock division to the other cannot be exactly predicted. From the time the CLKPS values are writ-
ten, it takes between T1 + T2 and T1 + 2 * T2 before the new clock frequency is active. In this
interval, 2 active clock edges are produced. Here, T1 is the previous clock period, and T2 is the
period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.
40
8152A–AVR–11/08

ATmega324PA

ATmega324PA
8.12 Register Description

8.12.1 OSCCAL – Oscillator Calibration Register

• Bits 7:0 – CAL7:0: Oscillator Calibration Value
The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to
remove process variations from the oscillator frequency. A pre-programmed calibration value is
automatically written to this register during chip reset, giving the Factory calibrated frequency as
specified in Table 27-2 on page 328. The application software can write this register to change
the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 27-
2 on page 328. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more
than 8.8 MHz. Otherwise, the EEPROM or Flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-
quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher
frequency than OSCCAL = 0x80.

The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the
range.

8.12.2 CLKPR – Clock Prescale Register

• Bit 7 – CLKPCE: Clock Prescaler Change Enable
The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

• Bits 3:0 – CLKPS3:0: Clock Prescaler Select Bits 3 - 0
These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 8-15 on page 42.

Bit 7 6 5 4 3 2 1 0

(0x66) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

(0x61) CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
41
8152A–AVR–11/08

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to
“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock
source has a higher frequency than the maximum frequency of the device at the present operat-
ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8
Fuse setting. The Application software must ensure that a sufficient division factor is chosen if
the selected clock source has a higher frequency than the maximum frequency of the device at
the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 8-15. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved
42
8152A–AVR–11/08

ATmega324PA

ATmega324PA
9. Power Management and Sleep Modes

9.1 Overview

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving-
power. The AVR provides various sleep modes allowing the user to tailor the power
consumption to the application’s requirements.

When enabled, the Brown-out Detector (BOD) actively monitors the power supply voltage during
the sleep periods. To further save power, it is possible to disable the BOD in some sleep modes.
See ”BOD Disable” on page 44 for more details.

9.2 Sleep Modes

Figure 8-1 on page 30 presents the different clock systems in the ATmega324PA, and their dis-
tribution. The figure is helpful in selecting an appropriate sleep mode. Table 9-1 shows the
different sleep modes, their wake up sources and BOD disable ability.

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If Timer/Counter2 is running in asynchronous mode.
3. For INT0, only level interrupt.

To enter any of the sleep modes, the SE bit in SMCR must be written to logic one and a SLEEP
instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR Register select which
sleep mode will be activated by the SLEEP instruction. See Table 9-2 on page 48 for a
summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU
is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the Reset Vector.

Table 9-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources

S
o

ft
w

ar
e

B
O

D
 D

is
d

ab
le

Sleep Mode cl
k C

P
U

cl
k F

L
A

S
H

cl
k I

O

cl
k A

D
C

cl
k A

S
Y

M
ai

n
 C

lo
ck

S
o

u
rc

e
E

n
ab

le
d

T
im

er
 O

sc

E
n

ab
le

d

IN
T

2:
0

an
d

P

in
 C

h
an

g
e

T
W

I A
d

d
re

ss

M
at

ch

T
im

er
2

S
P

M
/

E
E

P
R

O
M

 R
ea

d
y

A
D

C

W
D

T
 In

te
rr

u
p

t

O
th

er
 I/

O

Idle X X X X X(2) X X X X X X X

ADCNRM X X X X(2) X(3) X X(2) X X X

Power-down X(3) X X X

Power-save X X(2) X(3) X X X X

Standby(1) X X(3) X X X

Extended
Standby

X(2) X X(2) X(3) X X X X
43
8152A–AVR–11/08

9.3 BOD Disable

When the Brown-out Detector (BOD) is enabled by BODLEVEL fuses, Table 26-3 on page 293,
the BOD is actively monitoring the power supply voltage during a sleep period. To save power, it
is possible to disable the BOD by software for some of the sleep modes, see Table 9-1 on page
43. The sleep mode power consumption will then be at the same level as when BOD is globally
disabled by fuses. If BOD is disabled in software, the BOD function is turned off immediately
after entering the sleep mode. Upon wake-up from sleep, BOD is automatically enabled again.
This ensures safe operation in case the VCC level has dropped during the sleep period.

When the BOD has been disabled, the wake-up time from sleep mode will be approximately 60
µs to ensure that the BOD is working correctly before the MCU continues executing code.

BOD disable is controlled by bit 6, BODS (BOD Sleep) in the control register MCUCR, see
”MCUCR – MCU Control Register” on page 49. Writing this bit to one turns off the BOD in rele-
vant sleep modes, while a zero in this bit keeps BOD active. Default setting keeps BOD active,
i.e. BODS set to zero.

Writing to the BODS bit is controlled by a timed sequence and an enable bit, see ”MCUCR –
MCU Control Register” on page 49.

9.4 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing the SPI, USART, Analog Comparator, ADC, 2-wire Serial
Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep
mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

9.5 ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, 2-wire
Serial Interface address match, Timer/Counter2 and the Watchdog to continue operating (if
enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog System Reset, a
Watchdog interrupt, a Brown-out Reset, a 2-wire serial interface interrupt, a Timer/Counter2
interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT7:4 or a pin
change interrupt can wakeup the MCU from ADC Noise Reduction mode.
44
8152A–AVR–11/08

ATmega324PA

ATmega324PA
9.6 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the 2-
wire Serial Interface, and the Watchdog continue operating (if enabled). Only an External Reset,
a Watchdog Reset, a Brown-out Reset, 2-wire Serial Interface address match, an external level
interrupt on PCINT7:4, an external interrupt on INT2:0, or a pin change interrupt can wake up
the MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchro-
nous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to ”External Interrupts” on page 68
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in ”Clock Sources” on page 31.

9.7 Power-save Mode

When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from
either Timer Overflow or Output Compare event from Timer/Counter2 if the corresponding
Timer/Counter2 interrupt enable bits are set in TIMSK2, and the Global Interrupt Enable bit in
SREG is set.

If Timer/Counter2 is not running, Power-down mode is recommended instead of Power-save
mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in Power-save
mode. If the Timer/Counter2 is not using the asynchronous clock, the Timer/Counter Oscillator is
stopped during sleep. If the Timer/Counter2 is not using the synchronous clock, the clock source
is stopped during sleep. Note that even if the synchronous clock is running in Power-save, this
clock is only available for the Timer/Counter2.

9.8 Standby Mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.

9.9 Extended Standby Mode

When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Extended Standby mode. This mode is identical to
Power-save mode with the exception that the Oscillator is kept running. From Extended Standby
mode, the device wakes up in six clock cycles.
45
8152A–AVR–11/08

9.10 Power Reduction Register

The Power Reduction Register(PRR), see ”PRR – Power Reduction Register” on page 49, pro-
vides a method to stop the clock to individual peripherals to reduce power consumption. The
current state of the peripheral is frozen and the I/O registers can not be read or written.
Resources used by the peripheral when stopping the clock will remain occupied, hence the
peripheral should in most cases be disabled before stopping the clock. Waking up a peripheral,
which is done by clearing the bit in PRR, puts the peripheral in the same state as before
shutdown.

Peripheral shutdown can be used in Idle mode and Active mode to significantly reduce the over-
all power consumption. In all other sleep modes, the clock is already stopped.

9.11 Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

9.11.1 Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to ”ADC - Analog-to-digital Converter” on page
241 for details on ADC operation.

9.11.2 Analog Comparator

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,
the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up
to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all
sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep
mode. Refer to ”AC - Analog Comparator” on page 238 for details on how to configure the Ana-
log Comparator.

9.11.3 Brown-out Detector

If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to ”Brown-out Detection” on page 54 for details
on how to configure the Brown-out Detector.

9.11.4 Internal Voltage Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to ”Internal Volt-
age Reference” on page 55 for details on the start-up time.
46
8152A–AVR–11/08

ATmega324PA

ATmega324PA
9.11.5 Watchdog Timer

If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to ”Interrupts” on page 62 for details on how to configure the Watchdog Timer.

9.11.6 Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section ”Digital Input Enable and Sleep Modes” on page 77 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to VCC/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to VCC/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDR0). Refer to ”DIDR1 – Digital Input Disable Register 1” on page 240 and ”DIDR0 – Digital
Input Disable Register 0” on page 260 for details.

9.11.7 On-chip Debug System

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enters sleep mode,
the main clock source is enabled, and hence, always consumes power. In the deeper sleep
modes, this will contribute significantly to the total current consumption.

There are three alternative ways to disable the OCD system:

• Disable the OCDEN Fuse.

• Disable the JTAGEN Fuse.

• Write one to the JTD bit in MCUCR.
47
8152A–AVR–11/08

9.12 Register Description

9.12.1 SMCR – Sleep Mode Control Register

The Sleep Mode Control Register contains control bits for power management.

• Bits 3, 2, 1 – SM2:0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 9-2.

Note: 1. Standby modes are only recommended for use with external crystals or resonators.

• Bit 0 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

Bit 7 6 5 4 3 2 1 0

0x33 (0x53) – – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 9-2. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Extended Standby(1)
48
8152A–AVR–11/08

ATmega324PA

ATmega324PA
9.12.2 MCUCR – MCU Control Register

• Bit 6 – BODS: BOD Sleep
The BODS bit must be written to logic one in order to turn off BOD during sleep, see Table 9-1
on page 43. Writing to the BODS bit is controlled by a timed sequence and an enable bit,
BODSE in MCUCR. To disable BOD in relevant sleep modes, both BODS and BODSE must first
be set to one. Then, to set the BODS bit, BODS must be set to one and BODSE must be set to
zero within four clock cycles.

The BODS bit is active three clock cycles after it is set. A sleep instruction must be executed
while BODS is active in order to turn off the BOD for the actual sleep mode. The BODS bit is
automatically cleared after three clock cycles.

• Bit 5 – BODSE: BOD Sleep Enable
BODSE enables setting of BODS control bit, as explained in BODS bit description. BOD disable
is controlled by a timed sequence.

9.12.3 PRR – Power Reduction Register

• Bit 7 - PRTWI: Power Reduction TWI
Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When
waking up the TWI again, the TWI should be re initialized to ensure proper operation.

• Bit 6 - PRTIM2: Power Reduction Timer/Counter2
Writing a logic one to this bit shuts down the Timer/Counter2 module in synchronous mode (AS2
is 0). When the Timer/Counter2 is enabled, operation will continue like before the shutdown.

• Bit 5 - PRTIM0: Power Reduction Timer/Counter0
Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0
is enabled, operation will continue like before the shutdown.

• Bit 4 - PRUSART1: Power Reduction USART1
Writing a logic one to this bit shuts down the USART1 by stopping the clock to the module.
When waking up the USART1 again, the USART1 should be reinitialized to ensure proper
operation.

• Bit 3 - PRTIM1: Power Reduction Timer/Counter1
Writing a logic one to this bit shuts down the Timer/Counter1 module. When the Timer/Counter1
is enabled, operation will continue like before the shutdown.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD BODS BODSE PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x64) PRTWI PRTIM2 PRTIM0 PRUSART1 PRTIM1 PRSPI PRUSART0 PRADC PRR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
49
8152A–AVR–11/08

• Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface
Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to
the module. When waking up the SPI again, the SPI should be re initialized to ensure proper
operation.

• Bit 1 - PRUSART0: Power Reduction USART0
Writing a logic one to this bit shuts down the USART0 by stopping the clock to the module.
When waking up the USART0 again, the USART0 should be reinitialized to ensure proper
operation.

• Bit 0 - PRADC: Power Reduction ADC
Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.
The analog comparator cannot use the ADC input MUX when the ADC is shut down.
50
8152A–AVR–11/08

ATmega324PA

ATmega324PA
10. System Control and Reset

10.0.1 Resetting the AVR

During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP – Absolute
Jump – instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in Figure 10-1 on page 52
shows the reset logic. ”System and Reset Characteristics” on page 329 defines the electrical
parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in ”Clock Sources” on page 31.

10.0.2 Reset Sources

The ATmega324PA has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer than
the minimum pulse length.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out Reset
threshold (VBOT) and the Brown-out Detector is enabled.

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one
of the scan chains of the JTAG system. Refer to the section ”IEEE 1149.1 (JTAG) Boundary-
scan” on page 267 for details.
51
8152A–AVR–11/08

Figure 10-1. Reset Logic

10.0.3 Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in ”System and Reset Characteristics” on page 329. The POR is activated whenever
VCC is below the detection level. The POR circuit can be used to trigger the start-up Reset, as
well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after VCC rise. The RESET signal is activated again, without any delay,
when VCC decreases below the detection level.

MCU Status
Register (MCUSR)

Brown-out
Reset CircuitBODLEVEL [2..0]

Delay Counters

CKSEL[3:0]

CK
TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

DATA BUS

Clock
Generator

SPIKE
FILTER

Pull-up Resistor

JT
R

F

JTAG Reset
Register

Watchdog
Oscillator

SUT[1:0]

Power-on Reset
Circuit
52
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 10-2. MCU Start-up, RESET Tied to VCC

Figure 10-3. MCU Start-up, RESET Extended Externally

10.0.4 External Reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see ”System and Reset Characteristics” on page 329) will generate a
reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
When the applied signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the
delay counter starts the MCU after the Time-out period – tTOUT – has expired.

Figure 10-4. External Reset During Operation

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC

CC
53
8152A–AVR–11/08

10.0.5 Brown-out Detection

ATmega324PA has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC level
during operation by comparing it to a fixed trigger level. The trigger level for the BOD can be
selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free
Brown-out Detection. The hysteresis on the detection level should be interpreted as VBOT+ =
VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT- in Figure
10-5 on page 54), the Brown-out Reset is immediately activated. When VCC increases above the
trigger level (VBOT+ in Figure 10-5 on page 54), the delay counter starts the MCU after the Time-
out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for lon-
ger than tBOD given in ”System and Reset Characteristics” on page 329.

Figure 10-5. Brown-out Reset During Operation

10.0.6 Watchdog Reset

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to
page 62 for details on operation of the Watchdog Timer.

Figure 10-6. Watchdog Reset During Operation

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

CK

CC
54
8152A–AVR–11/08

ATmega324PA

ATmega324PA
10.1 Internal Voltage Reference

ATmega324PA features an internal bandgap reference. This reference is used for Brown-out
Detection, and it can be used as an input to the Analog Comparator or the ADC.

10.1.1 Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in ”System and Reset Characteristics” on page 329. To save power, the
reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.
55
8152A–AVR–11/08

10.2 Watchdog Timer

10.2.1 Features

• Clocked from separate On-chip Oscillator
• 3 Operating modes

– Interrupt
– System Reset
– Interrupt and System Reset

• Selectable Time-out period from 16ms to 8s
• Possible Hardware fuse Watchdog always on (WDTON) for fail-safe mode

10.2.2 Overview

ATmega324PA has an Enhanced Watchdog Timer (WDT). The WDT is a timer counting cycles
of a separate on-chip 128 kHz oscillator. The WDT gives an interrupt or a system reset when the
counter reaches a given time-out value. In normal operation mode, it is required that the system
uses the WDR - Watchdog Timer Reset - instruction to restart the counter before the time-out
value is reached. If the system doesn't restart the counter, an interrupt or system reset will be
issued.

Figure 10-7. Watchdog Timer

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used
to wake the device from sleep-modes, and also as a general system timer. One example is to
limit the maximum time allowed for certain operations, giving an interrupt when the operation
has run longer than expected. In System Reset mode, the WDT gives a reset when the timer
expires. This is typically used to prevent system hang-up in case of runaway code. The third
mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-
rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown
by saving critical parameters before a system reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to Sys-
tem Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Interrupt
mode bit (WDIE) are locked to 1 and 0 respectively. To further ensure program security, altera-
tions to the Watchdog set-up must follow timed sequences. The sequence for clearing WDE and
changing time-out configuration is as follows:

128kHz
OSCILLATOR

O
SC

/2
K

O
SC

/4
K

O
SC

/8
K

O
SC

/1
6K

O
SC

/3
2K

O
SC

/6
4K

O
SC

/1
28

K
O

SC
/2

56
K

O
SC

/5
12

K
O

SC
/1

02
4K

WDP0
WDP1
WDP2
WDP3

WATCHDOG
RESET

WDE

WDIF

WDIE

MCU RESET

INTERRUPT
56
8152A–AVR–11/08

ATmega324PA

ATmega324PA
1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE) and
WDE. A logic one must be written to WDE regardless of the previous value of the WDE
bit.

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as
desired, but with the WDCE bit cleared. This must be done in one operation.

The following code example shows one assembly and one C function for turning off the Watch-
dog Timer. The example assumes that interrupts are controlled (e.g. by disabling interrupts
globally) so that no interrupts will occur during the execution of these functions.

Note: 1. The example code assumes that the part specific header file is included.

Assembly Code Example(1)

WDT_off:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Clear WDRF in MCUSR

in r16, MCUSR

andi r16, (0xff & (0<<WDRF))

out MCUSR, r16

; Write logical one to WDCE and WDE

; Keep old prescaler setting to prevent unintentional time-out

in r16, WDTCSR

ori r16, (1<<WDCE) | (1<<WDE)

out WDTCSR, r16

; Turn off WDT

ldi r16, (0<<WDE)

out WDTCSR, r16

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_off(void)

{

__disable_interrupt();

__watchdog_reset();

/* Clear WDRF in MCUSR */

MCUSR &= ~(1<<WDRF);

/* Write logical one to WDCE and WDE */

/* Keep old prescaler setting to prevent unintentional time-out */

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCSR = 0x00;

__enable_interrupt();

}

57
8152A–AVR–11/08

Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out
condition, the device will be reset and the Watchdog Timer will stay enabled. If the code is not
set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. To avoid this
situation, the application software should always clear the Watchdog System Reset Flag
(WDRF) and the WDE control bit in the initialisation routine, even if the Watchdog is not in use.

The following code example shows one assembly and one C function for changing the time-out
value of the Watchdog Timer.

Note: 1. The example code assumes that the part specific header file is included.

Note: The Watchdog Timer should be reset before any change of the WDP bits, since a change
in the WDP bits can result in a time-out when switching to a shorter time-out period.

Assembly Code Example(1)

WDT_Prescaler_Change:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Start timed sequence

in r16, WDTCSR

ori r16, (1<<WDCE) | (1<<WDE)

out WDTCSR, r16

; -- Got four cycles to set the new values from here -

; Set new prescaler(time-out) value = 64K cycles (~0.5 s)

ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)

out WDTCSR, r16

; -- Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_Prescaler_Change(void)

{

__disable_interrupt();

__watchdog_reset();

/* Start timed equence */

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Set new prescaler(time-out) value = 64K cycles (~0.5 s) */

WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDP0);

__enable_interrupt();

}

58
8152A–AVR–11/08

ATmega324PA

ATmega324PA
10.3 Register Description

10.3.1 MCUSR – MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 4 – JTRF: JTAG Reset Flag
This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

• Bit 3 – WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then
Reset the MCUSR as early as possible in the program. If the register is cleared before another
reset occurs, the source of the reset can be found by examining the Reset Flags.

Bit 7 6 5 4 3 2 1 0

0x34 (0x54) – – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
59
8152A–AVR–11/08

10.3.2 WDTCSR – Watchdog Timer Control Register

• Bit 7 - WDIF: Watchdog Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-
ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in
SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

• Bit 6 - WDIE: Watchdog Interrupt Enable
When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is
enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt
Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in
the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE
and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is use-
ful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and
System Reset Mode, WDIE must be set after each interrupt. This should however not be done
within the interrupt service routine itself, as this might compromise the safety-function of the
Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a Sys-
tem Reset will be applied.

• Bit 4 - WDCE: Watchdog Change Enable
This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit,
and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

• Bit 3 - WDE: Watchdog System Reset Enable
WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is
set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during con-
ditions causing failure, and a safe start-up after the failure.

Bit 7 6 5 4 3 2 1 0

(0x60) WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

Table 10-1. Watchdog Timer Configuration

WDTON WDE WDIE Mode Action on Time-out

1 0 0 Stopped None

1 0 1 Interrupt Mode Interrupt

1 1 0 System Reset Mode Reset

1 1 1
Interrupt and System Reset
Mode

Interrupt, then go to System
Reset Mode

0 x x System Reset Mode Reset
60
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Bit 5, 2:0 - WDP3:0: Watchdog Timer Prescaler 3, 2, 1 and 0
The WDP3:0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is run-
ning. The different prescaling values and their corresponding time-out periods are shown in
Table 10-2 on page 61.

.

Table 10-2. Watchdog Timer Prescale Select

WDP3 WDP2 WDP1 WDP0
Number of WDT Oscillator

Cycles
Typical Time-out at

VCC = 5.0V

0 0 0 0 2K (2048) cycles 16 ms

0 0 0 1 4K (4096) cycles 32 ms

0 0 1 0 8K (8192) cycles 64 ms

0 0 1 1 16K (16384) cycles 0.125 s

0 1 0 0 32K (32768) cycles 0.25 s

0 1 0 1 64K (65536) cycles 0.5 s

0 1 1 0 128K (131072) cycles 1.0 s

0 1 1 1 256K (262144) cycles 2.0 s

1 0 0 0 512K (524288) cycles 4.0 s

1 0 0 1 1024K (1048576) cycles 8.0 s

1 0 1 0

Reserved

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1
61
8152A–AVR–11/08

11. Interrupts

11.1 Overview

This section describes the specifics of the interrupt handling as performed in ATmega324PA.
For a general explanation of the AVR interrupt handling, refer to ”Reset and Interrupt Handling”
on page 16.

11.2 Interrupt Vectors in ATmega324PA

Table 11-1. Reset and Interrupt Vectors

Vector
No.

Program
Address(2) Source Interrupt Definition

1 $0000(1) RESET
External Pin, Power-on Reset, Brown-out Reset,
Watchdog Reset, and JTAG AVR Reset

2 $0002 INT0 External Interrupt Request 0

3 $0004 INT1 External Interrupt Request 1

4 $0006 INT2 External Interrupt Request 2

5 $0008 PCINT0 Pin Change Interrupt Request 0

6 $000A PCINT1 Pin Change Interrupt Request 1

7 $000C PCINT2 Pin Change Interrupt Request 2

8 $000E PCINT3 Pin Change Interrupt Request 3

9 $0010 WDT Watchdog Time-out Interrupt

10 $0012 TIMER2_COMPA Timer/Counter2 Compare Match A

11 $0014 TIMER2_COMPB Timer/Counter2 Compare Match B

12 $0016 TIMER2_OVF Timer/Counter2 Overflow

13 $0018 TIMER1_CAPT Timer/Counter1 Capture Event

14 $001A TIMER1_COMPA Timer/Counter1 Compare Match A

15 $001C TIMER1_COMPB Timer/Counter1 Compare Match B

16 $001E TIMER1_OVF Timer/Counter1 Overflow

17 $0020 TIMER0_COMPA Timer/Counter0 Compare Match A

18 $0022 TIMER0_COMPB Timer/Counter0 Compare match B

19 $0024 TIMER0_OVF Timer/Counter0 Overflow

20 $0026 SPI_STC SPI Serial Transfer Complete

21 $0028 USART0_RX USART0 Rx Complete

22 $002A USART0_UDRE USART0 Data Register Empty

23 $002C USART0_TX USART0 Tx Complete

24 $002E ANALOG_COMP Analog Comparator

25 $0030 ADC ADC Conversion Complete

26 $0032 EE_READY EEPROM Ready

27 $0034 TWI 2-wire Serial Interface
62
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at
reset, see ”Memory Programming” on page 292.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot
Flash Section. The address of each Interrupt Vector will then be the address in this table
added to the start address of the Boot Flash Section.

Table 11-2 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt
Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the
Boot section or vice versa.

Note: 1. The Boot Reset Address is shown in Table 25-7 on page 289. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
ATmega324PA is:

28 $0036 SPM_READY Store Program Memory Ready

29 $0038 USART1_RX USART1 Rx Complete

30 $003A USART1_UDRE USART1 Data Register Empty

31 $003C USART1_TX USART1 Tx Complete

Table 11-2. Reset and Interrupt Vectors Placement(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x0000 0x0002

1 1 0x0000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x0002

0 1 Boot Reset Address Boot Reset Address + 0x0002

Address Labels Code Comments

0x0000 jmp RESET ; Reset

0x0002 jmp INT0 ; IRQ0

0x0004 jmp INT1 ; IRQ1

0x0006 jmp INT2 ; IRQ2

0x0008 jmp PCINT0 ; PCINT0

0x000A jmp PCINT1 ; PCINT1

0x000C jmp PCINT2 ; PCINT2

0x000E jmp PCINT3 ; PCINT3

0x0010 jmp WDT ; Watchdog Timeout

0x0012 jmp TIM2_COMPA ; Timer2 CompareA

0x0014 jmp TIM2_COMPB ; Timer2 CompareB

0x0016 jmp TIM2_OVF ; Timer2 Overflow

0x0018 jmp TIM1_CAPT ; Timer1 Capture

0x001A jmp TIM1_COMPA ; Timer1 CompareA

0x001C jmp TIM1_COMPB ; Timer1 CompareB

0x001E jmp TIM1_OVF ; Timer1 Overflow

0x0020 jmp TIM0_COMPA ; Timer0 CompareA

Table 11-1. Reset and Interrupt Vectors (Continued)

Vector
No.

Program
Address(2) Source Interrupt Definition
63
8152A–AVR–11/08

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

0x00000 RESET: ldi r16,high(RAMEND); Main program start

0x00001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x00002 ldi r16,low(RAMEND)

0x00003 out SPL,r16
0x00004 sei ; Enable interrupts

0x00005 <instr> xxx

;

.org 0x1F002

0x1F002 jmp EXT_INT0 ; IRQ0 Handler

0x1F004 jmp EXT_INT1 ; IRQ1 Handler

... ;

0x1FO36 jmp SPM_RDY ; SPM Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 8K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org 0x0002

0x00002 jmp EXT_INT0 ; IRQ0 Handler

0x0022 jmp TIM0_COMPB ; Timer0 CompareB

0x0024 jmp TIM0_OVF ; Timer0 Overflow

0x0026 jmp SPI_STC ; SPI Transfer Complete

0x0028 jmp USART0_RXC ; USART0 RX Complete

0x002A jmp USART0_UDRE ; USART0,UDR Empty

0x002C jmp USART0_TXC ; USART0 TX Complete

0x002E jmp ANA_COMP ; Analog Comparator

0x0030 jmp ADC ; ADC Conversion Complete

0x0032 jmp EE_RDY ; EEPROM Ready

0x0034 jmp TWI ; 2-wire Serial

0x0036 jmp SPM_RDY ; SPM Ready

0x0038 jmp USART1_RXC ; USART1 RX Complete

0x003A jmp USART1_UDRE ; USART1,UDR Empty

0x003C jmp USART1_TXC ; USART1 TX Complete

;

0x003E RESET: ldi r16,
high(RAMEND)

; Main program start

0x003F out SPH,r16 ; Set Stack Pointer to
top of RAM

0x0040 ldi r16,
low(RAMEND)

0x0041 out SPL,r16

0x0042 sei ; Enable interrupts

0x0043 <instr> xxx

...
64
8152A–AVR–11/08

ATmega324PA

ATmega324PA
0x00004 jmp EXT_INT1 ; IRQ1 Handler

... ;

0x00036 jmp SPM_RDY ; SPM Ready Handler

;

.org 0x1F000
0x1F000 RESET: ldi r16,high(RAMEND); Main program start

0x1F001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x1F002 ldi r16,low(RAMEND)

0x1F003 out SPL,r16
0x1F004 sei ; Enable interrupts

0x1F005 <instr> xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 8K bytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

;

.org 0x1F000
0x1F000 jmp RESET ; Reset handler
0x1F002 jmp EXT_INT0 ; IRQ0 Handler

0x1F004 jmp EXT_INT1 ; IRQ1 Handler

... ;

0x1F036 jmp SPM_RDY ; SPM Ready Handler

;

0x1F03E RESET: ldi r16,high(RAMEND); Main program start

0x1F03F out SPH,r16 ; Set Stack Pointer to top of RAM

0x1F040 ldi r16,low(RAMEND)

0x1F041 out SPL,r16
0x1F042 sei ; Enable interrupts

0x1FO43 <instr> xxx

11.2.1 Moving Interrupts Between Application and Boot Space

The General Interrupt Control Register controls the placement of the Interrupt Vector table.
65
8152A–AVR–11/08

11.3 Register Description

11.3.1 MCUCR – MCU Control Register

• Bit 1 – IVSEL: Interrupt Vector Select
When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section ”Memory Programming” on page 292 for
details. To avoid unintentional changes of Interrupt Vector tables, a special write procedure must
be followed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.

b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed
in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section ”Memory Programming” on page 292
for details on Boot Lock bits.

• Bit 0 – IVCE: Interrupt Vector Change Enable
The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the IVSEL description above. See the following Code Example.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD BODS BODSE PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
66
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Assembly Code Example

Move_interrupts:

; Get MCUCR

in r16, MCUCR

mov r17, r16

; Enable change of Interrupt Vectors

ori r16, (1<<IVCE)

out MCUCR, r16

; Move interrupts to Boot Flash section

ori r17, (1<<IVSEL)

out MCUCR, r17

ret

C Code Example

void Move_interrupts(void)

{

uchar temp;

/* GET MCUCR*/

temp = MCUCR;

/* Enable change of Interrupt Vectors */

MCUCR = temp|(1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR = temp|(1<<IVSEL);

}

67
8152A–AVR–11/08

12. External Interrupts

12.1 Overview

The External Interrupts are triggered by the INT2:0 pin or any of the PCINT31:0 pins. Observe
that, if enabled, the interrupts will trigger even if the INT2:0 or PCINT31:0 pins are configured as
outputs. This feature provides a way of generating a software interrupt.

The Pin change interrupt PCI3 will trigger if any enabled PCINT31:24 pin toggle, Pin change
interrupt PCI2 will trigger if any enabled PCINT23:16 pin toggles, Pin change interrupt PCI1 if
any enabled PCINT15:8 toggles and Pin change interrupts PCI0 will trigger if any enabled
PCINT7:0 pin toggles. PCMSK3, PCMSK2, PCMSK1 and PCMSK0 Registers control which pins
contribute to the pin change interrupts. Pin change interrupts on PCINT31:0 are detected asyn-
chronously. This implies that these interrupts can be used for waking the part also from sleep
modes other than Idle mode.

The External Interrupts can be triggered by a falling or rising edge or a low level. This is set up
as indicated in the specification for the External Interrupt Control Registers – EICRA (INT2:0).
When the external interrupt is enabled and is configured as level triggered, the interrupt will trig-
ger as long as the pin is held low. Low level interrupts and the edge interrupt on INT2:0 are
detected asynchronously. This implies that these interrupts can be used for waking the part also
from sleep modes other than Idle mode. The I/O clock is halted in all sleep modes except Idle
mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described
in ”System Clock and Clock Options” on page 30.

12.2 Register Description

12.2.1 EICRA – External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

• Bits 7:6 – Reserved
These bits are reserved in the ATmega324PA, and will always read as zero.

• Bits 5:0 – ISC21, ISC20 – ISC00, ISC00: External Interrupt 2 - 0 Sense Control Bits
The External Interrupts 2 - 0 are activated by the external pins INT2:0 if the SREG I-flag and the
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that
activate the interrupts are defined in Table 12-1. Edges on INT2..INT0 are registered asynchro-
nously. Pulses on INT2:0 pins wider than the minimum pulse width given in ”External Interrupts
Characteristics” on page 329 will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. If low level interrupt is selected, the low level must be held until the com-

Bit 7 6 5 4 3 2 1 0

(0x69) – – ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 EICRA

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
68
8152A–AVR–11/08

ATmega324PA

ATmega324PA
pletion of the currently executing instruction to generate an interrupt. If enabled, a level triggered
interrupt will generate an interrupt request as long as the pin is held low. When changing the
ISCn bit, an interrupt can occur. Therefore, it is recommended to first disable INTn by clearing its
Interrupt Enable bit in the EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn
interrupt flag should be cleared by writing a logical one to its Interrupt Flag bit (INTFn) in the
EIFR Register before the interrupt is re-enabled.

Note: 1. n = 2, 1 or 0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

12.2.2 EIMSK – External Interrupt Mask Register

• Bits 2:0 – INT2:0: External Interrupt Request 2 - 0 Enable
When an INT2:0 bit is written to one and the I-bit in the Status Register (SREG) is set (one), the
corresponding external pin interrupt is enabled. The Interrupt Sense Control bits in the External
Interrupt Control Register, EICRA, defines whether the external interrupt is activated on rising or
falling edge or level sensed. Activity on any of these pins will trigger an interrupt request even if
the pin is enabled as an output. This provides a way of generating a software interrupt.

12.2.3 EIFR –External Interrupt Flag Register

• Bits 2:0 – INTF2:0: External Interrupt Flags 2 - 0
When an edge or logic change on the INT2:0 pin triggers an interrupt request, INTF2:0 becomes
set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INT2:0 in EIMSK, are
set (one), the MCU will jump to the interrupt vector. The flag is cleared when the interrupt routine
is executed. Alternatively, the flag can be cleared by writing a logical one to it. These flags are
always cleared when INT2:0 are configured as level interrupt. Note that when entering sleep
mode with the INT2:0 interrupts disabled, the input buffers on these pins will be disabled. This
may cause a logic change in internal signals which will set the INTF2:0 flags. See ”Digital Input
Enable and Sleep Modes” on page 77 for more information.

Table 12-1. Interrupt Sense Control(1)

ISCn1 ISCn0 Description

0 0 The low level of INTn generates an interrupt request.

0 1 Any edge of INTn generates asynchronously an interrupt request.

1 0 The falling edge of INTn generates asynchronously an interrupt request.

1 1 The rising edge of INTn generates asynchronously an interrupt request.

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) – – – – – INT2 INT1 IINT0 EIMSK

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) – – – – – INTF2 INTF1 IINTF0 EIFR

Read/Write R/W R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
69
8152A–AVR–11/08

12.2.4 PCICR – Pin Change Interrupt Control Register

• Bit 3 – PCIE3: Pin Change Interrupt Enable 3
When the PCIE3 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 3 is enabled. Any change on any enabled PCINT31..24 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI3
Interrupt Vector. PCINT31..24 pins are enabled individually by the PCMSK3 Register.

• Bit 2 – PCIE2: Pin Change Interrupt Enable 2
When the PCIE2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 2 is enabled. Any change on any enabled PCINT23..16 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI2
Interrupt Vector. PCINT23..16 pins are enabled individually by the PCMSK2 Register.

• Bit 1 – PCIE1: Pin Change Interrupt Enable 1
When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 1 is enabled. Any change on any enabled PCINT15..8 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1
Interrupt Vector. PCINT15..8 pins are enabled individually by the PCMSK1 Register.

• Bit 0 – PCIE0: Pin Change Interrupt Enable 0
When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 0 is enabled. Any change on any enabled PCINT7..0 pin will cause an interrupt.
The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0 Interrupt
Vector. PCINT7..0 pins are enabled individually by the PCMSK0 Register.

12.2.5 PCIFR – Pin Change Interrupt Flag Register

• Bit 3– PCIF3: Pin Change Interrupt Flag 3
When a logic change on any PCINT31..24 pin triggers an interrupt request, PCIF3 becomes set
(one). If the I-bit in SREG and the PCIE3 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 2 – PCIF2: Pin Change Interrupt Flag 2
When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set
(one). If the I-bit in SREG and the PCIE2 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

Bit 7 6 5 4 3 2 1 0

(0x68) – – – – PCIE3 PCIE2 PCIE1 PCIE0 PCICR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1B (0x3B) – – PCIF3 PCIF2 PCIF1 PCIF0 PCIFR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
70
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Bit 1 – PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIE1 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

• Bit 0 – PCIF0: Pin Change Interrupt Flag 0
When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

12.2.6 PCMSK3 – Pin Change Mask Register 3

• Bit 7:0 – PCINT31:24: Pin Change Enable Mask 31:24
Each PCINT31:24-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT31:24 is set and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT31..24 is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

12.2.7 PCMSK2 – Pin Change Mask Register 2

• Bit 7:0 – PCINT23:16: Pin Change Enable Mask 23..16
Each PCINT23:16-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT23:16 is set and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT23..16 is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

12.2.8 PCMSK1 – Pin Change Mask Register 1

• Bit 7:0 – PCINT15:8: Pin Change Enable Mask 15..8
Each PCINT15:8-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT15:8 is set and the PCIE1 bit in EIMSK is set, pin change interrupt is enabled on the
corresponding I/O pin. If PCINT15:8 is cleared, pin change interrupt on the corresponding I/O
pin is disabled.

Bit 7 6 5 4 3 2 1 0

(0x73) PCINT31 PCINT30 PCINT29 PCINT28 PCINT27 PCINT26 PCINT25 PCINT24 PCMSK3

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6D) PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6C) PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
71
8152A–AVR–11/08

12.2.9 PCMSK0 – Pin Change Mask Register 0

• Bit 7:0 – PCINT7:0: Pin Change Enable Mask 7..0
Each PCINT7:0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin.
If PCINT7:0 is set and the PCIE0 bit in PCICR is set, pin change interrupt is enabled on the cor-
responding I/O pin. If PCINT7..0 is cleared, pin change interrupt on the corresponding I/O pin is
disabled.

Bit 7 6 5 4 3 2 1 0

(0x6B) PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
72
8152A–AVR–11/08

ATmega324PA

ATmega324PA
13. I/O-Ports

13.1 Overview

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-
vidually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have
protection diodes to both VCC and Ground as indicated in Figure 13-1. Refer to ”Electrical Char-
acteristics” on page 324 for a complete list of parameters.

Figure 13-1. I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-
ters and bit locations are listed in ”Register Description” on page 92.

Three I/O memory address locations are allocated for each port, one each for the Data Register
– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins
I/O location is read only, while the Data Register and the Data Direction Register are read/write.
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-
ing bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR disables the
pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in ”Ports as General Digital I/O” on page
74. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in ”Alternate Port
Functions” on page 79. Refer to the individual module sections for a full description of the alter-
nate functions.

Cpin

Logic

Rpu

See Figure
"General Digital I/O" for

Details

Pxn
73
8152A–AVR–11/08

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

13.2 Ports as General Digital I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 13-2 shows a func-
tional description of one I/O-port pin, here generically called Pxn.

Figure 13-2. General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports.

13.2.1 Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in ”Register
Description” on page 92, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits
at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when reset condition becomes active,
even if no clocks are running.

clk

RPx

RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

WPx

0

1

WRx

WPx: WRITE PINx REGISTER
74
8152A–AVR–11/08

ATmega324PA

ATmega324PA
If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

13.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

13.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all
pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.

Table 13-1 summarizes the control signals for the pin value.

13.2.4 Reading the Pin Value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 13-2, the PINxn Register bit and the preceding latch con-
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay. Figure 13-3 shows a timing dia-
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted tpd,max and tpd,min respectively.

Table 13-1. Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)
75
8152A–AVR–11/08

Figure 13-3. Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed
between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 13-4. The out instruction sets the “SYNC LATCH” signal at the positive edge of
the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Figure 13-4. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17
tpd
76
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

13.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 13-2, the digital input signal can be clamped to ground at the input of the
schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode, Power-save mode, and Standby mode to avoid high power consumption if
some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in ”Alternate Port Functions” on page 79.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned Sleep mode, as the clamping in these sleep mode produces the requested
logic change.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

__no_operation();

/* Read port pins */

i = PINB;

...
77
8152A–AVR–11/08

13.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.
78
8152A–AVR–11/08

ATmega324PA

ATmega324PA
13.3 Alternate Port Functions

Most port pins have alternate functions in addition to being general digital I/Os. Figure 13-5
shows how the port pin control signals from the simplified Figure 13-2 on page 74 can be over-
ridden by alternate functions. The overriding signals may not be present in all port pins, but the
figure serves as a generic description applicable to all port pins in the AVR microcontroller
family.

Figure 13-5. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

clk

RPx

RRx
WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
AT

A
 B

U
S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE
SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx

WPx
79
8152A–AVR–11/08

Table 13-2 summarizes the function of the overriding signals. The pin and port indexes from Fig-
ure 13-5 are not shown in the succeeding tables. The overriding signals are generated internally
in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

Table 13-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE
Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by the PUOV
signal. If this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, PUD} = 0b010.

PUOV
Pull-up Override
Value

If PUOE is set, the pull-up is enabled/disabled when PUOV is
set/cleared, regardless of the setting of the DDxn, PORTxn,
and PUD Register bits.

DDOE
Data Direction
Override Enable

If this signal is set, the Output Driver Enable is controlled by the
DDOV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.

DDOV
Data Direction
Override Value

If DDOE is set, the Output Driver is enabled/disabled when
DDOV is set/cleared, regardless of the setting of the DDxn
Register bit.

PVOE
Port Value
Override Enable

If this signal is set and the Output Driver is enabled, the port
value is controlled by the PVOV signal. If PVOE is cleared, and
the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.

PVOV
Port Value
Override Value

If PVOE is set, the port value is set to PVOV, regardless of the
setting of the PORTxn Register bit.

PTOE
Port Toggle
Override Enable

If PTOE is set, the PORTxn Register bit is inverted.

DIEOE
Digital Input
Enable Override
Enable

If this bit is set, the Digital Input Enable is controlled by the
DIEOV signal. If this signal is cleared, the Digital Input Enable
is determined by MCU state (Normal mode, sleep mode).

DIEOV
Digital Input
Enable Override
Value

If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV is set/cleared, regardless of the MCU state (Normal
mode, sleep mode).

DI Digital Input

This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the schmitt trigger but
before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.

AIO
Analog
Input/Output

This is the Analog Input/output to/from alternate functions. The
signal is connected directly to the pad, and can be used bi-
directionally.
80
8152A–AVR–11/08

ATmega324PA

ATmega324PA
13.3.1 Alternate Functions of Port A

The Port A pins with alternate functions are shown in Table 13-3.

• ADC7:0/PCINT7:0 – Port A, Bit 7:0
ADC7:0, Analog to Digital Converter, Channels 7:0.

PCINT7:0, Pin Change Interrupt source 7:0: The PA7:0 pins can serve as external interrupt
sources.

Table 13-3. Port A Pins Alternate Functions

Port Pin Alternate Function

PA7
ADC7 (ADC input channel 7)
PCINT7 (Pin Change Interrupt 7)

PA6
ADC6 (ADC input channel 6)
PCINT6 (Pin Change Interrupt 6)

PA5
ADC5 (ADC input channel 5)
PCINT5 (Pin Change Interrupt 5)

PA4
ADC4 (ADC input channel 4)
PCINT4 (Pin Change Interrupt 4)

PA3
ADC3 (ADC input channel 3)
PCINT3 (Pin Change Interrupt 3)

PA2
ADC2 (ADC input channel 2)
PCINT2 (Pin Change Interrupt 2)

PA1
ADC1 (ADC input channel 1)
PCINT1 (Pin Change Interrupt 1)

PA0
ADC0 (ADC input channel 0)
PCINT0 (Pin Change Interrupt 0)
81
8152A–AVR–11/08

Table 13-4 on page 82 and Table 13-5 on page 82 relates the alternate functions of Port A to the
overriding signals shown in Figure 13-5 on page 79.

Table 13-4. Overriding Signals for Alternate Functions in PA7:PA4

Signal
Name

PA7/ADC7/
PCINT7

PA6/ADC6/
PCINT6

PA5/ADC5/
PCINT5

PA4/ADC4/
PCINT4

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE
PCINT7 • PCIE0 +
ADC7D

PCINT6 • PCIE0 +
ADC6D

PCINT5 • PCIE0 +
ADC5D

PCINT4 • PCIE0 +
ADC4D

DIEOV PCINT7 • PCIE0 PCINT6 • PCIE0 PCINT5 • PCIE0 PCINT4 • PCIE0

DI PCINT7 INPUT PCINT6 INPUT PCINT5 INPUT PCINT4 INPUT

AIO ADC7 INPUT ADC6 INPUT ADC5 INPUT ADC4 INPUT

Table 13-5. Overriding Signals for Alternate Functions in PA3:PA0

Signal
Name

PA3/ADC3/
PCINT3

PA2/ADC2/
PCINT2

PA1/ADC1/
PCINT1

PA0/ADC0/
PCINT0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE
PCINT3 • PCIE0 +
ADC3D

PCINT2 • PCIE0 +
ADC2D

PCINT1 • PCIE0 +
ADC1D

PCINT0 • PCIE0 +
ADC0D

DIEOV PCINT3 • PCIE0 PCINT2 • PCIE0 PCINT1 • PCIE0 PCINT0 • PCIE0

DI PCINT3 INPUT PCINT2 INPUT PCINT1 INPUT PCINT0 INPUT

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT
82
8152A–AVR–11/08

ATmega324PA

ATmega324PA
13.3.2 Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 13-6.

The alternate pin configuration is as follows:

• SCK/PCINT15 – Port B, Bit 7
SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
slave, this pin is configured as an input regardless of the setting of DDB7. When the SPI0 is
enabled as a master, the data direction of this pin is controlled by DDB7. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB7 bit.

PCINT15, Pin Change Interrupt source 15: The PB7 pin can serve as an external interrupt
source.

• MISO/PCINT14 – Port B, Bit 6
MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
master, this pin is configured as an input regardless of the setting of DDB6. When the SPI is
enabled as a slave, the data direction of this pin is controlled by DDB6. When the pin is forced to
be an input, the pull-up can still be controlled by the PORTB6 bit.

PCINT14, Pin Change Interrupt source 14: The PB6 pin can serve as an external interrupt
source.

Table 13-6. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7
SCK (SPI Bus Master clock input)
PCINT15 (Pin Change Interrupt 15)

PB6
MISO (SPI Bus Master Input/Slave Output)
PCINT14 (Pin Change Interrupt 14)

PB5
MOSI (SPI Bus Master Output/Slave Input)
PCINT13 (Pin Change Interrupt 13)

PB4
SS (SPI Slave Select input)
OC0B (Timer/Conter 0 Output Compare Match B Output)
PCINT12 (Pin Change Interrupt 12)

PB3
AIN1 (Analog Comparator Negative Input)
OC0A (Timer/Conter 0 Output Compare Match A Output)
PCINT11 (Pin Change Interrupt 11)

PB2
AIN0 (Analog Comparator Positive Input)
INT2 (External Interrupt 2 Input)
PCINT10 (Pin Change Interrupt 10)

PB1
T1 (Timer/Counter 1 External Counter Input)
CLKO (Divided System Clock Output)
PCINT9 (Pin Change Interrupt 9)

PB0
T0 (Timer/Counter 0 External Counter Input)
XCK0 (USART0 External Clock Input/Output)
PCINT8 (Pin Change Interrupt 8)
83
8152A–AVR–11/08

• MOSI/PCINT13 – Port B, Bit 5
MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
slave, this pin is configured as an input regardless of the setting of DDB5. When the SPI is
enabled as a master, the data direction of this pin is controlled by DDB5. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB5 bit.

PCINT13, Pin Change Interrupt source 13: The PB5 pin can serve as an external interrupt
source.

• SS/OC0B/PCINT12 – Port B, Bit 4
SS: Slave Port Select input. When the SPI is enabled as a slave, this pin is configured as an
input regardless of the setting of DDB4. As a slave, the SPI is activated when this pin is driven
low. When the SPI is enabled as a master, the data direction of this pin is controlled by DDB4.
When the pin is forced to be an input, the pull-up can still be controlled by the PORTB4 bit.

OC0B, Output Compare Match B output: The PB4 pin can serve as an external output for the
Timer/Counter0 Output Compare. The pin has to be configured as an output (DDB4 set “one”) to
serve this function. The OC0B pin is also the output pin for the PWM mode timer function.

PCINT12, Pin Change Interrupt source 12: The PB4 pin can serve as an external interrupt
source.

• AIN1/OC0A/PCINT11, Bit 3
AIN1, Analog Comparator Negative input. This pin is directly connected to the negative input of
the Analog Comparator.

OC0A, Output Compare Match A output: The PB3 pin can serve as an external output for the
Timer/Counter0 Output Compare. The pin has to be configured as an output (DDB3 set “one”) to
serve this function. The OC0A pin is also the output pin for the PWM mode timer function.

PCINT11, Pin Change Interrupt source 11: The PB3 pin can serve as an external interrupt
source.

• AIN0/INT2/PCINT10, Bit 2
AIN0, Analog Comparator Positive input. This pin is directly connected to the positive input of
the Analog Comparator.

INT2, External Interrupt source 2. The PB2 pin can serve as an External Interrupt source to the
MCU.

PCINT10, Pin Change Interrupt source 10: The PB2 pin can serve as an external interrupt
source.

• T1/CLKO/PCINT9, Bit 1
T1, Timer/Counter1 counter source.

CLKO, Divided System Clock: The divided system clock can be output on the PB1 pin. The
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTB1 and DDB1 settings. It will also be output during reset.

PCINT9, Pin Change Interrupt source 9: The PB1 pin can serve as an external interrupt source.
84
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• T0/XCK0/PCINT8, Bit 0
T0, Timer/Counter0 counter source.

XCK0, USART0 External clock. The Data Direction Register (DDB0) controls whether the clock
is output (DDD0 set “one”) or input (DDD0 cleared). The XCK0 pin is active only when the
USART0 operates in Synchronous mode.

PCINT8, Pin Change Interrupt source 8: The PB0 pin can serve as an external interrupt source.

Table 13-7 and Table 13-8 relate the alternate functions of Port B to the overriding signals
shown in Figure 13-5 on page 79. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the
MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT. .

Table 13-7. Overriding Signals for Alternate Functions in PB7:PB4

Signal
Name

PB7/SCK/
PCINT15

PB6/MISO/
PCINT14

PB5/MOSI/
PCINT13

PB4/SS/OC0B/
PCINT12

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB7 • PUD PORTB14 • PUD PORTB13 • PUD PORTB12 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR OC0A ENABLE

PVOV SCK OUTPUT
SPI SLAVE
OUTPUT

SPI MSTR OUTPUT OC0A

DIEOE PCINT15 • PCIE1 PCINT14 • PCIE1 PCINT13 • PCIE1 PCINT12 • PCIE1

DIEOV 1 1 1 1

DI
SCK INPUT
PCINT17 INPUT

SPI MSTR INPUT
PCINT14 INPUT

SPI SLAVE INPUT
PCINT13 INPUT

SPI SS
PCINT12 INPUT

AIO – – – –

Table 13-8. Overriding Signals for Alternate Functions in PB3:PB0

Signal
Name

PB3/AIN1/OC0B/
PCINT11

PB2/AIN0/INT2/
PCINT10

PB1/T1/CLKO/PCIN
T9

PB0/T0/XCK/
PCINT8

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 CKOUT 0

DDOV 0 0 CKOUT 0

PVOE OC0B ENABLE 0 CKOUT 0

PVOV OC0B 0 CLK I/O 0

DIEOE PCINT11 • PCIE1
INT2 ENABLE
PCINT10 • PCIE1

PCINT9 • PCIE1 PCINT8 • PCIE1

DIEOV 1 1 1 1

DI PCINT11 INPUT
INT2 INPUT
PCINT10 INPUT

T1 INPUT
PCINT9 INPUT

T0 INPUT
PCINT8 INPUT

AIO AIN1 INPUT AIN0 INPUT – –
85
8152A–AVR–11/08

13.3.3 Alternate Functions of Port C

The Port C pins with alternate functions are shown in Table 13-9.

• TOSC2/PCINT23 – Port C, Bit7
TOSC2, Timer Oscillator pin 2. The PC7 pin can serve as an external interrupt source to the
MCU.

PCINT23, Pin Change Interrupt source 23: The PC7 pin can serve as an external interrupt
source.

• TOSC1/PCINT22 – Port C, Bit 6
TOSC1, Timer Oscillator pin 1. The PC6 pin can serve as an external interrupt source to the
MCU.

PCINT22, Pin Change Interrupt source 22: The PC6 pin can serve as an external interrupt
source.

• TDI/PCINT21 – Port C, Bit 5
TDI, JTAG Test Data Input.

PCINT21, Pin Change Interrupt source 21: The PC5 pin can serve as an external interrupt
source.

• TDO/PCINT20 – Port C, Bit 4
TDO, JTAG Test Data Output.

PCINT20, Pin Change Interrupt source 20: The PC4 pin can serve as an external interrupt
source.

Table 13-9. Port C Pins Alternate Functions

Port Pin Alternate Function

PC7
TOSC2 (Timer Oscillator pin 2)

PCINT23 (Pin Change Interrupt 23)

PC6
TOSC1 (Timer Oscillator pin 1)
PCINT22 (Pin Change Interrupt 22)

PC5
TDI (JTAG Test Data Input)
PCINT21 (Pin Change Interrupt 21)

PC4
TDO (JTAG Test Data Output)
PCINT20 (Pin Change Interrupt 20)

PC3
TMS (JTAG Test Mode Select)
PCINT19 (Pin Change Interrupt 19)

PC2
TCK (JTAG Test Clock)
PCINT18 (Pin Change Interrupt 18)

PC1
SDA (2-wire Serial Bus Data Input/Output Line)
PCINT17 (Pin Change Interrupt 17)

PC0
SCL (2-wire Serial Bus Clock Line)
PCINT16 (Pin Change Interrupt 16)
86
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• TMS/PCINT19 – Port C, Bit 3
TMS, JTAG Test Mode Select.

PCINT19, Pin Change Interrupt source 19: The PC3 pin can serve as an external interrupt
source.

• TCK/PCINT18 – Port C, Bit 2
TCK, JTAG Test Clock.

PCINT18, Pin Change Interrupt source 18: The PC2 pin can serve as an external interrupt
source.

• SDA/PCINT17 – Port C, Bit 1
SDA, 2-wire Serial Bus Data Input/Output Line.

PCINT17, Pin Change Interrupt source 17: The PC1 pin can serve as an external interrupt
source.

• SCL/PCINT16 – Port C, Bit 0
SCL, 2-wire Serial Bus Clock Line.

PCINT16, Pin Change Interrupt source 16: The PC0 pin can serve as an external interrupt
source.

Table 13-10 and Table 13-11 relate the alternate functions of Port C to the overriding signals
shown in Figure 13-5 on page 79.

Table 13-10. Overriding Signals for Alternate Functions in PC7:PC4

Signal
Name

PC7/TOSC2/
PCINT23

PC6/TOSC1/
PCINT22

PC5/TDI/
PCINT21

PC4/TDO/
PCINT20

PUOE AS2 • EXCLK AS2 JTAGEN JTAGEN

PUOV 0 0 1 1

DDOE AS2 • EXCLK AS2 JTAGEN JTAGEN

DDOV 0 0 0
SHIFT_IR +
SHIFT_DR

PVOE 0 0 0 JTAGEN

PVOV 0 0 0 TDO

DIEOE
AS2 • EXCLK +
PCINT23 • PCIE2

AS2 +
PCINT22 • PCIE2

JTAGEN +
PCINT21 • PCIE2

JTAGEN +
PCINT20 • PCIE2

DIEOV AS2 EXCLK + AS2 JTAGEN JTAGEN

DI PCINT23 INPUT PCINT22 INPUT PCINT21 INPUT PCINT20 INPUT

AIO T/C2 OSC OUTPUT
T/C2 OSC
INPUT

TDI INPUT –
87
8152A–AVR–11/08

13.3.4 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 13-12.

Table 13-11. Overriding Signals for Alternate Functions in PC3:PC0

Signal
Name

PC3/TMS/
PCINT19

PC2/TCK/
PCINT18

PC1/SDA/
PCINT17

PC0/SCL/
PCINT16

PUOE JTAGEN JTAGEN TWEN TWEN

PUOV 1 1 PORTC1 • PUD PORTC0 • PUD

DDOE JTAGEN JTAGEN TWEN TWEN

DDOV 0 0 0 0

PVOE 0 0 TWEN TWEN

PVOV 0 0 SDA OUT SCL OUT

DIEOE
JTAGEN +
PCINT19 • PCIE2

JTAGEN +
PCINT18 • PCIE2

PCINT17 • PCIE2 PCINT16 • PCIE2

DIEOV JTAGEN JTAGEN 1 1

DI PCINT19 INPUT PCINT18 INPUT PCINT17 INPUT PCINT16 INPUT

AIO TMS INPUT TCK INPUT SDA INPUT SCL INPUT

Table 13-12. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7
OC2A (Timer/Counter2 Output Compare Match A Output)
PCINT31 (Pin Change Interrupt 31)

PD6
ICP1 (Timer/Counter1 Input Capture Trigger)
OC2B (Timer/Counter2 Output Compare Match B Output)
PCINT30 (Pin Change Interrupt 30)

PD5
OC1A (Timer/Counter1 Output Compare Match A Output)
PCINT29 (Pin Change Interrupt 29)

PD4
OC1B (Timer/Counter1 Output Compare Match B Output)
XCK1 (USART1 External Clock Input/Output)
PCINT28 (Pin Change Interrupt 28)

PD3
INT1 (External Interrupt1 Input)
TXD1 (USART1 Transmit Pin)
PCINT27 (Pin Change Interrupt 27)

PD2
INT0 (External Interrupt0 Input)
RXD1 (USART1 Receive Pin)
PCINT26 (Pin Change Interrupt 26)

PD1
TXD0 (USART0 Transmit Pin)
PCINT25 (Pin Change Interrupt 25)

PD0
RXD0 (USART0 Receive Pin)
PCINT24 (Pin Change Interrupt 24)
88
8152A–AVR–11/08

ATmega324PA

ATmega324PA
The alternate pin configuration is as follows:

• OC2A/PCINT31 – Port D, Bit 7
OC2A, Output Compare Match A output: The PD7 pin can serve as an external output for the
Timer/Counter2 Output Compare A. The pin has to be configured as an output (DDD7 set (one))
to serve this function. The OC2A pin is also the output pin for the PWM mode timer function.

PCINT31, Pin Change Interrupt Source 31:The PD7 pin can serve as an external interrupt
source.

• ICP1/OC2B/PCINT30 – Port D, Bit 6
ICP1, Input Capture Pin 1: The PD6 pin can act as an input capture pin for Timer/Counter1.

OC2B, Output Compare Match B output: The PD6 pin can serve as an external output for the
Timer/Counter2 Output Compare B. The pin has to be configured as an output (DDD6 set (one))
to serve this function. The OC2B pin is also the output pin for the PWM mode timer function.

PCINT30, Pin Change Interrupt Source 30: The PD6 pin can serve as an external interrupt
source.

• OC1A/PCINT29 – Port D, Bit 5
OC1A, Output Compare Match A output: The PD5 pin can serve as an external output for the
Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDD5 set (one))
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

PCINT29, Pin Change Interrupt Source 29: The PD5 pin can serve as an external interrupt
source.

• OC1B/XCK1/PCINT28 – Port D, Bit 4
OC1B, Output Compare Match B output: The PB4 pin can serve as an external output for the
Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDD4 set (one))
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

XCK1, USART1 External clock. The Data Direction Register (DDB4) controls whether the clock
is output (DDD4 set “one”) or input (DDD4 cleared). The XCK4 pin is active only when the
USART1 operates in Synchronous mode.

PCINT28, Pin Change Interrupt Source 28: The PD4 pin can serve as an external interrupt
source.

• INT1/TXD1/PCINT27 – Port D, Bit 3
INT1, External Interrupt source 1. The PD3 pin can serve as an external interrupt source to the
MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 Transmitter is
enabled, this pin is configured as an output regardless of the value of DDD3.

PCINT27, Pin Change Interrupt Source 27: The PD3 pin can serve as an external interrupt
source.
89
8152A–AVR–11/08

• INT0/RXD1/PCINT26 – Port D, Bit 2
INT0, External Interrupt source 0. The PD2 pin can serve as an external interrupt source to the
MCU.

RXD1, RXD0, Receive Data (Data input pin for the USART1). When the USART1 receiver is
enabled this pin is configured as an input regardless of the value of DDD2. When the USART
forces this pin to be an input, the pull-up can still be controlled by the PORTD2 bit.

PCINT26, Pin Change Interrupt Source 26: The PD2 pin can serve as an external interrupt
source.

• TXD0/PCINT25 – Port D, Bit 1
TXD0, Transmit Data (Data output pin for the USART0). When the USART0 Transmitter is
enabled, this pin is configured as an output regardless of the value of DDD1.

PCINT25, Pin Change Interrupt Source 25: The PD1 pin can serve as an external interrupt
source.

• RXD0/PCINT24 – Port D, Bit 0
RXD0, Receive Data (Data input pin for the USART0). When the USART0 receiver is enabled
this pin is configured as an input regardless of the value of DDD0. When the USART forces this
pin to be an input, the pull-up can still be controlled by the PORTD0 bit.

PCINT24, Pin Change Interrupt Source 24: The PD0 pin can serve as an external interrupt
source.

Table 13-13 on page 90 and Table 13-14 on page 91 relates the alternate functions of Port D to
the overriding signals shown in Figure 13-5 on page 79.

Table 13-13. Overriding Signals for Alternate Functions PD7:PD4

Signal Name
PD7/OC2A/
PCINT31

PD6/ICP1/
OC2B/
PCINT30

PD5/OC1A/
PCINT29

PD4/OC1B/XCK1/
PCINT28

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2A ENABLE OC2B ENABLE OC1A ENABLE OC1B ENABLE

PVOV OCA2A OC2B OC1A OC1B

DIEOE PCINT31 • PCIE3 PCINT30 • PCIE3 PCINT29 • PCIE3 PCINT28 • PCIE3

DIEOV 1 1 1 1

DI PCINT31 INPUT
ICP1 INPUT
PCINT30 INPUT

PCINT29 INPUT PCINT28 INPUT

AIO – – – –
90
8152A–AVR–11/08

ATmega324PA

ATmega324PA

Note: 1. When enabled, the 2-wire Serial Interface enables Slew-Rate controls on the output pins PD0
and PD1. This is not shown in this table. In addition, spike filters are connected between the
AIO outputs shown in the port figure and the digital logic of the TWI module.

Table 13-14. Overriding Signals for Alternate Functions in PD3:PD0(1)

Signal Name
PD3/INT1/TXD1/
PCINT27

PD2/INT0/RXD1/
PCINT26

PD1/TXD0/
PCINT25

PD0/RXD0/
PCINT27

PUOE TXEN1 RXEN1 TXEN0 RXEN1

PUOV 0 PORTD2 • PUD 0 PORTD0 • PUD

DDOE TXEN1 RXEN1 TXEN0 RXEN1

DDOV 1 0 1 0

PVOE TXEN1 0 TXEN0 0

PVOV TXD1 0 TXD0 0

DIEOE
INT1 ENABLE
PCINT27 • PCIE3

INT2 ENABLE
PCINT26 • PCIE3

PCINT25 • PCIE3 PCINT24 • PCIE3

DIEOV 1 1 1 1

DI
INT1 INPUT
PCINT27 INPUT

INT0 INPUT
RXD1
PCINT26 INPUT

PCINT25 INPUT
RXD0
PCINT24 INPUT

AIO – – – –
91
8152A–AVR–11/08

Register Description

13.3.5 MCUCR – MCU Control Register

• Bit 4 – PUD: Pull-up Disable
When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See ”Con-
figuring the Pin” on page 74 for more details about this feature.

13.3.6 PORTA – Port A Data Register

13.3.7 DDRA – Port A Data Direction Register

13.3.8 PINA – Port A Input Pins Address

13.3.9 PORTB – Port B Data Register

13.3.10 DDRB – Port B Data Direction Register

13.3.11 PINB – Port B Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD BODS BODSE PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x02 (0x22) PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x01 (0x21) DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x00 (0x20) PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
92
8152A–AVR–11/08

ATmega324PA

ATmega324PA
13.3.12 PORTC – Port C Data Register

13.3.13 DDRC – Port C Data Direction Register

13.3.14 PINC – Port C Input Pins Address

13.3.15 PORTD – Port D Data Register

13.3.16 DDRD – Port D Data Direction Register

13.3.17 PIND – Port D Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
93
8152A–AVR–11/08

14. 8-bit Timer/Counter0 with PWM

14.1 Features

• Two Independent Output Compare Units
• Double Buffered Output Compare Registers
• Clear Timer on Compare Match (Auto Reload)
• Glitch Free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• Three Independent Interrupt Sources (TOV0, OCF0A, and OCF0B)

14.2 Overview

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output
Compare Units, and with PWM support. It allows accurate program execution timing (event man-
agement) and wave generation.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 14-1. For the actual
placement of I/O pins, see ”Pin Configurations” on page 2. CPU accessible I/O Registers, includ-
ing I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations
are listed in the ”Register Description” on page 105.

Figure 14-1. 8-bit Timer/Counter Block Diagram

14.2.1 Registers

The Timer/Counter (TCNT0) and Output Compare Registers (OCR0A and OCR0B) are 8-bit
registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the
Timer Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer Inter-
rupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter

Clock Select

Timer/Counter

D
AT

A
 B

U
S

OCRnA

OCRnB

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

=

Fixed
TOP

Value

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

TCCRnA TCCRnB

Tn
Edge

Detector

(From Prescaler)

clkTn
94
8152A–AVR–11/08

ATmega324PA

ATmega324PA
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0).

The double buffered Output Compare Registers (OCR0A and OCR0B) are compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-
erator to generate a PWM or variable frequency output on the Output Compare pins (OC0A and
OC0B). See Section “14.5” on page 96. for details. The Compare Match event will also set the
Compare Flag (OCF0A or OCF0B) which can be used to generate an Output Compare interrupt
request.

14.2.2 Definitions

Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare Unit, in this case Compare Unit A or Compare Unit B. However, when using the register or
bit defines in a program, the precise form must be used, i.e., TCNT0 for accessing
Timer/Counter0 counter value and so on.

The definitions in Table 14-1 are also used extensively throughout the document.

14.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits
located in the Timer/Counter Control Register (TCCR0B). For details on clock sources and pres-
caler, see ”Timer/Counter Prescaler” on page 153.

14.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
14-2 shows a block diagram of the counter and its surroundings.

Figure 14-2. Counter Unit Block Diagram

Signal description (internal signals):

Table 14-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value 0xFF
(MAX) or the value stored in the OCR0A Register. The assignment is depen-
dent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

Clock Select

top

Tn
Edge

Detector

(From Prescaler)

clkTn

bottom

direction

clear
95
8152A–AVR–11/08

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

top Signalize that TCNT0 has reached maximum value.

bottom Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of
whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in
the Timer/Counter Control Register (TCCR0A) and the WGM02 bit located in the Timer/Counter
Control Register B (TCCR0B). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare outputs OC0A and OC0B.
For more details about advanced counting sequences and waveform generation, see ”Modes of
Operation” on page 99.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by
the WGM02:0 bits. TOV0 can be used for generating a CPU interrupt.

14.5 Output Compare Unit

The 8-bit comparator continuously compares TCNT0 with the Output Compare Registers
(OCR0A and OCR0B). Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a
match. A match will set the Output Compare Flag (OCF0A or OCF0B) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-
cuted. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit
location. The Waveform Generator uses the match signal to generate an output according to
operating mode set by the WGM02:0 bits and Compare Output mode (COM0x1:0) bits. The max
and bottom signals are used by the Waveform Generator for handling the special cases of the
extreme values in some modes of operation (”Modes of Operation” on page 99).

Figure 14-3 shows a block diagram of the Output Compare unit.
96
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 14-3. Output Compare Unit, Block Diagram

The OCR0x Registers are double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the dou-
ble buffering is disabled. The double buffering synchronizes the update of the OCR0x Compare
Registers to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR0x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR0x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR0x directly.

14.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC0x) bit. Forcing Compare Match will not set the
OCF0x Flag or reload/clear the timer, but the OC0x pin will be updated as if a real Compare
Match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set, cleared or
toggled).

14.5.2 Compare Match Blocking by TCNT0 Write

All CPU write operations to the TCNT0 Register will block any Compare Match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR0x to be initial-
ized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is
enabled.

14.5.3 Using the Output Compare Unit

Since writing TCNT0 in any mode of operation will block all Compare Matches for one timer
clock cycle, there are risks involved when changing TCNT0 when using the Output Compare
Unit, independently of whether the Timer/Counter is running or not. If the value written to TCNT0
equals the OCR0x value, the Compare Match will be missed, resulting in incorrect waveform

OCFnx (Int.Req.)

= (8-bit Comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMnX1:0

bottom
97
8152A–AVR–11/08

generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is
down-counting.

The setup of the OC0x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC0x value is to use the Force Output Com-
pare (FOC0x) strobe bits in Normal mode. The OC0x Registers keep their values even when
changing between Waveform Generation modes.

Be aware that the COM0x1:0 bits are not double buffered together with the compare value.
Changing the COM0x1:0 bits will take effect immediately.

14.6 Compare Match Output Unit

The Compare Output mode (COM0x1:0) bits have two functions. The Waveform Generator uses
the COM0x1:0 bits for defining the Output Compare (OC0x) state at the next Compare Match.
Also, the COM0x1:0 bits control the OC0x pin output source. Figure 14-4 shows a simplified
schematic of the logic affected by the COM0x1:0 bit setting. The I/O Registers, I/O bits, and I/O
pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers
(DDR and PORT) that are affected by the COM0x1:0 bits are shown. When referring to the
OC0x state, the reference is for the internal OC0x Register, not the OC0x pin. If a system reset
occur, the OC0x Register is reset to “0”.

Figure 14-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC0x) from the Waveform
Generator if either of the COM0x1:0 bits are set. However, the OC0x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x value is visi-
ble on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC0x state before the out-
put is enabled. Note that some COM0x1:0 bit settings are reserved for certain modes of
operation. See Section “14.9” on page 105.

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
 B

U
S

FOCn

clkI/O
98
8152A–AVR–11/08

ATmega324PA

ATmega324PA
14.6.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM0x1:0 bits differently in Normal, CTC, and PWM modes.
For all modes, setting the COM0x1:0 = 0 tells the Waveform Generator that no action on the
OC0x Register is to be performed on the next Compare Match. For compare output actions in
the non-PWM modes refer to Table 14-2 on page 105. For fast PWM mode, refer to Table 14-3
on page 105, and for phase correct PWM refer to Table 14-4 on page 106.

A change of the COM0x1:0 bits state will have effect at the first Compare Match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC0x strobe bits.

14.7 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM02:0) and Compare Output
mode (COM0x1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM0x1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM0x1:0 bits control whether the output should be set, cleared, or toggled at a Compare
Match (See Section “15.8” on page 123.).

For detailed timing information see ”Timer/Counter Timing Diagrams” on page 103.

14.7.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM02:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same
timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV0 Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare Unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

14.7.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM02:0 = 2), the OCR0A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the Compare Match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-5. The counter value (TCNT0)
increases until a Compare Match occurs between TCNT0 and OCR0A, and then counter
(TCNT0) is cleared.
99
8152A–AVR–11/08

Figure 14-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR0A is lower than the current
value of TCNT0, the counter will miss the Compare Match. The counter will then have to count to
its maximum value (0xFF) and wrap around starting at 0x00 before the Compare Match can
occur.

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical
level on each Compare Match by setting the Compare Output mode bits to toggle mode
(COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of fOC0 =
fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following
equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

14.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM02:0 = 3 or 7) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM option by
its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-
TOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR0A when WGM2:0 = 7. In non-
inverting Compare Output mode, the Output Compare (OC0x) is cleared on the Compare Match
between TCNT0 and OCR0x, and set at BOTTOM. In inverting Compare Output mode, the out-
put is set on Compare Match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

TCNTn

OCn
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)

fOCnx
fclk_I/O

2 N 1 OCRnx+()⋅ ⋅
--=
100
8152A–AVR–11/08

ATmega324PA

ATmega324PA
PWM mode is shown in Figure 14-6. The TCNT0 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent Com-
pare Matches between OCR0x and TCNT0.

Figure 14-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches TOP. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins.
Setting the COM0x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM0x1:0 to three: Setting the COM0A1:0 bits to one allows
the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is not available
for the OC0B pin (See Table 14-3 on page 105). The actual OC0x value will only be visible on
the port pin if the data direction for the port pin is set as output. The PWM waveform is gener-
ated by setting (or clearing) the OC0x Register at the Compare Match between OCR0x and
TCNT0, and clearing (or setting) the OC0x Register at the timer clock cycle the counter is
cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC0x to toggle its logical level on each Compare Match (COM0x1:0 = 1). The waveform
generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero. This

TCNTn

OCRnx Update and
TOVn Interrupt Flag Set

1Period 2 3

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7

fOCnxPWM
fclk_I/O

N 256⋅
------------------=
101
8152A–AVR–11/08

feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

14.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM02:0 = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-
TOM. TOP is defined as 0xFF when WGM2:0 = 1, and OCR0A when WGM2:0 = 5. In non-
inverting Compare Output mode, the Output Compare (OC0x) is cleared on the Compare Match
between TCNT0 and OCR0x while upcounting, and set on the Compare Match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNT0 value will be equal
to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
on Figure 14-7. The TCNT0 value is in the timing diagram shown as a histogram for illustrating
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The
small horizontal line marks on the TCNT0 slopes represent Compare Matches between OCR0x
and TCNT0.

Figure 14-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC0x pins. Setting the COM0x1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM0x1:0 to three: Setting the COM0A0 bits to

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update
102
8152A–AVR–11/08

ATmega324PA

ATmega324PA
one allows the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is
not available for the OC0B pin (See Table 14-4 on page 106). The actual OC0x value will only
be visible on the port pin if the data direction for the port pin is set as output. The PWM wave-
form is generated by clearing (or setting) the OC0x Register at the Compare Match between
OCR0x and TCNT0 when the counter increments, and setting (or clearing) the OC0x Register at
Compare Match between OCR0x and TCNT0 when the counter decrements. The PWM fre-
quency for the output when using phase correct PWM can be calculated by the following
equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 14-7 OCnx has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without Compare Match.

• OCR0A changes its value from MAX, like in Figure 14-7. When the OCR0A value is MAX the
OCn pin value is the same as the result of a down-counting Compare Match. To ensure
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-
counting Compare Match.

• The timer starts counting from a value higher than the one in OCR0A, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the way
up.

14.8 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set. Figure 14-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 14-8. Timer/Counter Timing Diagram, no Prescaling

Figure 14-9 shows the same timing data, but with the prescaler enabled.

fOCnxPCPWM
fclk_I/O

N 510⋅
------------------=

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1
103
8152A–AVR–11/08

Figure 14-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 14-10 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC
mode and PWM mode, where OCR0A is TOP.

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCF0x, with Prescaler (fclk_I/O/8)

Figure 14-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast
PWM mode where OCR0A is TOP.

Figure 14-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
104
8152A–AVR–11/08

ATmega324PA

ATmega324PA
14.9 Register Description

14.9.1 TCCR0A – Timer/Counter Control Register A

• Bits 7:6 – COM0A1:0: Compare Match Output A Mode
These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0
bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0A pin
must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the
WGM02:0 bit setting. Table 14-2 shows the COM0A1:0 bit functionality when the WGM02:0 bits
are set to a normal or CTC mode (non-PWM).

Table 14-3 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at BOTTOM. See ”Fast PWM Mode” on
page 100 for more details.

Table 14-4 on page 106 shows the COM0A1:0 bit functionality when the WGM02:0 bits are set
to phase correct PWM mode.

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 TCCR0A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14-2. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on Compare Match

1 0 Clear OC0A on Compare Match

1 1 Set OC0A on Compare Match

Table 14-3. Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0
Clear OC0A on Compare Match, set OC0A at BOTTOM,
(non-inverting mode).

1 1
Set OC0A on Compare Match, clear OC0A at BOTTOM,
(inverting mode).
105
8152A–AVR–11/08

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 102 for more details.

• Bits 5:4 – COM0B1:0: Compare Match Output B Mode
These bits control the Output Compare pin (OC0B) behavior. If one or both of the COM0B1:0
bits are set, the OC0B output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0B pin
must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the
WGM02:0 bit setting. Table 14-2 on page 105 shows the COM0A1:0 bit functionality when the
WGM02:0 bits are set to a normal or CTC mode (non-PWM).

Table 14-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done atBOTTOM. See ”Fast PWM Mode” on page
100 for more details.

Table 14-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0
Clear OC0A on Compare Match when up-counting. Set OC0A on
Compare Match when down-counting.

1 1
Set OC0A on Compare Match when up-counting. Clear OC0A on
Compare Match when down-counting.

Table 14-5. Compare Output Mode, non-PWM Mode

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on Compare Match

1 0 Clear OC0B on Compare Match

1 1 Set OC0B on Compare Match

Table 14-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on Compare Match, set OC0B at BOTTOM,
(non-inverting mode).

1 1
Set OC0B on Compare Match, clear OC0B at BOTTOM,
(inverting mode).
106
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Table 14-7 on page 107 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set
to phase correct PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 102 for more details.

• Bits 3:2 – Res: Reserved Bits
These bits are reserved bits in the ATmega324PA and will always read as zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode
Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 14-8 on page 107. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode,
and two types of Pulse Width Modulation (PWM) modes (see ”Modes of Operation” on page
124).

Notes: 1. MAX = 0xFF
2. BOTTOM = 0x00

Table 14-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on Compare Match when up-counting. Set OC0B on
Compare Match when down-counting.

1 1
Set OC0B on Compare Match when up-counting. Clear OC0B on
Compare Match when down-counting.

Table 14-8. Waveform Generation Mode Bit Description

Mode WGM2 WGM1 WGM0

Timer/Counter
Mode of
Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1
PWM, Phase
Correct

0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF BOTTOM MAX

4 1 0 0 Reserved – – –

5 1 0 1
PWM, Phase
Correct

OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP
107
8152A–AVR–11/08

14.9.2 TCCR0B – Timer/Counter Control Register B

• Bit 7 – FOC0A: Force Output Compare A
The FOC0A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0A bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC0A output is
changed according to its COM0A1:0 bits setting. Note that the FOC0A bit is implemented as a
strobe. Therefore it is the value present in the COM0A1:0 bits that determines the effect of the
forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6 – FOC0B: Force Output Compare B
The FOC0B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0B bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC0B output is
changed according to its COM0B1:0 bits setting. Note that the FOC0B bit is implemented as a
strobe. Therefore it is the value present in the COM0B1:0 bits that determines the effect of the
forced compare.

A FOC0B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0B as TOP.

The FOC0B bit is always read as zero.

• Bits 5:4 – Res: Reserved Bits
These bits are reserved bits and will always read as zero.

• Bit 3 – WGM02: Waveform Generation Mode
See the description in the ”TCCR0A – Timer/Counter Control Register A” on page 105.

Bit 7 6 5 4 3 2 1 0

0x25 (0x45) FOC0A FOC0B – – WGM02 CS02 CS01 CS00 TCCR0B

Read/Write W W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
108
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Bits 2:0 – CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

14.9.3 TCNT0 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,
introduces a risk of missing a Compare Match between TCNT0 and the OCR0x Registers.

14.9.4 OCR0A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0A pin.

Table 14-9. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) OCR0A[7:0] OCR0A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
109
8152A–AVR–11/08

14.9.5 OCR0B – Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0B pin.

14.9.6 TIMSK0 – Timer/Counter Interrupt Mask Register

• Bits 7:3 – Res: Reserved Bits
These bits are reserved bits and will always read as zero.

• Bit 2 – OCIE0B: Timer/Counter Output Compare Match B Interrupt Enable
When the OCIE0B bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is executed if
a Compare Match in Timer/Counter occurs, i.e., when the OCF0B bit is set in the Timer/Counter
Interrupt Flag Register – TIFR0.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable
When the OCIE0A bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a Compare Match in Timer/Counter0 occurs, i.e., when the OCF0A bit is set in the
Timer/Counter 0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable
When the TOIE0 bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter 0 Inter-
rupt Flag Register – TIFR0.

14.9.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register

• Bits 7:3 – Res: Reserved Bits
These bits are reserved bits in the ATmega324PA and will always read as zero.

Bit 7 6 5 4 3 2 1 0

0x28 (0x48) OCR0B[7:0] OCR0B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6E) – – – – – OCIE0B OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) – – – – – OCF0B OCF0A TOV0 TIFR0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
110
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Bit 2 – OCF0B: Timer/Counter 0 Output Compare B Match Flag
The OCF0B bit is set when a Compare Match occurs between the Timer/Counter and the data in
OCR0B – Output Compare Register0 B. OCF0B is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCF0B is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE0B (Timer/Counter Compare B Match Interrupt Enable),
and OCF0B are set, the Timer/Counter Compare Match Interrupt is executed.

• Bit 1 – OCF0A: Timer/Counter 0 Output Compare A Match Flag
The OCF0A bit is set when a Compare Match occurs between the Timer/Counter0 and the data
in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare Match Interrupt Enable),
and OCF0A are set, the Timer/Counter0 Compare Match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag
The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by
writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt
Enable), and TOV0 are set, the Timer/Counter0 Overflow interrupt is executed.

The setting of this flag is dependent of the WGM02:0 bit setting. Refer to Table 14-8, ”Waveform
Generation Mode Bit Description” on page 107.
111
8152A–AVR–11/08

15. 16-bit Timer/Counter1 with PWM

15.1 Features

• True 16-bit Design (i.e., Allows 16-bit PWM)
• Two independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

15.2 Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement.

Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit
channel. However, when using the register or bit defines in a program, the precise form must be
used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 15-1. For the actual
placement of I/O pins, see ”Pin Configurations” on page 2. CPU accessible I/O Registers, includ-
ing I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations
are listed in the ”Register Description” on page 133.

The PRTIM1 bit in ”PRR – Power Reduction Register” on page 49 must be written to zero to
enable Timer/Counter1 module.
112
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 15-1. 16-bit Timer/Counter Block Diagram(Note:)

Note: Refer to Figure 1-1 on page 2 and ”Alternate Port Functions” on page 79 for Timer/Counter1 pin
placement and description.

15.2.1 Registers

The Timer/Counter (TCNTn), Output Compare Registers (OCRnA/B/C), and Input Capture Reg-
ister (ICRn) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section ”Accessing 16-bit Registers” on
page 114. The Timer/Counter Control Registers (TCCRnA/B/C) are 8-bit registers and have no
CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all
visible in the Timer Interrupt Flag Register (TIFRn). All interrupts are individually masked with
the Timer Interrupt Mask Register (TIMSKn). TIFRn and TIMSKn are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkTn).

The double buffered Output Compare Registers (OCRnA/B/C) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform Gener-
ator to generate a PWM or variable frequency output on the Output Compare pin (OCnA/B/C).

Clock Select

Timer/Counter
D

AT
A

 B
U

S

OCRnA

OCRnB

ICRn

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

Noise
Canceler

ICPn

=

Fixed
TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

ICFn (Int.Req.)

TCCRnA TCCRnB

(From Analog
Comparator Ouput)

Tn
Edge

Detector

(From Prescaler)

clkTn
113
8152A–AVR–11/08

See Section “15.7” on page 121.. The compare match event will also set the Compare Match
Flag (OCFnA/B/C) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICPn) or on the Analog Comparator pins (See
Section “21.” on page 238.) The Input Capture unit includes a digital filtering unit (Noise Can-
celer) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCRnA Register, the ICRn Register, or by a set of fixed values. When using
OCRnA as TOP value in a PWM mode, the OCRnA Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICRn Register can be used
as an alternative, freeing the OCRnA to be used as PWM output.

15.2.2 Definitions

The following definitions are used extensively throughout the section:

15.3 Accessing 16-bit Registers

The TCNTn, OCRnA/B/C, and ICRn are 16-bit registers that can be accessed by the AVR CPU
via the 8-bit data bus. The 16-bit register must be byte accessed using two read or write opera-
tions. Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-
bit access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCRnA/B/C
16-bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCRnA/B/C and ICRn Registers. Note that when using “C”, the compiler handles the 16-bit
access.

Table 15-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF,
or 0x03FF, or to the value stored in the OCRnA or ICRn Register. The assignment is
dependent of the mode of operation.
114
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Note: 1. The example code assumes that the part specific header file is included.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both
the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

Assembly Code Examples(1)

...

; Set TCNTn to 0x01FF
ldi r17,0x01

ldi r16,0xFF

out TCNTnH,r17
out TCNTnL,r16
; Read TCNTn into r17:r16
in r16,TCNTnL
in r17,TCNTnH
...

C Code Examples(1)

unsigned int i;

...

/* Set TCNTn to 0x01FF */
TCNTn = 0x1FF;
/* Read TCNTn into i */
i = TCNTn;
...
115
8152A–AVR–11/08

The following code examples show how to do an atomic read of the TCNTn Register contents.
Reading any of the OCRnA/B/C or ICRn Registers can be done by using the same principle.

Note: 1. The example code assumes that the part specific header file is included.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNTn:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNTn into r17:r16
in r16,TCNTnL
in r17,TCNTnH
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNTn(void)
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNTn into i */
i = TCNTn;
/* Restore global interrupt flag */

SREG = sreg;

return i;

}

116
8152A–AVR–11/08

ATmega324PA

ATmega324PA
The following code examples show how to do an atomic write of the TCNTn Register contents.
Writing any of the OCRnA/B/C or ICRn Registers can be done by using the same principle.

Note: 1. The example code assumes that the part specific header file is included.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNTn.

15.3.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

15.4 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CSn2:0) bits
located in the Timer/Counter control Register B (TCCRnB). For details on clock sources and
prescaler, see ”Timer/Counter Prescaler” on page 153.

Assembly Code Example(1)

TIM16_WriteTCNTn:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNTn to r17:r16
out TCNTnH,r17
out TCNTnL,r16
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNTn(unsigned int i)
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNTn to i */
TCNTn = i;
/* Restore global interrupt flag */

SREG = sreg;

}

117
8152A–AVR–11/08

15.5 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 15-2 shows a block diagram of the counter and its surroundings.

Figure 15-2. Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNTn by 1.

Direction Select between increment and decrement.

Clear Clear TCNTn (set all bits to zero).

clkTn Timer/Counter clock.

TOP Signalize that TCNTn has reached maximum value.

BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) con-
taining the upper eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight
bits. The TCNTnH Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNTnH I/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNTnH value when the TCNTnL is read, and
TCNTnH is updated with the temporary register value when TCNTnL is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNTn Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkTn). The clkTn can be generated from an external or internal clock source,
selected by the Clock Select bits (CSn2:0). When no clock source is selected (CSn2:0 = 0) the
timer is stopped. However, the TCNTn value can be accessed by the CPU, independent of
whether clkTn is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OCnx. For more details about advanced counting
sequences and waveform generation, see ”Modes of Operation” on page 124.

TEMP (8-bit)

DATA BUS (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)
Control Logic

Count

Clear

Direction

TOVn
(Int.Req.)

Clock Select

TOP BOTTOM

Tn
Edge

Detector

(From Prescaler)

clkTn
118
8152A–AVR–11/08

ATmega324PA

ATmega324PA
The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation selected by
the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

15.6 Input Capture Unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICPn pin or alternatively, via the analog-comparator unit. The
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-
nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 15-3. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 15-3. Input Capture Unit Block Diagram

When a change of the logic level (an event) occurs on the Input Capture pin (ICPn), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNTn) is written to the Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at
the same system clock as the TCNTn value is copied into ICRn Register. If enabled (ICIEn = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICFn Flag is automatically
cleared when the interrupt is executed. Alternatively the ICFn Flag can be cleared by software
by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low
byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICRnH I/O location it will
access the TEMP Register.

The ICRn Register can only be written when using a Waveform Generation mode that utilizes
the ICRn Register for defining the counter’s TOP value. In these cases the Waveform Genera-

ICFn (Int.Req.)

Analog
Comparator

WRITE ICRn (16-bit Register)

ICRnH (8-bit)

Noise
Canceler

ICPn

Edge
Detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*
119
8152A–AVR–11/08

tion mode (WGMn3:0) bits must be set before the TOP value can be written to the ICRn
Register. When writing the ICRn Register the high byte must be written to the ICRnH I/O location
before the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to ”Accessing 16-bit Registers”
on page 114.

15.6.1 Input Capture Trigger Source

The main trigger source for the Input Capture unit is the Input Capture pin (ICPn).
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICPn) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the Tn pin (Figure 15-1 on page 113). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICRn to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICPn pin.

15.6.2 Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in
Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICRn Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

15.6.3 Using the Input Capture Unit

The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICRn Register before the next event occurs, the ICRn will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICRn
Register has been read. After a change of the edge, the Input Capture Flag (ICFn) must be
120
8152A–AVR–11/08

ATmega324PA

ATmega324PA
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICFn Flag is not required (if an interrupt handler is used).

15.7 Output Compare Units

The 16-bit comparator continuously compares TCNTn with the Output Compare Register
(OCRnx). If TCNT equals OCRnx the comparator signals a match. A match will set the Output
Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCFnx Flag is automatically cleared
when the interrupt is executed. Alternatively the OCFnx Flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (See Section “15.9” on page 124.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.

Figure 15-4 shows a block diagram of the Output Compare unit. The small “n” in the register and
bit names indicates the device number (n = n for Timer/Counter n), and the “x” indicates Output
Compare unit (A/B/C). The elements of the block diagram that are not directly a part of the Out-
put Compare unit are gray shaded.

Figure 15-4. Output Compare Unit, Block Diagram

The OCRnx Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCRnx Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization

OCFnx (Int.Req.)

= (16-bit Comparator)

OCRnx Buffer (16-bit Register)

OCRnxH Buf. (8-bit)

OCnx

TEMP (8-bit)

DATA BUS (8-bit)

OCRnxL Buf. (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

COMnx1:0WGMn3:0

OCRnx (16-bit Register)

OCRnxH (8-bit) OCRnxL (8-bit)

Waveform Generator
TOP

BOTTOM
121
8152A–AVR–11/08

prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCRnx Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCRnx Buffer Register, and if double buffering is dis-
abled the CPU will access the OCRnx directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCRnx Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCRnxH) has to be
written first. When the high byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCRnxL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to ”Accessing 16-bit Registers”
on page 114.

15.7.1 Force Output Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCnx) bit. Forcing compare match will not set the
OCFnx Flag or reload/clear the timer, but the OCnx pin will be updated as if a real compare
match had occurred (the COMn1:0 bits settings define whether the OCnx pin is set, cleared or
toggled).

15.7.2 Compare Match Blocking by TCNTn Write

All CPU writes to the TCNTn Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCRnx to be initialized to the
same value as TCNTn without triggering an interrupt when the Timer/Counter clock is enabled.

15.7.3 Using the Output Compare Unit

Since writing TCNTn in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNTn when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNTn equals the OCRnx value, the compare match will be missed, resulting in incorrect wave-
form generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP
values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF.
Similarly, do not write the TCNTn value equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OCnx value is to use the Force Output Com-
pare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value.
Changing the COMnx1:0 bits will take effect immediately.
122
8152A–AVR–11/08

ATmega324PA

ATmega324PA
15.8 Compare Match Output Unit

The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Generator uses
the COMnx1:0 bits for defining the Output Compare (OCnx) state at the next compare match.
Secondly the COMnx1:0 bits control the OCnx pin output source. Figure 15-5 shows a simplified
schematic of the logic affected by the COMnx1:0 bit setting. The I/O Registers, I/O bits, and I/O
pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers
(DDR and PORT) that are affected by the COMnx1:0 bits are shown. When referring to the
OCnx state, the reference is for the internal OCnx Register, not the OCnx pin. If a system reset
occur, the OCnx Register is reset to “0”.

Figure 15-5. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OCnx) from the Waveform
Generator if either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OCnx pin (DDR_OCnx) must be set as output before the OCnx value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 15-2, Table 15-3 and Table 15-4 for
details.

The design of the Output Compare pin logic allows initialization of the OCnx state before the out-
put is enabled. Note that some COMnx1:0 bit settings are reserved for certain modes of
operation. See Section “15.11” on page 133.

The COMnx1:0 bits have no effect on the Input Capture unit.

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1
D

AT
A

 B
U

S
FOCnx

clkI/O
123
8152A–AVR–11/08

15.8.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no action on the
OCnx Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 15-2 on page 133. For fast PWM mode refer to Table 15-3 on
page 134, and for phase correct and phase and frequency correct PWM refer to Table 15-4 on
page 134.

A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCnx strobe bits.

15.9 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGMn3:0) and Compare Output
mode (COMnx1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COMnx1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COMnx1:0 bits control whether the output should be set, cleared or toggle at a compare
match (See Section “15.8” on page 123.)

For detailed timing information refer to ”Timer/Counter Timing Diagrams” on page 131.

15.9.1 Normal Mode

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOVn) will be set in
the same timer clock cycle as the TCNTn becomes zero. The TOVn Flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOVn Flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

15.9.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRnA or ICRn Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNTn) matches either the OCRnA (WGMn3:0 = 4) or the ICRn (WGMn3:0 =
12). The OCRnA or ICRn define the top value for the counter, hence also its resolution. This
mode allows greater control of the compare match output frequency. It also simplifies the opera-
tion of counting external events.
124
8152A–AVR–11/08

ATmega324PA

ATmega324PA
The timing diagram for the CTC mode is shown in Figure 15-6. The counter value (TCNTn)
increases until a compare match occurs with either OCRnA or ICRn, and then counter (TCNTn)
is cleared.

Figure 15-6. CTC Mode, Timing Diagram

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCFnA or ICFn Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-
ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a
low prescaler value must be done with care since the CTC mode does not have the double buff-
ering feature. If the new value written to OCRnA or ICRn is lower than the current value of
TCNTn, the counter will miss the compare match. The counter will then have to count to its max-
imum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode
using OCRnA for defining TOP (WGMn3:0 = 15) since the OCRnA then will be double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COMnA1:0 = 1). The OCnA value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OCnA = 1). The waveform generated will have a maximum fre-
quency of fOCnA = fclk_I/O/2 when OCRnA is set to zero (0x0000). The waveform frequency is
defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

15.9.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is cleared
on the compare match between TCNTn and OCRnx, and set at BOTTOM. In inverting Compare
Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-

TCNTn

OCnA
(Toggle)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 4Period 2 3

(COMnA1:0 = 1)

fOCnA
fclk_I/O

2 N 1 OCRnA+()⋅ ⋅
---=
125
8152A–AVR–11/08

rect and phase and frequency correct PWM modes that use dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or
OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the max-
imum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 =
14), or the value in OCRnA (WGMn3:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 15-7. The figure
shows fast PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn value is in the
timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn
slopes represent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will
be set when a compare match occurs.

Figure 15-7. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In addition
the OCnA or ICFn Flag is set at the same timer clock cycle as TOVn is set when either OCRnA
or ICRn is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCRnx Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP
value. The ICRn Register is not double buffered. This means that if ICRn is changed to a low

RFPWM
TOP 1+()log

2()log
-----------------------------------=

TCNTn

OCRnx/TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 7Period 2 3 4 5 6 8

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
126
8152A–AVR–11/08

ATmega324PA

ATmega324PA
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICRn value written is lower than the current value of TCNTn. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCRnA Register however, is double buffered. This feature allows the OCRnA I/O location
to be written anytime. When the OCRnA I/O location is written the value written will be put into
the OCRnA Buffer Register. The OCRnA Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNTn matches TOP. The update is done
at the same timer clock cycle as the TCNTn is cleared and the TOVn Flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRn, the OCRnA Register is free to be used for generating a PWM output on OCnA. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCRnA
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins.
Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COMnx1:0 to three (see Table on page 134). The actual OCnx
value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at
the compare match between OCRnx and TCNTn, and clearing (or setting) the OCnx Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCRnx equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COMnx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCnA to toggle its logical level on each compare match (COMnA1:0 = 1). This applies only
if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have
a maximum frequency of fOCnA = fclk_I/O/2 when OCRnA is set to zero (0x0000). This feature is
similar to the OCnA toggle in CTC mode, except the double buffer feature of the Output Com-
pare unit is enabled in the fast PWM mode.

15.9.4 Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is
cleared on the compare match between TCNTn and OCRnx while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope

fOCnxPWM
fclk_I/O

N 1 TOP+()⋅
-----------------------------------=
127
8152A–AVR–11/08

operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to
0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 1, 2, or 3), the value in ICRn
(WGMn3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-8. The figure
shows phase correct PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx Inter-
rupt Flag will be set when a compare match occurs.

Figure 15-8. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOTTOM. When
either OCRnA or ICRn is used for defining the TOP value, the OCnA or ICFn Flag is set accord-
ingly at the same timer clock cycle as the OCRnx Registers are updated with the double buffer
value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the

RPCPWM
TOP 1+()log

2()log
-----------------------------------=

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
128
8152A–AVR–11/08

ATmega324PA

ATmega324PA
OCRnx Registers are written. As the third period shown in Figure 15-8 illustrates, changing the
TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCRnx Reg-
ister. Since the OCRnx update occurs at TOP, the PWM period starts and ends at TOP. This
implies that the length of the falling slope is determined by the previous TOP value, while the
length of the rising slope is determined by the new TOP value. When these two values differ the
two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COMnx1:0 to three (See Table on page 134). The
actual OCnx value will only be visible on the port pin if the data direction for the port pin is set as
output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Regis-
ter at the compare match between OCRnx and TCNTn when the counter increments, and
clearing (or setting) the OCnx Register at compare match between OCRnx and TCNTn when
the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output
will toggle with a 50% duty cycle.

15.9.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OCnx) is cleared on the compare match between TCNTn and OCRnx while
upcounting, and set on the compare match while downcounting. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCRnx Register is updated by the OCRnx Buffer Register, (see Figure 15-
8 and Figure 15-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and

fOCnxPCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=
129
8152A–AVR–11/08

the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can
be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNTn value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 15-9. The figure shows phase and frequency correct
PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a
compare match occurs.

Figure 15-9. Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx
Registers are updated with the double buffer value (at BOTTOM). When either OCRnA or ICRn
is used for defining the TOP value, the OCnA or ICFn Flag set when TCNTn has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.

As Figure 15-9 shows the output generated is, in contrast to the phase correct mode, symmetri-
cal in all periods. Since the OCRnx Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.

RPFCPWM
TOP 1+()log

2()log
-----------------------------------=

OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)
130
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRn, the OCRnA Register is free to be used for generating a PWM output on OCnA. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCRnA as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COMnx1:0 to three (See Table on
page 134). The actual OCnx value will only be visible on the port pin if the data direction for the
port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing)
the OCnx Register at the compare match between OCRnx and TCNTn when the counter incre-
ments, and clearing (or setting) the OCnx Register at compare match between OCRnx and
TCNTn when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A
is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle
with a 50% duty cycle.

15.10 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkTn) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set, and when the OCRnx Register is updated with the OCRnx buffer value (only for
modes utilizing double buffering). Figure 15-10 shows a timing diagram for the setting of OCFnx.

Figure 15-10. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

Figure 15-11 shows the same timing data, but with the prescaler enabled.

fOCnxPFCPWM
fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

clkTn
(clkI/O/1)

OCFnx

clkI/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
131
8152A–AVR–11/08

Figure 15-11. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (fclk_I/O/8)

Figure 15-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOVn Flag at BOTTOM.

Figure 15-12. Timer/Counter Timing Diagram, no Prescaling

Figure 15-13 shows the same timing data, but with the prescaler enabled.

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkTn
(clkI/O/1)

clkI/O
132
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 15-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

15.11 Register Description

15.11.1 TCCR1A – Timer/Counter1 Control Register A

• Bit 7:6 – COMnA1:0: Compare Output Mode for Channel A

• Bit 5:4 – COMnB1:0: Compare Output Mode for Channel B
The COMnA1:0 and COMnB1:0 control the Output Compare pins (OCnA and OCnB respec-
tively) behavior. If one or both of the COMnA1:0 bits are written to one, the OCnA output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of the
COMnB1:0 bit are written to one, the OCnB output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-
ing to the OCnA or OCnB pin must be set in order to enable the output driver.

When the OCnA or OCnB is connected to the pin, the function of the COMnx1:0 bits is depen-
dent of the WGMn3:0 bits setting. Table 15-2 on page 133 shows the COMnx1:0 bit functionality
when the WGMn3:0 bits are set to a Normal or a CTC mode (non-PWM).

TOVn (FPWM)
and ICFn (if used

as TOP)

OCRnx
(Update at TOP)

TCNTn
(CTC and FPWM)

TCNTn
(PC and PFC PWM)

TOP - 1 TOP TOP - 1 TOP - 2

Old OCRnx Value New OCRnx Value

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

(0x80) COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-2. Compare Output Mode, non-PWM

COMnA1/COMnB1 COMnA0/COMnB0 Description

0 0 Normal port operation, OCnA/OCnB disconnected.

0 1 Toggle OCnA/OCnB on Compare Match.

1 0
Clear OCnA/OCnB on Compare Match (Set output to
low level).

1 1
Set OCnA/OCnB on Compare Match (Set output to
high level).
133
8152A–AVR–11/08

Table 15-3 on page 134 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to
the fast PWM mode.

Note: 1. A special case occurs when OCRnA/OCRnB equals TOP and COMnA1/COMnB1 is set. In
this case the compare match is ignored, but the set or clear is done at BOTTOM. See Section
“15.9.3” on page 125. for more details.

Table 15-4 on page 134 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to
the phase correct or the phase and frequency correct, PWM mode.

Note: 1. A special case occurs when OCRnA/OCRnB equals TOP and COMnA1/COMnB1 is set. See
Section “15.9.4” on page 127. for more details.

• Bit 1:0 – WGMn1:0: Waveform Generation Mode
Combined with the WGMn3:2 bits found in the TCCRnB Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 15-5 on page 135. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode,
and three types of Pulse Width Modulation (PWM) modes. (See Section “15.9” on page 124.).

Table 15-3. Compare Output Mode, Fast PWM(1)

COMnA1/COMnB1 COMnA0/COMnB0 Description

0 0 Normal port operation, OCnA/OCnB disconnected.

0 1

WGMn3:0 = 14 or 15: Toggle OC1A on Compare
Match, OC1B disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

1 0
Clear OCnA/OCnB on Compare Match, set
OCnA/OCnB at BOTTOM (non-inverting mode)

1 1
Set OCnA/OCnB on Compare Match, clear
OCnA/OCnB at BOTTOM (inverting mode)

Table 15-4. Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM(1)

COMnA1/COMnB1 COMnA0/COMnB0 Description

0 0 Normal port operation, OCnA/OCnB disconnected.

0 1

WGMn3:0 = 9 or 11: Toggle OCnA on Compare
Match, OCnB disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

1 0
Clear OCnA/OCnB on Compare Match when up-
counting. Set OCnA/OCnB on Compare Match when
downcounting.

1 1
Set OCnA/OCnB on Compare Match when up-
counting. Clear OCnA/OCnB on Compare Match
when downcounting.
134
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

15.11.2 TCCR1B – Timer/Counter1 Control Register B

• Bit 7 – ICNCn: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICPn) is filtered. The filter function requires four
successive equal valued samples of the ICPn pin for changing its output. The Input Capture is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICESn: Input Capture Edge Select
This bit selects which edge on the Input Capture pin (ICPn) that is used to trigger a capture
event. When the ICESn bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICESn bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICESn setting, the counter value is copied into the
Input Capture Register (ICRn). The event will also set the Input Capture Flag (ICFn), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

Table 15-5. Waveform Generation Mode Bit Description(1)

Mode WGMn3
WGMn2
(CTCn)

WGMn1
(PWMn1)

WGMn0
(PWMn0)

Timer/Counter Mode of
Operation TOP

Update of
OCRnx at

TOVn Flag
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCRnA Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP

8 1 0 0 0
PWM, Phase and Frequency
Correct

ICRn BOTTOM BOTTOM

9 1 0 0 1
PWM, Phase and Frequency
Correct

OCRnA BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICRn TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCRnA TOP BOTTOM

12 1 1 0 0 CTC ICRn Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICRn BOTTOM TOP

15 1 1 1 1 Fast PWM OCRnA BOTTOM TOP

Bit 7 6 5 4 3 2 1 0

(0x81) ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
135
8152A–AVR–11/08

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in the
TCCRnA and the TCCRnB Register), the ICPn is disconnected and consequently the Input Cap-
ture function is disabled.

• Bit 5 – Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCRnB is written.

• Bit 4:3 – WGMn3:2: Waveform Generation Mode
See TCCRnA Register description.

• Bit 2:0 – CSn2:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
15-10 and Figure 15-11.

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

15.11.3 TCCR1C – Timer/Counter1 Control Register C

• Bit 7 – FOCnA: Force Output Compare for Channel A

• Bit 6 – FOCnB: Force Output Compare for Channel B
The FOCnA/FOCnB bits are only active when the WGMn3:0 bits specifies a non-PWM mode.
However, for ensuring compatibility with future devices, these bits must be set to zero when
TCCRnA is written when operating in a PWM mode. When writing a logical one to the
FOCnA/FOCnB bit, an immediate compare match is forced on the Waveform Generation unit.
The OCnA/OCnB output is changed according to its COMnx1:0 bits setting. Note that the
FOCnA/FOCnB bits are implemented as strobes. Therefore it is the value present in the
COMnx1:0 bits that determine the effect of the forced compare.

Table 15-6. Clock Select Bit Description

CSn2 CSn1 CSn0 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on Tn pin. Clock on falling edge.

1 1 1 External clock source on Tn pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

(0x82) FOC1A FOC1B – – – – – – TCCR1C

Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0
136
8152A–AVR–11/08

ATmega324PA

ATmega324PA
A FOCnA/FOCnB strobe will not generate any interrupt nor will it clear the timer in Clear Timer
on Compare match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCnB bits are always read as zero.

15.11.4 TCNT1H and TCNT1L –Timer/Counter1

The two Timer/Counter I/O locations (TCNTnH and TCNTnL, combined TCNTn) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See Section “15.3” on
page 114.

Modifying the counter (TCNTn) while the counter is running introduces a risk of missing a com-
pare match between TCNTn and one of the OCRnx Registers.

Writing to the TCNTn Register blocks (removes) the compare match on the following timer clock
for all compare units.

15.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A

15.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNTn). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See Section “15.3” on page 114.

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H

(0x84) TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH

(0x88) OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x8B) OCR1B[15:8] OCR1BH

(0x8A) OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
137
8152A–AVR–11/08

15.11.7 ICR1H and ICR1L – Input Capture Register 1

The Input Capture is updated with the counter (TCNTn) value each time an event occurs on the
ICPn pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See Section “15.3” on page 114.

15.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register

• Bit 7:6 – Res: Reserved Bits
These bits are unused bits in the ATmega324PA, and will always read as zero.

• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt
Vector (see “Interrupts” on page 62) is executed when the ICF1 Flag, located in TIFR1, is set.

• Bit 4:3 – Res: Reserved Bits
These bits are unused bits in the ATmega324PA, and will always read as zero.

• Bit 2 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 62) is executed when the OCF1B Flag, located in
TIFR1, is set.

• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 62) is executed when the OCF1A Flag, located in
TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector
(See Section “10.2” on page 56.) is executed when the TOV1 Flag, located in TIFR1, is set.

Bit 7 6 5 4 3 2 1 0

(0x87) ICR1[15:8] ICR1H

(0x86) ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6F) – – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
138
8152A–AVR–11/08

ATmega324PA

ATmega324PA
15.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

• Bit 7:6 – Res: Reserved Bits
These bits are unused bits in the ATmega324PA, and will always read as zero.

• Bit 5 – ICF1: Timer/Counter1, Input Capture Flag
This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGMn3:0 to be used as the TOP value, the ICF1 Flag is set when the coun-
ter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.

• Bit 4:3 – Res: Reserved Bits
These bits are unused bits in the ATmega324PA, and will always read as zero.

• Bit 2 – OCF1B: Timer/Counter1, Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter1, Overflow Flag
The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC modes,
the TOV1 Flag is set when the timer overflows. Refer to Table 15-5 on page 135 for the TOV1
Flag behavior when using another WGMn3:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

0x16 (0x36) – – ICF1 – – OCF1B OCF1A TOV1 TIFR1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
139
8152A–AVR–11/08

16. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

16.1 Features

• Single Channel Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV2, OCF2A and OCF2B)
• Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

16.2 Overview

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 15-12.. For the actual
placement of I/O pins, see ”Pin Configurations” on page 2. CPU accessible I/O Registers, includ-
ing I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations
are listed in the ”Register Description” on page 153.

The Power Reduction Timer/Counter2 bit, PRTIM2, in ”PRR – Power Reduction Register” on
page 49 must be written to zero to enable Timer/Counter2 module.

Figure 16-1. 8-bit Timer/Counter Block Diagram

Timer/Counter

D
AT

A
 B

U
S

OCRnA

OCRnB

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

=

Fixed
TOP

Value

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

TCCRnA TCCRnB

clkTn

ASSRn

Synchronization Unit

Prescaler

T/C
Oscillator

clkI/O

clkASY

asynchronous mode
 select (ASn)

Synchronized Status flags

TOSC1

TOSC2

Status flags

clkI/O
140
8152A–AVR–11/08

ATmega324PA

ATmega324PA
16.2.1 Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit reg-
isters. Interrupt request (abbreviated to Int.Req.) signals are all visible in the Timer Interrupt Flag
Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register
(TIMSK2). TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clkT2).

The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-
erator to generate a PWM or variable frequency output on the Output Compare pins (OC2A and
OC2B). See Section “16.5” on page 142. for details. The compare match event will also set the
Compare Flag (OCF2A or OCF2B) which can be used to generate an Output Compare interrupt
request.

16.2.2 Definitions

Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 2. However, when using the register or bit
defines in a program, the precise form must be used, i.e., TCNT2 for accessing Timer/Counter2
counter value and so on.

The definitions in Table 16-1 are also used extensively throughout the section.

16.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2
bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter
Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see ”ASSR
– Asynchronous Status Register” on page 158. For details on clock sources and prescaler, see
”Timer/Counter Prescaler” on page 153.

Table 16-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value 0xFF
(MAX) or the value stored in the OCR2A Register. The assignment is depen-
dent on the mode of operation.
141
8152A–AVR–11/08

16.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
16-2 shows a block diagram of the counter and its surrounding environment.

Figure 16-2. Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT2 in the following.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source,
selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the
timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in
the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the Timer/Counter
Control Register B (TCCR2B). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare outputs OC2A and OC2B.
For more details about advanced counting sequences and waveform generation, see ”Modes of
Operation” on page 145.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by
the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt.

16.5 Output Compare Unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator signals a
match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-
cuted. Alternatively, the Output Compare Flag can be cleared by software by writing a logical
one to its I/O bit location. The Waveform Generator uses the match signal to generate an output

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

topbottom

direction

clear

TOSC1

T/C
Oscillator

TOSC2

Prescaler

clk
I/O

clk
Tn
142
8152A–AVR–11/08

ATmega324PA

ATmega324PA
according to operating mode set by the WGM22:0 bits and Compare Output mode (COM2x1:0)
bits. The max and bottom signals are used by the Waveform Generator for handling the special
cases of the extreme values in some modes of operation (”Modes of Operation” on page 145).

Figure 15-10 on page 131 shows a block diagram of the Output Compare unit.

Figure 16-3. Output Compare Unit, Block Diagram

The OCR2x Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double
buffering is disabled. The double buffering synchronizes the update of the OCR2x Compare
Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR2x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR2x directly.

16.5.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2x) bit. Forcing compare match will not set the
OCF2x Flag or reload/clear the timer, but the OC2x pin will be updated as if a real compare
match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set, cleared or
toggled).

16.5.2 Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2x to be initial-
ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is
enabled.

OCFnx (Int.Req.)

= (8-bit Comparator)

OCRnx

OCnx

DATA BUS

TCNTn

WGMn1:0

Waveform Generator

top

FOCn

COMnX1:0

bottom
143
8152A–AVR–11/08

16.5.3 Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT2 when using the Output Compare channel,
independently of whether the Timer/Counter is running or not. If the value written to TCNT2
equals the OCR2x value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC2x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC2x value is to use the Force Output Com-
pare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM2x1:0 bits are not double buffered together with the compare value.
Changing the COM2x1:0 bits will take effect immediately.

16.6 Compare Match Output Unit

The Compare Output mode (COM2x1:0) bits have two functions. The Waveform Generator uses
the COM2x1:0 bits for defining the Output Compare (OC2x) state at the next compare match.
Also, the COM2x1:0 bits control the OC2x pin output source. Figure 16-4 shows a simplified
schematic of the logic affected by the COM2x1:0 bit setting. The I/O Registers, I/O bits, and I/O
pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers
(DDR and PORT) that are affected by the COM2x1:0 bits are shown. When referring to the
OC2x state, the reference is for the internal OC2x Register, not the OC2x pin.

Figure 16-4. Compare Match Output Unit, Schematic

The general I/O port function is overridden by the Output Compare (OC2x) from the Waveform
Generator if either of the COM2x1:0 bits are set. However, the OC2x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction

PORT

DDR

D Q

D Q

OCnx
PinOCnx

D Q
Waveform
Generator

COMnx1

COMnx0

0

1

D
AT

A
 B

U
S

FOCnx

clkI/O
144
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Register bit for the OC2x pin (DDR_OC2x) must be set as output before the OC2x value is visi-
ble on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2x state before the out-
put is enabled. Note that some COM2x1:0 bit settings are reserved for certain modes of
operation. See ”Register Description” on page 153.

16.6.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM2x1:0 = 0 tells the Waveform Generator that no action on the
OC2x Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 16-5 on page 155. For fast PWM mode, refer to Table 16-6 on
page 155, and for phase correct PWM refer to Table 16-7 on page 155.

A change of the COM2x1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC2x strobe bits.

16.7 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM22:0) and Compare Output
mode (COM2x1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM2x1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM2x1:0 bits control whether the output should be set, cleared, or toggled at a compare
match (See Section “16.6” on page 144.).

For detailed timing information refer to ”Timer/Counter Timing Diagrams” on page 149.

16.7.1 Normal Mode

The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same
timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV2 Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

16.7.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.
145
8152A–AVR–11/08

The timing diagram for the CTC mode is shown in Table 16-5 on page 146. The counter value
(TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and then coun-
ter (TCNT2) is cleared.

Figure 16-5. CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR2A is lower than the current
value of TCNT2, the counter will miss the compare match. The counter will then have to count to
its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can
occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of fOC2A =
fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following
equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

16.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM option by
its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-
TOM. TOP is defined as 0xFF when WGM22:0 = 3, and OCR2A when MGM22:0 = 7. In non-
inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match
between TCNT2 and OCR2x, and set at BOTTOM. In inverting Compare Output mode, the out-
put is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited

TCNTn

OCnx
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3

(COMnx1:0 = 1)

fOCnx
fclk_I/O

2 N 1 OCRnx+()⋅ ⋅
--=
146
8152A–AVR–11/08

ATmega324PA

ATmega324PA
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 16-6 on page 147. The TCNT2 value is in the timing diagram
shown as a histogram for illustrating the single-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes repre-
sent compare matches between OCR2x and TCNT2.

Figure 16-6. Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin.
Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3,
and OCR2A when WGM2:0 = 7 (See Table 16-3 on page 154). The actual OC2x value will only
be visible on the port pin if the data direction for the port pin is set as output. The PWM wave-
form is generated by setting (or clearing) the OC2x Register at the compare match between
OCR2x and TCNT2, and clearing (or setting) the OC2x Register at the timer clock cycle the
counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0
bits.)

TCNTn

OCRnx Update and
TOVn Interrupt Flag Set

1Period 2 3

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Interrupt Flag Set

4 5 6 7

fOCnxPWM
fclk_I/O

N 256⋅
------------------=
147
8152A–AVR–11/08

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The waveform
generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is set to zero. This fea-
ture is similar to the OC2A toggle in CTC mode, except the double buffer feature of the Output
Compare unit is enabled in the fast PWM mode.

16.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-
TOM. TOP is defined as 0xFF when WGM22:0 = 1, and OCR2A when MGM22:0 = 5. In non-
inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match
between TCNT2 and OCR2x while upcounting, and set on the compare match while downcount-
ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmet-
ric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNT2 value will be equal
to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
on Figure 16-7. The TCNT2 value is in the timing diagram shown as a histogram for illustrating
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The
small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2x
and TCNT2.

Figure 16-7. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

TOVn Interrupt Flag Set

OCnx Interrupt Flag Set

1 2 3

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

OCRnx Update
148
8152A–AVR–11/08

ATmega324PA

ATmega324PA
In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM. An inverted PWM
output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when
WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (See Table 16-4 on page 154). The actual OC2x
value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by clearing (or setting) the OC2x Register at the compare match
between OCR2x and TCNT2 when the counter increments, and setting (or clearing) the OC2x
Register at compare match between OCR2x and TCNT2 when the counter decrements. The
PWM frequency for the output when using phase correct PWM can be calculated by the follow-
ing equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 16-7 on page 148 OCnx has a transition from high to low
even though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.

• OCR2A changes its value from MAX, like in Figure 16-7 on page 148. When the OCR2A value
is MAX the OCn pin value is the same as the result of a down-counting compare match. To
ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an
up-counting Compare Match.

• The timer starts counting from a value higher than the one in OCR2A, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the way
up.

16.8 Timer/Counter Timing Diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2)
is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are
set. Figure 16-8 on page 150 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

fOCnxPCPWM
fclk_I/O

N 510⋅
------------------=
149
8152A–AVR–11/08

Figure 16-8. Timer/Counter Timing Diagram, no Prescaling

Figure 16-9 on page 150 shows the same timing data, but with the prescaler enabled.

Figure 16-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 16-10 on page 150 shows the setting of OCF2A in all modes except CTC mode.

Figure 16-10. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fclk_I/O/8)

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)
150
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 16-11 on page 151 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 16-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fclk_I/O/8)

16.9 Asynchronous Operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be corrupted. A safe
procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.

b. Select clock source by setting AS2 as appropriate.

c. Write new values to TCNT2, OCR2x, and TCCR2x.

d. To switch to asynchronous operation: Wait for TCN2UB, OCR2xUB, and TCR2xUB.

e. Clear the Timer/Counter2 Interrupt Flags.

f. Enable interrupts, if needed.

• The CPU main clock frequency must be more than four times the Oscillator frequency.

• When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred to a
temporary register, and latched after two positive edges on TOSC1. The user should not write
a new value before the contents of the temporary register have been transferred to its
destination. Each of the five mentioned registers have their individual temporary register, which
means that e.g. writing to TCNT2 does not disturb an OCR2x write in progress. To detect that a
transfer to the destination register has taken place, the Asynchronous Status Register – ASSR
has been implemented.

• When entering Power-save or ADC Noise Reduction mode after having written to TCNT2,
OCR2x, or TCCR2x, the user must wait until the written register has been updated if
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode
before the changes are effective. This is particularly important if any of the Output Compare2
interrupt is used to wake up the device, since the Output Compare function is disabled during
writing to OCR2x or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
151
8152A–AVR–11/08

before the corresponding OCR2xUB bit returns to zero, the device will never receive a
compare match interrupt, and the MCU will not wake up.

• If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction
mode, precautions must be taken if the user wants to re-enter one of these modes: The
interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-
entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the device
will fail to wake up. If the user is in doubt whether the time before re-entering Power-save or
ADC Noise Reduction mode is sufficient, the following algorithm can be used to ensure that
one TOSC1 cycle has elapsed:

a. Write a value to TCCR2x, TCNT2, or OCR2x.

b. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

c. Enter Power-save or ADC Noise Reduction mode.

• When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2 is
always running, except in Power-down and Standby modes. After a Power-up Reset or wake-
up from Power-down or Standby mode, the user should be aware of the fact that this Oscillator
might take as long as one second to stabilize. The user is advised to wait for at least one
second before using Timer/Counter2 after power-up or wake-up from Power-down or Standby
mode. The contents of all Timer/Counter2 Registers must be considered lost after a wake-up
from Power-down or Standby mode due to unstable clock signal upon start-up, no matter
whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

• Description of wake up from Power-save or ADC Noise Reduction mode when the timer is
clocked asynchronously: When the interrupt condition is met, the wake up process is started
on the following cycle of the timer clock, that is, the timer is always advanced by at least one
before the processor can read the counter value. After wake-up, the MCU is halted for four
cycles, it executes the interrupt routine, and resumes execution from the instruction following
SLEEP.

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect
result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be
done through a register synchronized to the internal I/O clock domain. Synchronization takes
place for every rising TOSC1 edge. When waking up from Power-save mode, and the I/O clock
(clkI/O) again becomes active, TCNT2 will read as the previous value (before entering sleep)
until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from Power-
save mode is essentially unpredictable, as it depends on the wake-up time. The recommended
procedure for reading TCNT2 is thus as follows:

a. Write any value to either of the registers OCR2x or TCCR2x.

b. Wait for the corresponding Update Busy Flag to be cleared.

c. Read TCNT2.

• During asynchronous operation, the synchronization of the Interrupt Flags for the
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore
advanced by at least one before the processor can read the timer value causing the setting of
the Interrupt Flag. The Output Compare pin is changed on the timer clock and is not
synchronized to the processor clock.
152
8152A–AVR–11/08

ATmega324PA

ATmega324PA
16.10 Timer/Counter Prescaler

Figure 16-12. Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main
system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously
clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter
(RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can
then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock
source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz crystal. By set-
ting the EXCLK bit in the ASSR a 32 kHz external clock can be applied. See ”ASSR –
Asynchronous Status Register” on page 158 for details.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,
clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected.
Setting the PSRASY bit in GTCCR resets the prescaler. This allows the user to operate with a
predictable prescaler.

16.11 Register Description

16.11.1 TCCR2A – Timer/Counter Control Register A

• Bits 7:6 – COM2A1:0: Compare Match Output A Mode
These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0
bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2A pin
must be set in order to enable the output driver.

10-BIT T/C PRESCALER

TIMER/COUNTER2 CLOCK SOURCE

clkI/O clkT2S

TOSC1

AS2

CS20
CS21
CS22

cl
k T

2S
/8

cl
k T

2S
/6

4

cl
k T

2S
/1

28

cl
k T

2S
/1

02
4

cl
k T

2S
/2

56

cl
k T

2S
/3

2

0PSRASY

Clear

clkT2

Bit 7 6 5 4 3 2 1 0

(0xB0) COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 TCCR2A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
153
8152A–AVR–11/08

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the
WGM22:0 bit setting. Table 16-2 shows the COM2A1:0 bit functionality when the WGM22:0 bits
are set to a normal or CTC mode (non-PWM).

Table 16-3 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at BOTTOM. See ”Fast PWM Mode” on
page 146 for more details.

Table 16-4 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 148 for more details.

• Bits 5:4 – COM2B1:0: Compare Match Output B Mode
These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0
bits are set, the OC2B output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2B pin
must be set in order to enable the output driver.

Table 16-2. Compare Output Mode, non-PWM Mode

COM2A1 COM2A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC2A on Compare Match

1 0 Clear OC2A on Compare Match

1 1 Set OC2A on Compare Match

Table 16-3. Compare Output Mode, Fast PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: Normal Port Operation, OC0A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0
Clear OC2A on Compare Match, set OC2A at BOTTOM,
(non-inverting mode).

1 1
Set OC2A on Compare Match, clear OC2A at BOTTOM,
(inverting mode).

Table 16-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: Normal Port Operation, OC2A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0
Clear OC2A on Compare Match when up-counting. Set OC2A on
Compare Match when down-counting.

1 1
Set OC2A on Compare Match when up-counting. Clear OC2A on
Compare Match when down-counting.
154
8152A–AVR–11/08

ATmega324PA

ATmega324PA
When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the
WGM22:0 bit setting. Table 16-5 shows the COM2B1:0 bit functionality when the WGM22:0 bits
are set to a normal or CTC mode (non-PWM).

Table 16-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at BOTTOM. See ”Fast PWM Mode” on
page 146 for more details.

Table 16-7 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to phase cor-
rect PWM mode.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See ”Phase Correct PWM Mode” on
page 148 for more details.

• Bits 3:2 – Res: Reserved Bits
These bits are reserved bits in the ATmega324PA and will always read as zero.

Table 16-5. Compare Output Mode, non-PWM Mode

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Toggle OC2B on Compare Match

1 0 Clear OC2B on Compare Match

1 1 Set OC2B on Compare Match

Table 16-6. Compare Output Mode, Fast PWM Mode(1)

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Reserved

1 0
Clear OC2B on Compare Match, set OC2B at BOTTOM,
(non-inverting mode).

1 1
Set OC2B on Compare Match, clear OC2B at BOTTOM,
(inverting mode).

Table 16-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Reserved

1 0
Clear OC2B on Compare Match when up-counting. Set OC2B on
Compare Match when down-counting.

1 1
Set OC2B on Compare Match when up-counting. Clear OC2B on
Compare Match when down-counting.
155
8152A–AVR–11/08

• Bits 1:0 – WGM21:0: Waveform Generation Mode
Combined with the WGM22 bit found in the TCCR2B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 16-8. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of
Pulse Width Modulation (PWM) modes (see ”Modes of Operation” on page 145).

Notes: 1. MAX= 0xFF
2. BOTTOM= 0x00

16.11.2 TCCR2B – Timer/Counter Control Register B

• Bit 7 – FOC2A: Force Output Compare A
The FOC2A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2A bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC2A output is
changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a
strobe. Therefore it is the value present in the COM2A1:0 bits that determines the effect of the
forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2A as TOP.

The FOC2A bit is always read as zero.

Table 16-8. Waveform Generation Mode Bit Description

Mode WGM2 WGM1 WGM0

Timer/Counter
Mode of
Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1
PWM, Phase
Correct

0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF BOTTOM MAX

4 1 0 0 Reserved – – –

5 1 0 1
PWM, Phase
Correct

OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Bit 7 6 5 4 3 2 1 0

(0xB1) FOC2A FOC2B – – WGM22 CS22 CS21 CS20 TCCR2B

Read/Write W W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
156
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Bit 6 – FOC2B: Force Output Compare B
The FOC2B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2B bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC2B output is
changed according to its COM2B1:0 bits setting. Note that the FOC2B bit is implemented as a
strobe. Therefore it is the value present in the COM2B1:0 bits that determines the effect of the
forced compare.

A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2B as TOP.

The FOC2B bit is always read as zero.

• Bits 5:4 – Res: Reserved Bits
These bits are reserved bits in the ATmega324PA and will always read as zero.

• Bit 3 – WGM22: Waveform Generation Mode
See the description in the ”TCCR2A – Timer/Counter Control Register A” on page 153.

• Bit 2:0 – CS22:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table
16-9 on page 157.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

16.11.3 TCNT2 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the Compare

Table 16-9. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT2S/(No prescaling)

0 1 0 clkT2S/8 (From prescaler)

0 1 1 clkT2S/32 (From prescaler)

1 0 0 clkT2S/64 (From prescaler)

1 0 1 clkT2S/128 (From prescaler)

1 1 0 clkT2S/256 (From prescaler)

1 1 1 clkT2S/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

(0xB2) TCNT2[7:0] TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
157
8152A–AVR–11/08

Match on the following timer clock. Modifying the counter (TCNT2) while the counter is running,
introduces a risk of missing a Compare Match between TCNT2 and the OCR2x Registers.

16.11.4 OCR2A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2A pin.

16.11.5 OCR2B – Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2B pin.

16.11.6 ASSR – Asynchronous Status Register

• Bit 6 – EXCLK: Enable External Clock Input
When EXCLK is written to one, and asynchronous clock is selected, the external clock input buf-
fer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a
32 kHz crystal. Writing to EXCLK should be done before asynchronous operation is selected.
Note that the crystal Oscillator will only run when this bit is zero.

• Bit 5 – AS2: Asynchronous Timer/Counter2
When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is
written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscil-
lator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A,
OCR2B, TCCR2A and TCCR2B might be corrupted.

• Bit 4 – TCN2UB: Timer/Counter2 Update Busy
When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.
When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

• Bit 3 – OCR2AUB: Output Compare Register2 Update Busy
When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.
When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

Bit 7 6 5 4 3 2 1 0

(0xB3) OCR2A[7:0] OCR2A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB4) OCR2B[7:0] OCR2B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB6) – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB ASSR

Read/Write R R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0
158
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Bit 2 – OCR2BUB: Output Compare Register2 Update Busy
When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set.
When OCR2B has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2B is ready to be updated with a new value.

• Bit 1 – TCR2AUB: Timer/Counter Control Register2 Update Busy
When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.
When TCCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new
value.

• Bit 0 – TCR2BUB: Timer/Counter Control Register2 Update Busy
When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set.
When TCCR2B has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2B is ready to be updated with a new
value.

If a write is performed to any of the five Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different.
When reading TCNT2, the actual timer value is read. When reading OCR2A, OCR2B, TCCR2A
and TCCR2B the value in the temporary storage register is read.

16.11.7 TIMSK2 – Timer/Counter2 Interrupt Mask Register

• Bit 2 – OCIE2B: Timer/Counter2 Output Compare Match B Interrupt Enable
When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter2 occurs, i.e., when the OCF2B bit is set in the Timer/Coun-
ter 2 Interrupt Flag Register – TIFR2.

• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable
When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is set in the Timer/Coun-
ter 2 Interrupt Flag Register – TIFR2.

• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable
When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the Timer/Counter2 Interrupt
Flag Register – TIFR2.

Bit 7 6 5 4 3 2 1 0

(0x70) – – – – – OCIE2B OCIE2A TOIE2 TIMSK2

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
159
8152A–AVR–11/08

16.11.8 TIFR2 – Timer/Counter2 Interrupt Flag Register

• Bit 2 – OCF2B: Output Compare Flag 2 B
The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2 and the
data in OCR2B – Output Compare Register2. OCF2B is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF2B is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE2B (Timer/Counter2 Compare match Interrupt
Enable), and OCF2B are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 1 – OCF2A: Output Compare Flag 2 A
The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the
data in OCR2A – Output Compare Register2. OCF2A is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt
Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed.

• Bit 0 – TOV2: Timer/Counter2 Overflow Flag
The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Inter-
rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In
PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

16.11.9 GTCCR – General Timer/Counter Control Register

• Bit 7 - TSM: Timer/Counter Synchronization mode
Writing the TSM bit to one, activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSRASY and PSRSYNC bits is kept, hence keepeing the correspond-
ing prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are
halted and can be configured to the same value without the risk of one of them advancing during
configuration. When the TSM bit is written to zero, the PSRASY and PSRSYNC bits are cleared
by hardware, and the Timer/Counters start counting simultaneously.

• Bit 1 – PSRASY: Prescaler Reset Timer/Counter2
When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared
immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous
mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by
hardware if the TSM bit is set. Refer to the description of the “Bit 7 – TSM: Timer/Counter Syn-
chronization Mode” on page 136 for a description of the Timer/Counter Synchronization mode.

Bit 7 6 5 4 3 2 1 0

0x17 (0x37) – – – – – OCF2B OCF2A TOV2 TIFR2

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSRASY PSRSYNC GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
160
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Bit 0 - PSRSYNC: Prescaler Reset
When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is nor-
mally cleared immediately by hardware, except ifthe TSM bit is set. Note that Timer/Counter1
and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both
timers.
161
8152A–AVR–11/08

17. SPI – Serial Peripheral Interface

17.1 Features

• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

17.2 Overview

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmega324PA and peripheral devices or between several AVR devices.

USART can also be used in Master SPI mode, see “USART in SPI Mode” on page 199.

The Power Reduction SPI bit, PRSPI, in ”PRR – Power Reduction Register” on page 49 on page
50 must be written to zero to enable SPI module.

Figure 17-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 1-1 on page 2, and Table 13-6 on page 83 for SPI pin placement.

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128
162
8152A–AVR–11/08

ATmega324PA

ATmega324PA
The interconnection between Master and Slave CPUs with SPI is shown in Figure 17-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 17-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high periods should be:

Low period: longer than 2 CPU clock cycles.

High period: longer than 2 CPU clock cycles.

SHIFT
ENABLE
163
8152A–AVR–11/08

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 17-1. For more details on automatic port overrides, refer to ”Alternate Port
Functions” on page 79.

Note: 1. See ”Alternate Functions of Port B” on page 83 for a detailed description of how to define the
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a
simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction
Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the
actual data direction bits for these pins. E.g. if MOSI is placed on pin PB5, replace DD_MOSI
with DDB5 and DDR_SPI with DDRB.

Table 17-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input
164
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Note: 1. See “About Code Examples” on page 9.

Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

sbis SPSR,SPIF

rjmp Wait_Transmit

ret

C Code Example(1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)))

;

}

165
8152A–AVR–11/08

The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Note: 1. See “About Code Examples” on page 9.

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return Data Register */

return SPDR;

}

166
8152A–AVR–11/08

ATmega324PA

ATmega324PA
17.3 SS Pin Functionality

17.3.1 Slave Mode

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

17.3.2 Master Mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is
set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.

17.4 Data Modes

There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
17-3 on page 168 and Figure 17-4 on page 168. Data bits are shifted out and latched in on
opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is
clearly seen by summarizing Table 17-3 on page 169 and Table 17-4 on page 169, as done in
Table 17-2 on page 168
167
8152A–AVR–11/08

Figure 17-3. SPI Transfer Format with CPHA = 0

Figure 17-4. SPI Transfer Format with CPHA = 1

Table 17-2. SPI Modes

SPI Mode Conditions Leading Edge Trailing Edge

0 CPOL=0, CPHA=0 Sample (Rising) Setup (Falling)

1 CPOL=0, CPHA=1 Setup (Rising) Sample (Falling)

2 CPOL=1, CPHA=0 Sample (Falling) Setup (Rising)

3 CPOL=1, CPHA=1 Setup (Falling) Sample (Rising)

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)
168
8152A–AVR–11/08

ATmega324PA

ATmega324PA
17.5 Register Description

17.5.1 SPCR – SPI Control Register

• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 17-3 and Figure 17-4 for an example. The CPOL functionality is sum-
marized below:

• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 17-3 and Figure 17-4 for an example. The CPOL
functionality is summarized below:

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-3. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 17-4. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample
169
8152A–AVR–11/08

• Bits 1:0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency fosc is
shown in the following table:

17.5.2 SPSR – SPI Status Register

• Bit 7 – SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

• Bit 5:1 – Res: Reserved Bits
These bits are reserved bits in the ATmega324PA and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit
When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 17-5). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at fosc/4
or lower.

The SPI interface on the ATmega324PA is also used for program memory and EEPROM down-
loading or uploading. See page 307 for serial programming and verification.

Table 17-5. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
170
8152A–AVR–11/08

ATmega324PA

ATmega324PA
17.5.3 SPDR – SPI Data Register

The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

0x2E (0x4E) MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined
171
8152A–AVR–11/08

18. USART

18.1 Features

• Full Duplex Operation (Independent Serial Receive and Transmit Registers)
• Asynchronous or Synchronous Operation
• Master or Slave Clocked Synchronous Operation
• High Resolution Baud Rate Generator
• Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
• Odd or Even Parity Generation and Parity Check Supported by Hardware
• Data OverRun Detection
• Framing Error Detection
• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
• Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
• Multi-processor Communication Mode
• Double Speed Asynchronous Communication Mode

18.2 USART1 and USART0

The ATmega324PA has two USART’s, USART0 and USART1.

The functionality for all USART’s is described below, most register and bit references in this sec-
tion are written in general form. A lower case “n” replaces the USART number.

USART0 and USART1 have different I/O registers as shown in ”Register Summary” on page
362.

18.3 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device.

A simplified block diagram of the USART Transmitter is shown in Figure 18-1 on page 173. CPU
accessible I/O Registers and I/O pins are shown in bold.

The Power Reducion USART0 bit, PRUSART0, in ”PRR – Power Reduction Register” on page
49 must be disabled by writing a logical zero to it.

The Power Reducion USART1 bit, PRUSART1, in ”PRR – Power Reduction Register” on page
49 must be disabled by writing a logical zero to it.
172
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 18-1. USART Block Diagram(1)

Note: 1. See Figure 1-1 on page 2 and ”Alternate Port Functions” on page 79 for USART pin
placement.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from
the top): Clock Generator, Transmitter and Receiver. Control Registers are shared by all units.
The Clock Generation logic consists of synchronization logic for external clock input used by
synchronous slave operation, and the baud rate generator. The XCKn (Transfer Clock) pin is
only used by synchronous transfer mode. The Transmitter consists of a single write buffer, a
serial Shift Register, Parity Generator and Control logic for handling different serial frame for-
mats. The write buffer allows a continuous transfer of data without any delay between frames.
The Receiver is the most complex part of the USART module due to its clock and data recovery
units. The recovery units are used for asynchronous data reception. In addition to the recovery
units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level
receive buffer (UDRn). The Receiver supports the same frame formats as the Transmitter, and
can detect Frame Error, Data OverRun and Parity Errors.

18.4 Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USARTn supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USART
Control and Status Register C (UCSRnC) selects between asynchronous and synchronous
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the

PARITY
GENERATOR

UBRR[H:L]

UDR (Transmit)

UCSRA UCSRB UCSRC

BAUD RATE GENERATOR

TRANSMIT SHIFT REGISTER

RECEIVE SHIFT REGISTER RxD

TxDPIN
CONTROL

UDR (Receive)

PIN
CONTROL

XCK

DATA
RECOVERY

CLOCK
RECOVERY

PIN
CONTROL

TX
CONTROL

RX
CONTROL

PARITY
CHECKER

D
A

TA
 B

U
S

OSC

SYNC LOGIC

Clock Generator

Transmitter

Receiver
173
8152A–AVR–11/08

UCSRnA Register. When using synchronous mode (UMSELn = 1), the Data Direction Register
for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or
external (Slave mode). The XCKn pin is only active when using synchronous mode.

Figure 18-2 shows a block diagram of the clock generation logic.

Figure 18-2. Clock Generation Logic, Block Diagram

Signal description:

txclk Transmitter clock (Internal Signal).

rxclk Receiver base clock (Internal Signal).

xcki Input from XCK pin (internal Signal). Used for synchronous slave
operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

fOSC XTAL pin frequency (System Clock).

18.4.1 Internal Clock Generation – The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to Figure 18-2 on page 174.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fosc), is loaded with the UBRRn value each time the counter has counted down to zero or when
the UBRRLn Register is written. A clock is generated each time the counter reaches zero. This
clock is the baud rate generator clock output (= fosc/(UBRRn+1)). The Transmitter divides the
baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator out-
put is used directly by the Receiver’s clock and data recovery units. However, the recovery units
use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSELn, U2Xn and DDR_XCKn bits.

Table 18-1 on page 175 contains equations for calculating the baud rate (in bits per second) and
for calculating the UBRRn value for each mode of operation using an internally generated clock
source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)

Prescaling
Down-Counter /2

UBRR

/4 /2

fosc

UBRR+1

Sync
Register

OSC

XCK
Pin

txclk

U2X

UMSEL

DDR_XCK

0

1

0

1

xcki

xcko

DDR_XCK
rxclk

0

1

1

0
Edge

Detector

UCPOL
174
8152A–AVR–11/08

ATmega324PA

ATmega324PA
fOSC System Oscillator clock frequency

UBRRn Contents of the UBRRHn and UBRRLn Registers, (0-4095)

Some examples of UBRRn values for some system clock frequencies are found in Table 18-9 on
page 195.

18.4.2 Double Speed Operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.

18.4.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this
section refers to Figure 18-2 on page 174 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the
chance of meta-stability. The output from the synchronization register must then pass through
an edge detector before it can be used by the Transmitter and Receiver. This process intro-

Table 18-1. Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating Baud

Rate(1)
Equation for Calculating UBRR

Value

Asynchronous Normal
mode (U2Xn = 0)

Asynchronous Double
Speed mode (U2Xn = 1)

Synchronous Master
mode

BAUD
fOSC

16 UBRRn 1+()
--=

UBRRn
fOSC

16BAUD
------------------------ 1–=

BAUD
fOSC

8 UBRRn 1+()
---------------------------------------=

UBRRn
fOSC

8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRRn 1+()
---------------------------------------=

UBRRn
fOSC

2BAUD
-------------------- 1–=
175
8152A–AVR–11/08

duces a two CPU clock period delay and therefore the maximum external XCKn clock frequency
is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended to
add some margin to avoid possible loss of data due to frequency variations.

18.4.4 Synchronous Clock Operation

When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxDn) is sampled at the
opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 18-3. Synchronous Mode XCKn Timing.

The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and which is
used for data change. As Figure 18-3 on page 176 shows, when UCPOLn is zero the data will
be changed at rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data
will be changed at falling XCKn edge and sampled at rising XCKn edge.

18.5 Frame Formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 18-4 on page 177 illustrates the possible combinations of the frame formats. Bits inside
brackets are optional.

fXCK
fOSC

4
-----------<

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample
176
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 18-4. Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line
must be high.

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in
UCSRnB and UCSRnC. The Receiver and Transmitter use the same setting. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter.

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection between
one or two stop bits is done by the USART Stop Bit Select (USBSn) bit. The Receiver ignores
the second stop bit. An FE (Frame Error) will therefore only be detected in the cases where the
first stop bit is zero.

18.5.1 Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as
follows::

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

18.6 USART Initialization

The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and enabling the
Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the
Global Interrupt Flag should be cleared and the USART interrupts should be disabled.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXCn Flag can be used
to check that the Transmitter has completed all transfers, and the RXC Flag can be used to

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME

Peven dn 1– … d3 d2 d1 d0 0
Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=
=

177
8152A–AVR–11/08

check that there are no unread data in the receive buffer. Note that the TXCn Flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16
Registers.

Note: 1. See “About Code Examples” on page 9.

More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other I/O modules.

18.7 Data Transmission – The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRnB
Register. When the Transmitter is enabled, the normal port operation of the TxDn pin is overrid-
den by the USART and given the function as the Transmitter’s serial output. The baud rate,
mode of operation and frame format must be set up once before doing any transmissions. If syn-
chronous operation is used, the clock on the XCKn pin will be overridden and used as
transmission clock.

Assembly Code Example(1)

USART_Init:

; Set baud rate

out UBRRHn, r17

out UBRRLn, r16

; Enable receiver and transmitter

ldi r16, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<USBSn)|(3<<UCSZn0)

out UCSRnC,r16

ret

C Code Example(1)

void USART_Init(unsigned int baud)

{

/* Set baud rate */

UBRRHn = (unsigned char)(baud>>8);

UBRRLn = (unsigned char)baud;

/* Enable receiver and transmitter */

UCSRnB = (1<<RXENn)|(1<<TXENn);

/* Set frame format: 8data, 2stop bit */

UCSRnC = (1<<USBSn)|(3<<UCSZn0);

}

178
8152A–AVR–11/08

ATmega324PA

ATmega324PA
18.7.1 Sending Frames with 5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDRn I/O location. The buffered data in the
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new
frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is
loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,
U2Xn bit or by XCKn depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the
Data Register Empty (UDREn) Flag. When using frames with less than eight bits, the most sig-
nificant bits written to the UDRn are ignored. The USART has to be initialized before the function
can be used. For the assembly code, the data to be sent is assumed to be stored in Register
R16

Note: 1. See “About Code Examples” on page 9.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized,
the interrupt routine writes the data into the buffer.

18.7.2 Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in
UCSRnB before the low byte of the character is written to UDRn. The following code examples
show a transmit function that handles 9-bit characters. For the assembly code, the data to be
sent is assumed to be stored in registers R17:R16.

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRnA,UDREn

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data

out UDRn,r16

ret

C Code Example(1)

void USART_Transmit(unsigned char data)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn)))

;

/* Put data into buffer, sends the data */

UDRn = data;

}

179
8152A–AVR–11/08

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSRnB is static. For example, only the TXB8 bit of the UCSRnB Register is used
after initialization.

2. See “About Code Examples” on page 9.

The ninth bit can be used for indicating an address frame when using multi processor communi-
cation mode or for other protocol handling as for example synchronization.

18.7.3 Transmitter Flags and Interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

The Data Register Empty (UDREn) Flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRnB is written to one, the
USART Data Register Empty Interrupt will be executed as long as UDREn is set (provided that
global interrupts are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data

Assembly Code Example(1)(2)

USART_Transmit:

; Wait for empty transmit buffer

sbis UCSRnA,UDREn

rjmp USART_Transmit

; Copy 9th bit from r17 to TXB8

cbi UCSRnB,TXB8

sbrc r17,0

sbi UCSRnB,TXB8

; Put LSB data (r16) into buffer, sends the data

out UDRn,r16

ret

C Code Example(1)(2)

void USART_Transmit(unsigned int data)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn))))

;

/* Copy 9th bit to TXB8 */

UCSRnB &= ~(1<<TXB8);

if (data & 0x0100)

UCSRnB |= (1<<TXB8);

/* Put data into buffer, sends the data */

UDRn = data;

}

180
8152A–AVR–11/08

ATmega324PA

ATmega324PA
transmission is used, the Data Register Empty interrupt routine must either write new data to
UDRn in order to clear UDREn or disable the Data Register Empty interrupt, otherwise a new
interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer.
The TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXCn Flag is useful in half-duplex commu-
nication interfaces (like the RS-485 standard), where a transmitting application must enter
receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART
Transmit Complete Interrupt will be executed when the TXCn Flag becomes set (provided that
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-
dling routine does not have to clear the TXCn Flag, this is done automatically when the interrupt
is executed.

18.7.4 Parity Generator

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPMn1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

18.7.5 Disabling the Transmitter

The disabling of the Transmitter (setting the TXEN to zero) will not become effective until ongo-
ing and pending transmissions are completed, i.e., when the Transmit Shift Register and
Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter
will no longer override the TxDn pin.

18.8 Data Reception – The USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXENn) bit in the
UCSRnB Register to one. When the Receiver is enabled, the normal pin operation of the RxDn
pin is overridden by the USART and given the function as the Receiver’s serial input. The baud
rate, mode of operation and frame format must be set up once before any serial reception can
be done. If synchronous operation is used, the clock on the XCKn pin will be used as transfer
clock.

18.8.1 Receiving Frames with 5 to 8 Data Bits

The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register
until the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver.
When the first stop bit is received, i.e., a complete serial frame is present in the Receive Shift
Register, the contents of the Shift Register will be moved into the receive buffer. The receive
buffer can then be read by reading the UDRn I/O location.

The following code example shows a simple USART receive function based on polling of the
Receive Complete (RXCn) Flag. When using frames with less than eight bits the most significant
bits of the data read from the UDRn will be masked to zero. The USART has to be initialized
before the function can be used.
181
8152A–AVR–11/08

Note: 1. See “About Code Examples” on page 9.

The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,
before reading the buffer and returning the value.

18.8.2 Receiving Frames with 9 Data Bits

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in
UCSRnB before reading the low bits from the UDRn. This rule applies to the FEn, DORn and
UPEn Status Flags as well. Read status from UCSRnA, then data from UDRn. Reading the
UDRn I/O location will change the state of the receive buffer FIFO and consequently the TXB8n,
FEn, DORn and UPEn bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit
characters and the status bits.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDRn

ret

C Code Example(1)

unsigned char USART_Receive(void)

{

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)))

;

/* Get and return received data from buffer */

return UDRn;

}

182
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Note: 1. See “About Code Examples” on page 9.

The receive function example reads all the I/O Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will
be free to accept new data as early as possible.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSRnA

in r17, UCSRnB

in r16, UDRn

; If error, return -1

andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART_Receive(void)

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)))

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRnA;

resh = UCSRnB;

resl = UDRn;

/* If error, return -1 */

if (status & (1<<FEn)|(1<<DORn)|(1<<UPEn))

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

183
8152A–AVR–11/08

18.8.3 Receive Compete Flag and Interrupt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buf-
fer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled (RXENn = 0),
the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive
Complete interrupt will be executed as long as the RXCn Flag is set (provided that global inter-
rupts are enabled). When interrupt-driven data reception is used, the receive complete routine
must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new inter-
rupt will occur once the interrupt routine terminates.

18.8.4 Receiver Error Flags

The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and
Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is
that they are located in the receive buffer together with the frame for which they indicate the
error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the
receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location.
Another equality for the Error Flags is that they can not be altered by software doing a write to
the flag location. However, all flags must be set to zero when the UCSRnA is written for upward
compatibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one),
and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn
Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all,
except for the first, stop bits. For compatibility with future devices, always set this bit to zero
when writing to UCSRnA.

The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A
Data OverRun occurs when the receive buffer is full (two characters), it is a new character wait-
ing in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there
was one or more serial frame lost between the frame last read from UDRn, and the next frame
read from UDRn. For compatibility with future devices, always write this bit to zero when writing
to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from
the Shift Register to the receive buffer.

The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more
details see ”Parity Bit Calculation” on page 177 and ”Parity Checker” on page 184.

18.8.5 Parity Checker

The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of Par-
ity Check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the Parity
Checker calculates the parity of the data bits in incoming frames and compares the result with
the parity bit from the serial frame. The result of the check is stored in the receive buffer together
184
8152A–AVR–11/08

ATmega324PA

ATmega324PA
with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by software
to check if the frame had a Parity Error.

The UPEn bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is
valid until the receive buffer (UDRn) is read.

18.8.6 Disabling the Receiver

In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero) the Receiver will
no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost

18.8.7 Flushing the Receive Buffer

The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag
is cleared. The following code example shows how to flush the receive buffer.

Note: 1. See “About Code Examples” on page 9.

18.9 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

18.9.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 18-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-
izontal arrows illustrate the synchronization variation due to the sampling process. Note the

Assembly Code Example(1)

USART_Flush:

sbis UCSRnA, RXCn

ret

in r16, UDRn

rjmp USART_Flush

C Code Example(1)

void USART_Flush(void)

{

unsigned char dummy;

while (UCSRnA & (1<<RXCn)) dummy = UDRn;

}

185
8152A–AVR–11/08

larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples
denoted zero are samples done when the RxDn line is idle (i.e., no communication activity).

Figure 18-5. Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-
ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the
figure), to decide if a valid start bit is received. If two or more of these three samples have logical
high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-
ery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

18.9.2 Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 18-6 shows the sampling of the data bits and
the parity bit. Each of the samples is given a number that is equal to the state of the recovery
unit.

Figure 18-6. Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxDn pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the Receiver only uses the first stop bit of a frame.

Figure 18-7 on page 187 shows the sampling of the stop bit and the earliest possible beginning
of the start bit of the next frame.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)
186
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 18-7. Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 18-7 on page 187. For Double Speed mode the first low level must be
delayed to (B). (C) marks a stop bit of full length. The early start bit detection influences the
operational range of the Receiver.

18.9.3 Asynchronous Operational Range

The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see
Table 18-2 on page 188) base frequency, the Receiver will not be able to synchronize the
frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.

SF First sample number used for majority voting. SF = 8 for normal speed and SF = 4
for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and
SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 18-2 on page 188 and Table 18-3 on page 188 list the maximum receiver baud rate error
that can be tolerated. Note that Normal Speed mode has higher toleration of baud rate
variations.

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)

(A) (B) (C)

Rslow
D 1+()S

S 1– D S⋅ SF+ +
---= Rfast

D 2+()S
D 1+()S SM+

-----------------------------------=
187
8152A–AVR–11/08

The recommendations of the maximum receiver baud rate error was made under the assump-
tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock
(XTAL) will always have some minor instability over the supply voltage range and the tempera-
ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a
resonator the system clock may differ more than 2% depending of the resonators tolerance. The
second source for the error is more controllable. The baud rate generator can not always do an
exact division of the system frequency to get the baud rate wanted. In this case an UBRR value
that gives an acceptable low error can be used if possible.

18.10 Multi-processor Communication Mode

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRnA enables a filtering
function of incoming frames received by the USART Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor
Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-
cates if the frame contains data or address information. If the Receiver is set up for frames with
nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When

Table 18-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode
(U2Xn = 0)

D
(Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max
Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 18-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode
(U2Xn = 1)

D
(Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max
Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104,35 +4.35/-4.48 ± 1.5

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0
188
8152A–AVR–11/08

ATmega324PA

ATmega324PA
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

18.10.1 Using MPCMn

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame
(TXB = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit character
frame format.

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in UCSRnA is
set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. In
the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If so,
it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte and
keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets
the MPCMn bit and waits for a new address frame from master. The process then
repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes full-
duplex operation difficult since the Transmitter and Receiver uses the same character size set-
ting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The
MPCMn bit shares the same I/O location as the TXCn Flag and this might accidentally be
cleared when using SBI or CBI instructions.
189
8152A–AVR–11/08

18.11 Register Description

18.11.1 UDRn – USART I/O Data Register n

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-
ister (TXB) will be the destination for data written to the UDRn Register location. Reading the
UDRn Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to
zero by the Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set.
Data written to UDRn when the UDREn Flag is not set, will be ignored by the USART Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the
data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-
Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions
(SBIC and SBIS), since these also will change the state of the FIFO.

18.11.2 UCSRnA – USART Control and Status Register A

• Bit 7 – RXCn: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag can be
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

• Bit 5 – UDREn: USART Data Register Empty
The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn
is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDRn (Read)

TXB[7:0] UDRn (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
190
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Data Register Empty interrupt (see description of the UDRIEn bit).UDREn is set after a reset to
indicate that the Transmitter is ready.

• Bit 4 – FEn: Frame Error
This bit is set if the next character in the receive buffer had a Frame Error when received. I.e.,
when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the
receive buffer (UDRn) is read. The FEn bit is zero when the stop bit of received data is one.
Always set this bit to zero when writing to UCSRnA.

• Bit 3 – DORn: Data OverRun
This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive
buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a
new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this
bit to zero when writing to UCSRnA.

• Bit 2 – UPEn: USART Parity Error
This bit is set if the next character in the receive buffer had a Parity Error when received and the
Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer
(UDRn) is read. Always set this bit to zero when writing to UCSRnA.

• Bit 1 – U2Xn: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-
bling the transfer rate for asynchronous communication.

• Bit 0 – MPCMn: Multi-processor Communication Mode
This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to
one, all the incoming frames received by the USART Receiver that do not contain address infor-
mation will be ignored. The Transmitter is unaffected by the MPCMn setting. For more detailed
information see ”Multi-processor Communication Mode” on page 188.

18.11.3 UCSRnB – USART Control and Status Register n B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable n
Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit in UCSRnA is set.

• Bit 6 – TXCIEn: TX Complete Interrupt Enable n
Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit in UCSRnA is set.

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIEn RXENn TXENn UCSZn2 RXB8n TXB8n UCSRnB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
191
8152A–AVR–11/08

• Bit 5 – UDRIEn: USART Data Register Empty Interrupt Enable n
Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt will
be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable n
Writing this bit to one enables the USART Receiver. The Receiver will override normal port oper-
ation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter Enable n
Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to
zero) will not become effective until ongoing and pending transmissions are completed, i.e.,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2 – UCSZn2: Character Size n
The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRnC sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 1 – RXB8n: Receive Data Bit 8 n
RXB8n is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8 n
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRn.

18.11.4 UCSRnC – USART Control and Status Register n C

• Bits 7:6 – UMSELn1:0 USART Mode Select
These bits select the mode of operation of the USARTn as shown in Table 18-4..

Note: 1. See ”USART in SPI Mode” on page 199 for full description of the Master SPI Mode (MSPIM)
operation

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 UPMn1 UPMn0 USBSn UCSZn1 UCSZn0 UCPOLn UCSRnC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 18-4. UMSELn Bits Settings

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM)(1)
192
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Bits 5:4 – UPMn1:0: Parity Mode
These bits enable and set type of parity generation and check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The
Receiver will generate a parity value for the incoming data and compare it to the UPMn setting.
If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

• Bit 3 – USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores
this setting.

• Bit 2:1 – UCSZn1:0: Character Size
The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

Table 18-5. UPMn Bits Settings

UPMn1 UPMn0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 18-6. USBS Bit Settings

USBSn Stop Bit(s)

0 1-bit

1 2-bit

Table 18-7. UCSZn Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit
193
8152A–AVR–11/08

• Bit 0 – UCPOLn: Clock Polarity
This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is
used. The UCPOLn bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCKn).

18.11.5 UBRRnL and UBRRnH – USART Baud Rate Registers

• Bit 15:12 – Reserved Bits
These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRH is written.

• Bit 11:0 – UBRR11:0: USART Baud Rate Register
This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four
most significant bits, and the UBRRL contains the eight least significant bits of the USART baud
rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud rate is
changed. Writing UBRRL will trigger an immediate update of the baud rate prescaler.

Table 18-8. UCPOLn Bit Settings

UCPOLn
Transmitted Data Changed (Output of
TxDn Pin)

Received Data Sampled (Input on RxDn
Pin)

0 Rising XCKn Edge Falling XCKn Edge

1 Falling XCKn Edge Rising XCKn Edge

Bit 15 14 13 12 11 10 9 8

– – – – UBRR[11:8] UBRRHn

UBRR[7:0] UBRRLn

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
194
8152A–AVR–11/08

ATmega324PA

ATmega324PA
18.12 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-
chronous operation can be generated by using the UBRR settings in Table 18-9 to Table 18-12.
UBRR values which yield an actual baud rate differing less than 0.5% from the target baud rate,
are bold in the table. Higher error ratings are acceptable, but the Receiver will have less noise
resistance when the error ratings are high, especially for large serial frames (see ”Asynchronous
Operational Range” on page 187). The error values are calculated using the following equation:

Error[%]
BaudRateClosest Match

BaudRate
-- 1–⎝ ⎠

⎛ ⎞ 100%•=

Table 18-9. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

Baud
Rate
(bps)

fosc = 1.0000 MHz fosc = 1.8432 MHz fosc = 2.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max. (1) 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

1. UBRR = 0, Error = 0.0%
195
8152A–AVR–11/08

Table 18-10. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 3.6864 MHz fosc = 4.0000 MHz fosc = 7.3728 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max. (1) 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kbps 921.6 kbps

1. UBRR = 0, Error = 0.0%
196
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Table 18-11. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 8.0000 MHz fosc = 11.0592 MHz fosc = 14.7456 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max. (1) 0.5 Mbps 1 Mbps 691.2 kbps 1.3824 Mbps 921.6 kbps 1.8432 Mbps

1. UBRR = 0, Error = 0.0%
197
8152A–AVR–11/08

Table 18-12. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud
Rate
(bps)

fosc = 16.0000 MHz fosc = 18.4320 MHz fosc = 20.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error

2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%

4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%

9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%

14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%

19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%

28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%

38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%

57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%

76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%

115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%

230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%

250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%

0.5M 1 0.0% 3 0.0% – – 4 -7.8% – – 4 0.0%

1M 0 0.0% 1 0.0% – – – – – – – –

Max. (1) 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRR = 0, Error = 0.0%
198
8152A–AVR–11/08

ATmega324PA

ATmega324PA
19. USART in SPI Mode

19.1 Features

• Full Duplex, Three-wire Synchronous Data Transfer
• Master Operation
• Supports all four SPI Modes of Operation (Mode 0, 1, 2, and 3)
• LSB First or MSB First Data Transfer (Configurable Data Order)
• Queued Operation (Double Buffered)
• High Resolution Baud Rate Generator
• High Speed Operation (fXCKmax = fCK/2)
• Flexible Interrupt Generation

19.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can be
set to a master SPI compliant mode of operation.

Setting both UMSELn1:0 bits to one enables the USART in MSPIM logic. In this mode of opera-
tion the SPI master control logic takes direct control over the USART resources. These
resources include the transmitter and receiver shift register and buffers, and the baud rate gen-
erator. The parity generator and checker, the data and clock recovery logic, and the RX and TX
control logic is disabled. The USART RX and TX control logic is replaced by a common SPI
transfer control logic. However, the pin control logic and interrupt generation logic is identical in
both modes of operation.

The I/O register locations are the same in both modes. However, some of the functionality of the
control registers changes when using MSPIM.

19.3 Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. For
USART MSPIM mode of operation only internal clock generation (i.e. master operation) is sup-
ported. The Data Direction Register for the XCKn pin (DDR_XCKn) must therefore be set to one
(i.e. as output) for the USART in MSPIM to operate correctly. Preferably the DDR_XCKn should
be set up before the USART in MSPIM is enabled (i.e. TXENn and RXENn bit set to one).

The internal clock generation used in MSPIM mode is identical to the USART synchronous mas-
ter mode. The baud rate or UBRRn setting can therefore be calculated using the same
equations, see Table 19-1:

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

Table 19-1. Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating Baud

Rate(1)
Equation for Calculating UBRRn

Value

Synchronous Master
mode BAUD

fOSC
2 UBRRn 1+()
---------------------------------------= UBRRn

fOSC
2BAUD
-------------------- 1–=
199
8152A–AVR–11/08

BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL Registers, (0-4095)

19.4 SPI Data Modes and Timing

There are four combinations of XCKn (SCK) phase and polarity with respect to serial data, which
are determined by control bits UCPHAn and UCPOLn. The data transfer timing diagrams are
shown in Figure 19-1. Data bits are shifted out and latched in on opposite edges of the XCKn
signal, ensuring sufficient time for data signals to stabilize. The UCPOLn and UCPHAn function-
ality is summarized in Table 19-2. Note that changing the setting of any of these bits will corrupt
all ongoing communication for both the Receiver and Transmitter.

Figure 19-1. UCPHAn and UCPOLn data transfer timing diagrams.

19.5 Frame Formats

A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART in MSPIM
mode has two valid frame formats:

• 8-bit data with MSB first

• 8-bit data with LSB first

A frame starts with the least or most significant data bit. Then the next data bits, up to a total of
eight, are succeeding, ending with the most or least significant bit accordingly. When a complete
frame is transmitted, a new frame can directly follow it, or the communication line can be set to
an idle (high) state.

Table 19-2. UCPOLn and UCPHAn Functionality-

UCPOLn UCPHAn SPI Mode Leading Edge Trailing Edge

0 0 0 Sample (Rising) Setup (Falling)

0 1 1 Setup (Rising) Sample (Falling)

1 0 2 Sample (Falling) Setup (Rising)

1 1 3 Setup (Falling) Sample (Rising)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

UCPOL=0 UCPOL=1

U
C

P
H

A
=0

U
C

P
H

A
=1
200
8152A–AVR–11/08

ATmega324PA

ATmega324PA
The UDORDn bit in UCSRnC sets the frame format used by the USART in MSPIM mode. The
Receiver and Transmitter use the same setting. Note that changing the setting of any of these
bits will corrupt all ongoing communication for both the Receiver and Transmitter.

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART transmit com-
plete interrupt will then signal that the 16-bit value has been shifted out.

19.5.1 USART MSPIM Initialization

The USART in MSPIM mode has to be initialized before any communication can take place. The
initialization process normally consists of setting the baud rate, setting master mode of operation
(by setting DDR_XCKn to one), setting frame format and enabling the Transmitter and the
Receiver. Only the transmitter can operate independently. For interrupt driven USART opera-
tion, the Global Interrupt Flag should be cleared (and thus interrupts globally disabled) when
doing the initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be
zero at the time the transmitter is enabled. Contrary to the normal mode USART operation the
UBRRn must then be written to the desired value after the transmitter is enabled, but before the
first transmission is started. Setting UBRRn to zero before enabling the transmitter is not neces-
sary if the initialization is done immediately after a reset since UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that
there is no ongoing transmissions during the period the registers are changed. The TXCn Flag
can be used to check that the Transmitter has completed all transfers, and the RXCn Flag can
be used to check that there are no unread data in the receive buffer. Note that the TXCn Flag
must be cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume polling (no interrupts enabled). The
baud rate is given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 registers.
201
8152A–AVR–11/08

Note: 1. See “About Code Examples” on page 9.

19.6 Data Transfer

Using the USART in MSPI mode requires the Transmitter to be enabled, i.e. the TXENn bit in
the UCSRnB register is set to one. When the Transmitter is enabled, the normal port operation
of the TxDn pin is overridden and given the function as the Transmitter's serial output. Enabling
the receiver is optional and is done by setting the RXENn bit in the UCSRnB register to one.
When the receiver is enabled, the normal pin operation of the RxDn pin is overridden and given
the function as the Receiver's serial input. The XCKn will in both cases be used as the transfer
clock.

After initialization the USART is ready for doing data transfers. A data transfer is initiated by writ-
ing to the UDRn I/O location. This is the case for both sending and receiving data since the

Assembly Code Example(1)

USART_Init:

clr r18

out UBRRnH,r18

out UBRRnL,r18

; Setting the XCKn port pin as output, enables master mode.

sbi XCKn_DDR, XCKn

; Set MSPI mode of operation and SPI data mode 0.

ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)

out UCSRnC,r18

; Enable receiver and transmitter.

ldi r18, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r18

; Set baud rate.

; IMPORTANT: The Baud Rate must be set after the transmitter is enabled!

out UBRRnH, r17

out UBRRnL, r18

ret

C Code Example(1)

void USART_Init(unsigned int baud)

{

UBRRn = 0;

/* Setting the XCKn port pin as output, enables master mode. */

XCKn_DDR |= (1<<XCKn);

/* Set MSPI mode of operation and SPI data mode 0. */

UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);

/* Enable receiver and transmitter. */

UCSRnB = (1<<RXENn)|(1<<TXENn);

/* Set baud rate. */

/* IMPORTANT: The Baud Rate must be set after the transmitter is enabled
*/

UBRRn = baud;

}

202
8152A–AVR–11/08

ATmega324PA

ATmega324PA
transmitter controls the transfer clock. The data written to UDRn is moved from the transmit buf-
fer to the shift register when the shift register is ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must
be read once for each byte transmitted. The input buffer operation is identical to normal USART
mode, i.e. if an overflow occurs the character last received will be lost, not the first data in the buf-
fer. This means that if four bytes are transferred, byte 1 first, then byte 2, 3, and 4, and the UDRn
is not read before all transfers are completed, then byte 3 to be received will be lost, and not byte
1.

The following code examples show a simple USART in MSPIM mode transfer function based on
polling of the Data Register Empty (UDREn) Flag and the Receive Complete (RXCn) Flag. The
USART has to be initialized before the function can be used. For the assembly code, the data to
be sent is assumed to be stored in Register R16 and the data received will be available in the
same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. The function then waits for data to be present
in the receive buffer by checking the RXCn Flag, before reading the buffer and returning the
value..

Note: 1. See “About Code Examples” on page 9.

Assembly Code Example(1)

USART_MSPIM_Transfer:

; Wait for empty transmit buffer

sbis UCSRnA, UDREn

rjmp USART_MSPIM_Transfer

; Put data (r16) into buffer, sends the data

out UDRn,r16

; Wait for data to be received

USART_MSPIM_Wait_RXCn:

sbis UCSRnA, RXCn

rjmp USART_MSPIM_Wait_RXCn

; Get and return received data from buffer

in r16, UDRn

ret

C Code Example(1)

unsigned char USART_Receive(void)

{

/* Wait for empty transmit buffer */

while (!(UCSRnA & (1<<UDREn)));

/* Put data into buffer, sends the data */

UDRn = data;

/* Wait for data to be received */

while (!(UCSRnA & (1<<RXCn)));

/* Get and return received data from buffer */

return UDRn;

}

203
8152A–AVR–11/08

19.6.1 Transmitter and Receiver Flags and Interrupts

The RXCn, TXCn, and UDREn flags and corresponding interrupts in USART in MSPIM mode
are identical in function to the normal USART operation. However, the receiver error status flags
(FE, DOR, and PE) are not in use and is always read as zero.

19.6.2 Disabling the Transmitter or Receiver

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in function to
the normal USART operation.

19.7 AVR USART MSPIM vs. AVR SPI

The USART in MSPIM mode is fully compatible with the AVR SPI regarding:

• Master mode timing diagram.

• The UCPOLn bit functionality is identical to the SPI CPOL bit.

• The UCPHAn bit functionality is identical to the SPI CPHA bit.

• The UDORDn bit functionality is identical to the SPI DORD bit.

However, since the USART in MSPIM mode reuses the USART resources, the use of the
USART in MSPIM mode is somewhat different compared to the SPI. In addition to differences of
the control register bits, and that only master operation is supported by the USART in MSPIM
mode, the following features differ between the two modules:

• The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI has no
buffer.

• The USART in MSPIM mode receiver includes an additional buffer level.

• The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode.

• The SPI double speed mode (SPI2X) bit is not included. However, the same effect is achieved
by setting UBRRn accordingly.

• Interrupt timing is not compatible.

• Pin control differs due to the master only operation of the USART in MSPIM mode.

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 19-3 on page
204.

Table 19-3. Comparison of USART in MSPIM mode and SPI pins.

USART_MSPIM SPI Comment

TxDn MOSI Master Out only

RxDn MISO Master In only

XCKn SCK (Functionally identical)

(N/A) SS Not supported by USART in MSPIM
204
8152A–AVR–11/08

ATmega324PA

ATmega324PA
19.8 Register Description

The following section describes the registers used for SPI operation using the USART.

19.8.1 UDRn – USART MSPIM I/O Data Register

The function and bit description of the USART data register (UDRn) in MSPI mode is identical to
normal USART operation. See “UDRn – USART I/O Data Register n” on page 190.

19.8.2 UCSRnA – USART MSPIM Control and Status Register n A

• Bit 7 - RXCn: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag can be
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 - TXCn: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

• Bit 5 - UDREn: USART Data Register Empty
The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn
is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a
Data Register Empty interrupt (see description of the UDRIE bit). UDREn is set after a reset to
indicate that the Transmitter is ready.

• Bit 4:0 - Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRnA is written.

19.8.3 UCSRnB – USART MSPIM Control and Status Register n B

• Bit 7 - RXCIEn: RX Complete Interrupt Enable
Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit in UCSRnA is set.

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn - - - - - UCSRnA

Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 1 1 0

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIE RXENn TXENn - - - UCSRnB

Read/Write R/W R/W R/W R/W R/W R R R

Initial Value 0 0 0 0 0 1 1 0
205
8152A–AVR–11/08

• Bit 6 - TXCIEn: TX Complete Interrupt Enable
Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit in UCSRnA is set.

• Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable
Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt will
be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDREn bit in UCSRnA is set.

• Bit 4 - RXENn: Receiver Enable
Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will override
normal port operation for the RxDn pin when enabled. Disabling the Receiver will flush the
receive buffer. Only enabling the receiver in MSPI mode (i.e. setting RXENn=1 and TXENn=0)
has no meaning since it is the transmitter that controls the transfer clock and since only master
mode is supported.

• Bit 3 - TXENn: Transmitter Enable
Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to
zero) will not become effective until ongoing and pending transmissions are completed, i.e.,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2:0 - Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRnB is written.

19.8.4 UCSRnC – USART MSPIM Control and Status Register n C

• Bit 7:6 - UMSELn1:0: USART Mode Select
These bits select the mode of operation of the USART as shown in Table 19-4. See ”UCSRnC –
USART Control and Status Register n C” on page 192 for full description of the normal USART
operation. The MSPIM is enabled when both UMSELn bits are set to one. The UDORDn,
UCPHAn, and UCPOLn can be set in the same write operation where the MSPIM is enabled.

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 - - - UDORDn UCPHAn UCPOLn UCSRnC

Read/Write R/W R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 19-4. UMSELn Bits Settings

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM)
206
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Bit 5:3 - Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRnC is written.

• Bit 2 - UDORDn: Data Order
When set to one the LSB of the data word is transmitted first. When set to zero the MSB of the
data word is transmitted first. Refer to the Frame Formats section page 4 for details.

• Bit 1 - UCPHAn: Clock Phase
The UCPHAn bit setting determine if data is sampled on the leasing edge (first) or tailing (last)
edge of XCKn. Refer to the SPI Data Modes and Timing section page 4 for details.

• Bit 0 - UCPOLn: Clock Polarity
The UCPOLn bit sets the polarity of the XCKn clock. The combination of the UCPOLn and
UCPHAn bit settings determine the timing of the data transfer. Refer to the SPI Data Modes and
Timing section page 4 for details.

19.8.5 UBRRnL and UBRRnH –USART MSPIM Baud Rate Registers

The function and bit description of the baud rate registers in MSPI mode is identical to normal
USART operation. See ”UBRRnL and UBRRnH – USART Baud Rate Registers” on page 194.
207
8152A–AVR–11/08

20. 2-wire Serial Interface

20.1 Features

• Simple Yet Powerful and Flexible Communication Interface, only two Bus Lines Needed
• Both Master and Slave Operation Supported
• Device can Operate as Transmitter or Receiver
• 7-bit Address Space Allows up to 128 Different Slave Addresses
• Multi-master Arbitration Support
• Up to 400 kHz Data Transfer Speed
• Slew-rate Limited Output Drivers
• Noise Suppression Circuitry Rejects Spikes on Bus Lines
• Fully Programmable Slave Address with General Call Support
• Address Recognition Causes Wake-up When AVR is in Sleep Mode

20.2 2-wire Serial Interface Bus Definition

The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 20-1. TWI Bus Interconnection

20.2.1 TWI Terminology

The following definitions are frequently encountered in this section.

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Table 20-1. TWI Terminology

Term Description

Master
The device that initiates and terminates a transmission. The Master also generates the
SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.
208
8152A–AVR–11/08

ATmega324PA

ATmega324PA
The Power Reduction TWI bit, PRTWI bit in ”PRR – Power Reduction Register” on page 49 must
be written to zero to enable the 2-wire Serial Interface.

20.2.2 Electrical Interconnection

As depicted in Figure 20-1, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices trim-state their outputs, allowing the pull-up resistors to pull the
line high. Note that all AVR devices connected to the TWI bus must be powered in order to allow
any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in ”SPI Timing Characteristics” on page 330. Two different sets of
specifications are presented there, one relevant for bus speeds below 100 kHz, and one valid for
bus speeds up to 400 kHz.

20.3 Data Transfer and Frame Format

20.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 20-2. Data Validity

20.3.2 START and STOP Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without relin-
quishing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As

SDA

SCL

Data Stable Data Stable

Data Change
209
8152A–AVR–11/08

depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

Figure 20-3. START, REPEATED START and STOP conditions

20.3.3 Address Packet Format

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read opera-
tion is to be performed, otherwise a write operation should be performed. When a Slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-
ter’s request, the SDA line should be left high in the ACK clock cycle. The Master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a Master wishes to transmit the same message to several
slaves in the system. When the general call address followed by a Write bit is transmitted on the
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 20-4. Address Packet Format

SDA

SCL

START STOPREPEATED STARTSTOP START

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK
210
8152A–AVR–11/08

ATmega324PA

ATmega324PA
20.3.4 Data Packet Format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the Receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL
cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 20-5. Data Packet Format

20.3.5 Combining Address and Data Packets into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 20-6 on page 211 shows a typical data transmission. Note that several data bytes can be
transmitted between the SLA+R/W and the STOP condition, depending on the software protocol
implemented by the application software.

Figure 20-6. Typical Data Transmission

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W
211
8152A–AVR–11/08

20.4 Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate
a transmission at the same time. Two problems arise in multi-master systems:

• An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that they have
lost the selection process. This selection process is called arbitration. When a contending
master discovers that it has lost the arbitration process, it should immediately switch to Slave
mode to check whether it is being addressed by the winning master. The fact that multiple
masters have started transmission at the same time should not be detectable to the slaves, i.e.
the data being transferred on the bus must not be corrupted.

• Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the Master with the shortest high period. The low period of the combined clock is equal to
the low period of the Master with the longest low period. Note that all masters listen to the SCL
line, effectively starting to count their SCL high and low time-out periods when the combined
SCL line goes high or low, respectively.

Figure 20-7. SCL Synchronization Between Multiple Masters

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration. Note that a Master can only lose arbitration when it outputs a high SDA value
while another Master outputs a low value. The losing Master should immediately go to Slave
mode, checking if it is being addressed by the winning Master. The SDA line should be left high,
but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one Master remains, and this may take many

TA low TA high

SCL from
Master A

SCL from
Master B

SCL Bus
Line

TBlow TBhigh

Masters Start
Counting Low Period

Masters Start
Counting High Period
212
8152A–AVR–11/08

ATmega324PA

ATmega324PA
bits. If several masters are trying to address the same Slave, arbitration will continue into the
data packet.

Figure 20-8. Arbitration Between Two Masters

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit.

• A STOP condition and a data bit.

• A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same
number of data packets, otherwise the result of the arbitration is undefined.

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
SCL Line

START Master A Loses
Arbitration, SDAA SDA
213
8152A–AVR–11/08

20.5 Overview of the TWI Module

The TWI module is comprised of several submodules, as shown in Figure 20-9. All registers
drawn in a thick line are accessible through the AVR data bus.

Figure 20-9. Overview of the TWI Module

20.5.1 SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a
slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike
suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in the AVR
pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as
explained in the I/O Port section. The internal pull-ups can in some systems eliminate the need
for external ones.

20.5.2 Bit Rate Generator Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is con-
trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status
Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the
CPU clock frequency in the Slave must be at least 16 times higher than the SCL frequency. Note
that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock
period. The SCL frequency is generated according to the following equation:

T
W

I U
ni

t

Address Register
(TWAR)

Address Match Unit

Address Comparator

Control Unit

Control Register
(TWCR)

Status Register
(TWSR)

State Machine and
Status control

SCL

Slew-rate
Control

Spike
Filter

SDA

Slew-rate
Control

Spike
Filter

Bit Rate Generator

Bit Rate Register
(TWBR)

Prescaler

Bus Interface Unit

START / STOP
Control

Arbitration detection Ack

Spike Suppression

Address/Data Shift
Register (TWDR)
214
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• TWBR = Value of the TWI Bit Rate Register.

• TWPS = Value of the prescaler bits in the TWI Status Register.

Note: Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus
line load. See 2-wire Serial Bus Requirements in Table 27-8 on page 331 for value of pull-up
resistor.

20.5.3 Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate
status codes generated.

20.5.4 Address Match Unit

The Address Match unit checks if received address bytes match the seven-bit address in the
TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control Unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake up if addressed by a Master.

If another interrupt (e.g., INT0) occurs during TWI Power-down address match and wakes up the
CPU, the TWI aborts operation and return to it’s idle state. If this cause any problems, ensure
that TWI Address Match is the only enabled interrupt when entering Power-down.(1)

Note: 1. This only applies to ATmega324PA revision A to D.

20.5.5 Control Unit

The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is avail-

SCL frequency CPU Clock frequency

16 2(TWBR) 4
TWPS⋅+

---=
215
8152A–AVR–11/08

able. As long as the TWINT Flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition.

• After the TWI has transmitted SLA+R/W.

• After the TWI has transmitted an address byte.

• After the TWI has lost arbitration.

• After the TWI has been addressed by own slave address or general call.

• After the TWI has received a data byte.

• After a STOP or REPEATED START has been received while still addressed as a Slave.

• When a bus error has occurred due to an illegal START or STOP condition.

20.6 Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT Flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT Flag in
order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 20-10 is a simple example of how the application can interface to the TWI hardware. In
this example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.

Figure 20-10. Interfacing the Application to the TWI in a Typical Transmission

START SLA+W A Data A STOP

1. Application
writes to TWCR to

initiate
transmission of

START

2. TWINT set.
Status code indicates
START condition sent

4. TWINT set.
Status code indicates

SLA+W sent, ACK
received

6. TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent. Application loads SLA+W into

TWDR, and loads appropriate control
signals into TWCR, makin sure that

TWINT is written to one,
and TWSTA is written to zero.

5. Check TWSR to see if SLA+W was
sent and ACK received.

Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

written to one

7. Check TWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

making sure that TWINT is written to one

TWI bus

Indicates
TWINT set

A
pp

lic
at

io
n

A
ct

io
n

T
W

I
H

ar
dw

ar
e

A
ct

io
n

216
8152A–AVR–11/08

ATmega324PA

ATmega324PA
1. The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

3. The application software should now examine the value of TWSR, to make sure that the
START condition was successfully transmitted. If TWSR indicates otherwise, the applica-
tion software might take some special action, like calling an error routine. Assuming that
the status code is as expected, the application must load SLA+W into TWDR. Remember
that TWDR is used both for address and data. After TWDR has been loaded with the
desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware
to transmit the SLA+W present in TWDR. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the packet or
not.

5. The application software should now examine the value of TWSR, to make sure that the
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must load a data packet into TWDR. Subsequently, a specific value must be
written to TWCR, instructing the TWI hardware to transmit the data packet present in
TWDR. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR
is updated with a status code indicating that the data packet has successfully been sent.
The status code will also reflect whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must write a specific value to TWCR, instructing the TWI hardware to transmit
a STOP condition. Which value to write is described later on. However, it is important that
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the STOP condi-
tion. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT Flag is
set. The SCL line is pulled low until TWINT is cleared.
217
8152A–AVR–11/08

• When the TWINT Flag is set, the user must update all TWI Registers with the value relevant for
the next TWI bus cycle. As an example, TWDR must be loaded with the value to be transmitted
in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have been
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a one
to TWINT clears the flag. The TWI will then commence executing whatever operation was
specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made, for example by using include-files.

Assembly Code Example C Example Comments

1

ldi r16, (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN) Send START condition

2

wait1:

in r16,TWCR

sbrs r16,TWINT

rjmp wait1

while (!(TWCR & (1<<TWINT)))

; Wait for TWINT Flag set. This
indicates that the START condition
has been transmitted

3

in r16,TWSR

andi r16, 0xF8

cpi r16, START

brne ERROR

if ((TWSR & 0xF8) != START)

ERROR();
Check value of TWI Status
Register. Mask prescaler bits. If
status different from START go to
ERROR

ldi r16, SLA_W

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16

TWDR = SLA_W;

TWCR = (1<<TWINT) | (1<<TWEN); Load SLA_W into TWDR Register.
Clear TWINT bit in TWCR to start
transmission of address

4

wait2:

in r16,TWCR

sbrs r16,TWINT

rjmp wait2

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This
indicates that the SLA+W has been
transmitted, and ACK/NACK has
been received.

5

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_SLA_ACK

brne ERROR

if ((TWSR & 0xF8) !=
MT_SLA_ACK)

ERROR();

Check value of TWI Status
Register. Mask prescaler bits. If
status different from MT_SLA_ACK
go to ERROR

ldi r16, DATA

out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)

out TWCR, r16

TWDR = DATA;

TWCR = (1<<TWINT) | (1<<TWEN); Load DATA into TWDR Register.
Clear TWINT bit in TWCR to start
transmission of data
218
8152A–AVR–11/08

ATmega324PA

ATmega324PA
20.7 Transmission Modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 20-12 on page 222 to Figure 20-18 on page 231, circles are used to indicate that the
TWINT Flag is set. The numbers in the circles show the status code held in TWSR, with the
prescaler bits masked to zero. At these points, actions must be taken by the application to con-
tinue or complete the TWI transfer. The TWI transfer is suspended until the TWINT Flag is
cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial
transfer are given in Table 20-2 on page 221 to Table 20-5 on page 230. Note that the prescaler
bits are masked to zero in these tables.

6

wait3:

in r16,TWCR

sbrs r16,TWINT

rjmp wait3

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This
indicates that the DATA has been
transmitted, and ACK/NACK has
been received.

7

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_DATA_ACK

brne ERROR

if ((TWSR & 0xF8) !=
MT_DATA_ACK)

ERROR();

Check value of TWI Status
Register. Mask prescaler bits. If
status different from
MT_DATA_ACK go to ERROR

ldi r16, (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO); Transmit STOP condition

Assembly Code Example C Example Comments
219
8152A–AVR–11/08

20.7.1 Master Transmitter Mode

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver
(see Figure 20-11 on page 220). In order to enter a Master mode, a START condition must be
transmitted. The format of the following address packet determines whether Master Transmitter
or Master Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if
SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this section
assume that the prescaler bits are zero or are masked to zero.

Figure 20-11. Data Transfer in Master Transmitter Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one to trans-
mit a START condition and TWINT must be written to one to clear the TWINT Flag. The TWI will
then test the 2-wire Serial Bus and generate a START condition as soon as the bus becomes
free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and the
status code in TWSR will be 0x08 (see Table 20-2 on page 221). In order to enter MT mode,
SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes
is detailed in Table 20-2 on page 221.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the
transfer. This is accomplished by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 0 X 1 0 X

Device 1
MASTER

TRANSMITTER

Device 2
SLAVE

RECEIVER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC
220
8152A–AVR–11/08

ATmega324PA

ATmega324PA
This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables
the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-
out losing control of the bus.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

Table 20-2. Status codes for Master Transmitter Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by TWI Hardware

To/from TWDR To TWCR
STA STO TWINT TWEA

0x08 A START condition has been
transmitted

Load SLA+W 0 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

0x10 A repeated START condition
has been transmitted

Load SLA+W or

Load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode

0x18 SLA+W has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x28 Data byte has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x30 Data byte has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x38 Arbitration lost in SLA+W or data
bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed
Slave mode entered
A START condition will be transmitted when the bus be-
comes free
221
8152A–AVR–11/08

Figure 20-12. Formats and States in the Master Transmitter Mode

20.7.2 Master Receiver Mode

In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter
(Slave see Figure 20-13 on page 223). In order to enter a Master mode, a START condition
must be transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT mode is
entered, if SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this
section assume that the prescaler bits are zero or are masked to zero.

S SLA W A DATA A P

$08 $18 $28

R SLA W

$10

A P

$20

P

$30

A or A

$38

A

Other master
continues A or A

$38

Other master
continues

R

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MT

MR

Successfull
transmission
to a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

S

222
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 20-13. Data Transfer in Master Receiver Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT Flag. The TWI
will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-
ware, and the status code in TWSR will be 0x08 (See Table 20-2 on page 221). In order to enter
MR mode, SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the
TWINT bit should be cleared (by writing it to one) to continue the transfer. This is accomplished
by writing the following value to TWCR:

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes
is detailed in Table 20-3 on page 224. Received data can be read from the TWDR Register
when the TWINT Flag is set high by hardware. This scheme is repeated until the last byte has
been received. After the last byte has been received, the MR should inform the ST by sending a
NACK after the last received data byte. The transfer is ended by generating a STOP condition or
a repeated START condition. A STOP condition is generated by writing the following value to
TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 1 X 1 0 X 1 0 X

Device 1
MASTER

RECEIVER

Device 2
SLAVE

TRANSMITTER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC
223
8152A–AVR–11/08

the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-
out losing control over the bus.

Table 20-3. Status codes for Master Receiver Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR
STA STO TWINT TWEA

0x08 A START condition has been
transmitted

Load SLA+R 0 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

0x10 A repeated START condition
has been transmitted

Load SLA+R or

Load SLA+W

0

0

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to Master Transmitter mode

0x38 Arbitration lost in SLA+R or NOT
ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not addressed
Slave mode will be entered
A START condition will be transmitted when the bus
becomes free

0x40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag will
be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

0x50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO Flag will
be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
224
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 20-14. Formats and States in the Master Receiver Mode

20.7.3 Slave Receiver Mode

In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter
(see Figure 20-15). All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

Figure 20-15. Data transfer in Slave Receiver mode

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

S SLA R A DATA A

$08 $40 $50

SLA R

$10

A P

$48

A or A

$38

Other master
continues

$38

Other master
continues

W

A

$68

Other master
continues

$78 $B0
To corresponding
states in slave mode

MR

MT

Successfull
reception
from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

DATA A

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE
value Device’s Own Slave Address

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

TRANSMITTER

Device 1
SLAVE

RECEIVER
225
8152A–AVR–11/08

The upper 7 bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After
its own slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 20-4 on
page 227. The Slave Receiver mode may also be entered if arbitration is lost while the TWI is in
the Master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA
after the next received data byte. This can be used to indicate that the Slave is not able to
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave
address. However, the 2-wire Serial Bus is still monitored and address recognition may resume
at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate
the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and
the TWI will hold the SCL clock low during the wake up and until the TWINT Flag is cleared (by
writing it to one). Further data reception will be carried out as normal, with the AVR clocks run-
ning as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may be
held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte present
on the bus when waking up from these Sleep modes.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 0 1 0 0 0 1 0 X
226
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Table 20-4. Status Codes for Slave Receiver Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus and
2-wire Serial Interface Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR
STA STO TWINT TWEA

0x60 Own SLA+W has been received;
ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x68 Arbitration lost in SLA+R/W as
Master; own SLA+W has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x70 General call address has been
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x78 Arbitration lost in SLA+R/W as
Master; General call address has
been received; ACK has been
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0x90 Previously addressed with
general call; data has been re-
ceived; ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be
returned
Data byte will be received and ACK will be returned

0x98 Previously addressed with
general call; data has been
received; NOT ACK has been
returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0xA0 A STOP condition or repeated
START condition has been
received while still addressed as
Slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free
227
8152A–AVR–11/08

Figure 20-16. Formats and States in the Slave Receiver Mode

20.7.4 Slave Transmitter Mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a Master Receiver
(see Figure 20-17). All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

Figure 20-17. Data Transfer in Slave Transmitter Mode

S SLA W A DATA A

$60 $80

$88

A

$68

Reception of the own
slave address and one or
more data bytes. All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A

Device 3 Device n

SDA

SCL

........ R1 R2

VCC

Device 2
MASTER

RECEIVER

Device 1
SLAVE

TRANSMITTER
228
8152A–AVR–11/08

ATmega324PA

ATmega324PA
To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After
its own slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 20-5 on
page 230. The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is
in the Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-
fer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master Receiver
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave
mode, and will ignore the Master if it continues the transfer. Thus the Master Receiver receives
all “1” as serial data. State 0xC8 is entered if the Master demands additional data bytes (by
transmitting ACK), even though the Slave has transmitted the last byte (TWEA zero and expect-
ing NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.
This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial
Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and
the TWI will hold the SCL clock will low during the wake up and until the TWINT Flag is cleared
(by writing it to one). Further data transmission will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte present
on the bus when waking up from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE
value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE
value 0 1 0 0 0 1 0 X
229
8152A–AVR–11/08

Table 20-5. Status Codes for Slave Transmitter Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus and
2-wire Serial Interface Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR
STA STO TWINT TWEA

0xA8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB0 Arbitration lost in SLA+R/W as
Master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB8 Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be re-
ceived

0xC0 Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free

0xC8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus
becomes free
230
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 20-18. Formats and States in the Slave Transmitter Mode

20.7.5 Miscellaneous States

There are two status codes that do not correspond to a defined TWI state, see Table 20-6.

Status 0xF8 indicates that no relevant information is available because the TWINT Flag is not
set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions are during the serial transfer of an address byte, a data byte,
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the
TWSTO Flag must set and TWINT must be cleared by writing a logic one to it. This causes the
TWI to enter the not addressed Slave mode and to clear the TWSTO Flag (no other bits in
TWCR are affected). The SDA and SCL lines are released, and no STOP condition is
transmitted.

20.7.6 Combining Several TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.

3. The reading must be performed.

4. The transfer must be finished.

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the own
slave address and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

Table 20-6. Miscellaneous States
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface Hard-
ware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR
STA STO TWINT TWEA

0xF8 No relevant state information
available; TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.
231
8152A–AVR–11/08

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct
the Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the Slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The Master must keep control of the bus during all these steps, and the steps
should be carried out as an atomical operation. If this principle is violated in a multimaster sys-
tem, another Master can alter the data pointer in the EEPROM between steps 2 and 3, and the
Master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception
of the data. After a REPEATED START, the Master keeps ownership of the bus. The following
figure shows the flow in this transfer.

Figure 20-19. Combining Several TWI Modes to Access a Serial EEPROM

20.8 Multi-master Systems and Arbitration

If multiple masters are connected to the same bus, transmissions may be initiated simultane-
ously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the masters will be allowed to proceed with the transfer, and that no data
will be lost in the process. An example of an arbitration situation is depicted below, where two
masters are trying to transmit data to a Slave Receiver.

Figure 20-20. An Arbitration Example

Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same Slave. In this
case, neither the Slave nor any of the masters will know about the bus contention.

• Two or more masters are accessing the same Slave with different data or direction bit. In this
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters trying
to output a one on SDA while another Master outputs a zero will lose the arbitration. Losing
masters will switch to not addressed Slave mode or wait until the bus is free and transmit a new
START condition, depending on application software action.

Master Transmitter Master Receiver

S = START Rs = REPEATED START P = STOP

Transmitted from master to slave Transmitted from slave to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLAVE

RECEIVER
Device n

SDA

SCL

........ R1 R2

VCC
232
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Two or more masters are accessing different slaves. In this case, arbitration will occur in the
SLA bits. Masters trying to output a one on SDA while another Master outputs a zero will lose
the arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if they are
being addressed by the winning Master. If addressed, they will switch to SR or ST mode,
depending on the value of the READ/WRITE bit. If they are not being addressed, they will
switch to not addressed Slave mode or wait until the bus is free and transmit a new START
condition, depending on application software action.

This is summarized in Figure 20-21. Possible status values are given in circles.

Figure 20-21. Possible Status Codes Caused by Arbitration

20.9 Register Description

20.9.1 TWBR – TWI Bit Rate Register

• Bits 7:0 – TWI Bit Rate Register
TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See ”Bit Rate Generator
Unit” on page 214 for calculating bit rates.

20.9.2 TWCR – TWI Control Register

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
Master access by applying a START condition to the bus, to generate a Receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP

Bit 7 6 5 4 3 2 1 0

(0xB8) TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xBC) TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR
Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
233
8152A–AVR–11/08

bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag
This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT
Flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire Serial
Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

• Bit 5 – TWSTA: TWI START Condition Bit
The application writes the TWSTA bit to one when it desires to become a Master on the 2-wire
Serial Bus. The TWI hardware checks if the bus is available, and generates a START condition
on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition is
detected, and then generates a new START condition to claim the bus Master status. TWSTA
must be cleared by software when the START condition has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit
Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In Slave mode, setting the TWSTO bit can be used to recover from an error condition.
This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed
Slave mode and releases the SCL and SDA lines to a high impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT is
low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit
The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to
one, the TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI
transmissions are terminated, regardless of any ongoing operation.

• Bit 1 – Res: Reserved Bit
This bit is a reserved bit and will always read as zero.
234
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Bit 0 – TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-
vated for as long as the TWINT Flag is high.

20.9.3 TWSR – TWI Status Register

• Bits 7:3 – TWS: TWI Status
These 5 bits reflect the status of the TWI logic and the 2-wire Serial Bus. The different status
codes are described ”Transmission Modes” on page 219. Note that the value read from TWSR
contains both the 5-bit status value and the 2-bit prescaler value. The application designer
should mask the prescaler bits to zero when checking the Status bits. This makes status check-
ing independent of prescaler setting. This approach is used in this datasheet, unless otherwise
noted.

• Bit 2 – Res: Reserved Bit
This bit is reserved and will always read as zero.

• Bits 1:0 – TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

To calculate bit rates, see ”Bit Rate Generator Unit” on page 214. The value of TWPS1..0 is
used in the equation.

20.9.4 TWDR – TWI Data Register

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.
This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the Data Regis-
ter cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains
stable as long as TWINT is set. While data is shifted out, data on the bus is simultaneously
shifted in. TWDR always contains the last byte present on the bus, except after a wake up from
a sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case

Bit 7 6 5 4 3 2 1 0

(0xB9) TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 TWSR
Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0

Table 20-7. TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

(0xBB) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1
235
8152A–AVR–11/08

of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the
ACK bit is controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

• Bits 7:0 – TWD: TWI Data Register
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the 2-wire Serial Bus.

20.9.5 TWAR – TWI (Slave) Address Register

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,
and not needed in the Master modes. In multimaster systems, TWAR must be set in masters
which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.

• Bits 7:1 – TWA: TWI (Slave) Address Register
These seven bits constitute the slave address of the TWI unit.

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

20.9.6 TWAMR – TWI (Slave) Address Mask Register

• Bits 7:1 – TWAM: TWI Address Mask
The TWAMR can be loaded with a 7-bit Slave Address mask. Each of the bits in TWAMR can
mask (disable) the corresponding address bit in the TWI Address Register (TWAR). If the mask
bit is set to one then the address match logic ignores the compare between the incoming
address bit and the corresponding bit in TWAR. Figure 20-22 shows the address match logic in
detail.

Bit 7 6 5 4 3 2 1 0

(0xBA) TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

Bit 7 6 5 4 3 2 1 0

(0xBD) TWAM[6:0] – TWAMR

Read/Write R/W R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0
236
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 20-22. TWI Address Match Logic, Block Diagram

• Bit 0 – Res: Reserved Bit
This bit is reserved and will always read as zero.

Address
Match

Address Bit Comparator 0

Address Bit Comparator 6..1

TWAR0

TWAMR0

Address
Bit 0
237
8152A–AVR–11/08

21. AC - Analog Comparator

21.1 Overview

The Analog Comparator compares the input values on the positive pin AIN0 and negative pin
AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin
AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger
the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a separate
interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on com-
parator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is
shown in Figure 21-1.

The Power Reduction ADC bit, PRADC, in ”PRR – Power Reduction Register” on page 49 must
be disabled by writing a logical zero to be able to use the ADC input MUX.

Figure 21-1. Analog Comparator Block Diagram(2)

Notes: 1. See Table 21-1 on page 238.
2. Refer to Figure 1-1 on page 2 and Table 13-5 on page 82 for Analog Comparator pin

placement.

21.2 Analog Comparator Multiplexed Input

It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog Com-
parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in ADMUX
select the input pin to replace the negative input to the Analog Comparator, as shown in Table
21-1 on page 238. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the
Analog Comparator.

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)

Table 21-1. Analog Comparator Mulitiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0
238
8152A–AVR–11/08

ATmega324PA

ATmega324PA
21.3 Register Description

21.3.1 ADCSRB – ADC Control and Status Register B

• Bit 6 – ACME: Analog Comparator Multiplexer Enable
When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see ”Analog Comparator Multiplexed Input” on page 238.

21.3.2 ACSR – Analog Comparator Control and Status Register

• Bit 7 – ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Compar-
ator. When bandgap reference is used as input to the Analog Comparator, it will take a certain
time for the voltage to stabilize. If not stabilized, the first conversion may give wrong value. See
”Internal Voltage Reference” on page 55.

• Bit 5 – ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Table 21-1. Analog Comparator Mulitiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – - ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x30 (0x50) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
239
8152A–AVR–11/08

• Bit 4 – ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable
When written logic one, this bit enables the input capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
input capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the input capture function exists. To make the comparator
trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask
Register (TIMSK1) must be set.

• Bits 1:0 – ACIS1:ACIS0: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 21-2.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

21.3.3 DIDR1 – Digital Input Disable Register 1

• Bit 1:0 – AIN1D:AIN0D: AIN1:AIN0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-
sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is
applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-
ten logic one to reduce power consumption in the digital input buffer.

Table 21-2. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.

Bit 7 6 5 4 3 2 1 0

(0x7F) – – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
240
8152A–AVR–11/08

ATmega324PA

ATmega324PA
22. ADC - Analog-to-digital Converter

22.1 Features

• 10-bit Resolution
• 0.5 LSB Integral Non-linearity
• ±2 LSB Absolute Accuracy
• 13 - 260 µs Conversion Time
• Up to 15 kSPS at Maximum Resolution
• 8 Multiplexed Single Ended Input Channels
• Differential mode with selectable gain at 1x, 10x or 200x
• Optional Left adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• 2.7 - VCC Differential ADC Voltage Range
• Selectable 2.56V or 1.1V ADC Reference Voltage
• Free Running or Single Conversion Mode
• ADC Start Conversion by Auto Triggering on Interrupt Sources
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

Note: 1. The differential input channels are not tested for devices in PDIP Package. This feature is only
guaranteed to work for devices in TQFP, VQFN/QFN/MLF, VFBGA and DRQFN Packages.

22.2 Overview

The ATmega324PA features a 10-bit successive approximation ADC. The ADC is connected to
an 8-channel Analog Multiplexer which allows 8 single-ended voltage inputs constructed from
the pins of Port A. The single-ended voltage inputs refer to 0V (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs
(ADC1, ADC0 and ADC3, ADC2) are equipped with a programmable gain stage. This provides
amplification steps of 0 dB (1x), 20 dB (10x), or 46 dB (200x) on the differential input voltage
before the A/D conversion. Seven differential analog input channels share a common negative
terminal (ADC1), while any other ADC input can be selected as the positive input terminal. If 1x
or 10x gain is used, 8-bit resolution can be expected. If 200x gain is used, 6-bit resolution can be
expected. Note that internal references of 1.1V should not be used on 10x and 200x gain.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 22-1
on page 242.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than
±0.3 V from VCC. See the paragraph ”ADC Noise Canceler” on page 249 on how to connect this
pin.

Internal reference voltages of nominally 1.1V, 2.56V or AVCC are provided On-chip. The voltage
reference may be externally decoupled at the AREF pin by a capacitor for better noise perfor-
mance. If VCC is below 2.1V, internal voltage reference of 1.1V should not be used on single
ended channels.
241
8152A–AVR–11/08

Figure 22-1. Analog-to-digital Converter Block Schematic

22.3 Operation

The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-
mation. The minimum value represents GND and the maximum value represents the voltage on
the AREF pin minus 1 LSB. Optionally, AVCC or an internal 2.56V reference voltage may be
connected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal
voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve
noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in
ADMUX. Any of the ADC input pins, as well as GND and a fixed bandgap voltage reference, can
be selected as single ended inputs to the ADC. A selection of ADC input pins can be selected as
positive and negative inputs to the differential gain amplifier.

ADC CONVERSION
COMPLETE IRQ

8-BIT DATABUS

15 0A
D

IE

A
D

A
T

E

A
D

S
C

A
D

E
N

A
D

IF

A
D

IF

M
U

X
[4

:0
]

A
D

P
S

[2
:0

]
SAMPLE & HOLD
COMPARATOR

INTERNAL
REFERENCE
(1.1V/2.56V)

AVCC

R
E

F
S

[1
:0

]

A
D

LA
R

C
H

A
N

N
E

L
S

E
LE

C
T

IO
N

A
D

C
[9

:0
]

ADC
MULTIPLEXER
OUTPUT

GAIN
AMPLIFIER

AREF

BANDGAP (1.1V)
REFERENCE

GND

CONVERSION LOGIC

ADC CTRL & STATUS
REGISTER B (ADCSRB)

ADC CTRL & STATUS
REGISTER A (ADCSRA)

PRESCALER

ADC MULTIPLEXER
SELECT (ADMUX)

MUX DECODER

D
IF

F
 /

G
A

IN
 S

E
LE

C
T

ADC DATA REGISTER
(ADCH/ADCL)

ADC[2:0]

TRIGGER
SELECT

START

INTERRUPT
FLAGS

ADTS[2:0]

+

-
NEG

INPUT
MUX

POS
INPUT
MUX

ADC[7:0]

+

-10-bit DAC
242
8152A–AVR–11/08

ATmega324PA

ATmega324PA
If differential channels are selected, the differential gain stage amplifies the voltage difference
between the selected input channel pair by the selected gain factor. This amplified value then
becomes the analog input to the ADC. If single ended channels are used, the gain amplifier is
bypassed altogether.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and
input channel selections will not go into effect until ADEN is set. The ADC does not consume
power when ADEN is cleared, so it is recommended to switch off the ADC before entering power
saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data
Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers
is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is
read, neither register is updated and the result from the conversion is lost. When ADCH is read,
ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC
access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt
will trigger even if the result is lost.

22.4 Starting a Conversion

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.
This bit stays high as long as the conversion is in progress and will be cleared by hardware
when the conversion is completed. If a different data channel is selected while a conversion is in
progress, the ADC will finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (see description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal still is set when the conversion completes, a new
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific
interrupt is disabled or the global interrupt enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the Interrupt Flag must be cleared in order to
trigger a new conversion at the next interrupt event.
243
8152A–AVR–11/08

Figure 22-2. ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

22.5 Prescaling and Conversion Timing

Figure 22-3. ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION
LOGIC

PRESCALER

START CLKADC

.

.

.

. EDGE
DETECTOR

ADATE

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0
ADPS1
ADPS2

C
K

/1
28

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN
START
244
8152A–AVR–11/08

ATmega324PA

ATmega324PA
in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle. See ”Differential Gain Channels” on
page 247 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

When the bandgap reference voltage is used as input to the ADC, it will take a certain time for
the voltage to stabilize. If not stabilized, the first value read after the first conversion may be
wrong.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of a first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In single conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place 2 ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic.

When using Differential mode, along with Auto Trigging from a source other than the ADC Con-
version Complete, each conversion will require 25 ADC clocks. This is because the ADC must
be disabled and re-enabled after every conversion.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 22-1 on page
247.

Figure 22-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update MUX and REFS

Update

Conversion
Complete
245
8152A–AVR–11/08

Figure 22-5. ADC Timing Diagram, Single Conversion

Figure 22-6. ADC Timing Diagram, Auto Triggered Conversion

Figure 22-7. ADC Timing Diagram, Free Running Conversion

1 2 3 4 5 6 7 8 9 10 11 12 13

MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold
MUX and REFS
Update

Conversion
Complete MUX and REFS

Update

1 2 3 4 5 6 7 8 9 10 11 12 13

MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
Complete

Prescaler
Reset

ADATE

Prescaler
Reset

Sample & Hold

MUX and REFS
Update

11 12 13

MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold

MUX and REFS
Update
246
8152A–AVR–11/08

ATmega324PA

ATmega324PA
22.5.1 Differential Gain Channels

When using differential gain channels, certain aspects of the conversion need to be taken into
consideration. Note that the differential channels should not be used with an AREF < 2V.

Differential conversions are synchronized to the internal clock CKADC2 equal to half the ADC
clock. This synchronization is done automatically by the ADC interface in such a way that the
sample-and-hold occurs at a specific phase of CKADC2. A conversion initiated by the user (i.e., all
single conversions, and the first free running conversion) when CKADC2 is low will take the same
amount of time as a single ended conversion (13 ADC clock cycles from the next prescaled
clock cycle). A conversion initiated by the user when CKADC2 is high will take 14 ADC clock
cycles due to the synchronization mechanism. In Free Running mode, a new conversion is initi-
ated immediately after the previous conversion completes, and since CKADC2 is high at this time,
all automatically started (i.e., all but the first) free running conversions will take 14 ADC clock
cycles.

The gain stage is optimized for a bandwidth of 4 kHz at all gain settings. Higher frequencies may
be subjected to non-linear amplification. An external low-pass filter should be used if the input
signal contains higher frequency components than the gain stage bandwidth. Note that the ADC
clock frequency is independent of the gain stage bandwidth limitation. For example, the ADC
clock period may be 6 µs, allowing a channel to be sampled at 12 kSPS, regardless of the band-
width of this channel.

If differential gain channels are used and conversions are started by Auto Triggering, the ADC
must be switched off between conversions. When Auto Triggering is used, the ADC prescaler is
reset before the conversion is started. Since the gain stage is dependent of a stable ADC clock
prior to the conversion, this conversion will not be valid. By disabling and then re-enabling the
ADC between each conversion (writing ADEN in ADCSRA to “0” then to “1”), only extended con-
versions are performed. The result from the extended conversions will be valid. See ”Prescaling
and Conversion Timing” on page 244 for timing details.

22.6 Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.

Table 22-1. ADC Conversion Time

Condition
Sample & Hold (Cycles

from Start of Conversion) Conversion Time (Cycles)

First conversion 14.5 25

Normal conversions, single ended 1.5 13

Auto Triggered conversions 2 13.5

Normal conversions, differential 1.5/2.5 13/14
247
8152A–AVR–11/08

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.

2. During conversion, minimum one ADC clock cycle after the trigger event.

3. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

Special care should be taken when changing differential channels. Once a differential channel
has been selected, the gain stage may take as much as 125 µs to stabilize to the new value.
Thus conversions should not be started within the first 125 µs after selecting a new differential
channel. Alternatively, conversion results obtained within this period should be discarded.

The same settling time should be observed for the first differential conversion after changing
ADC reference (by changing the REFS1:0 bits in ADMUX).

22.6.1 ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accu-
racy due to the required settling time for the automatic offset cancellation circuitry. The user
should preferably disregard the first conversion result.

22.6.2 ADC Voltage Reference

The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single
ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as
either AVCC, internal 2.56V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 2.56V reference is gener-
ated from the internal bandgap reference (VBG) through an internal amplifier. In either case, the
external AREF pin is directly connected to the ADC, and the reference voltage can be made
more immune to noise by connecting a capacitor between the AREF pin and ground. VREF can
also be measured at the AREF pin with a high impedant voltmeter. Note that VREF is a high
impedant source, and only a capacitive load should be connected in a system.
248
8152A–AVR–11/08

ATmega324PA

ATmega324PA
If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AVCC and 2.56V as
reference selection. The first ADC conversion result after switching reference voltage source
may be inaccurate, and the user is advised to discard this result.

If differential channels are used, the selected reference should not be closer to AVCC than
indicated in Table 27-9 on page 333.

22.7 ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:

a. Make sure that the ADC is enabled and is not busy converting. Single Conversion
Mode must be selected and the ADC conversion complete interrupt must be enabled.

b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
once the CPU has been halted.

c. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If
another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in active mode
until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption. If the ADC is enabled in such
sleep modes and the user wants to perform differential conversions, the user is advised to
switch the ADC off and on after waking up from sleep to prompt an extended conversion to get a
valid result.

22.7.1 Analog Input Circuitry

The Analog Input Circuitry for single ended channels is illustrated in Figure 22-8. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although
source impedances of a few hundred kΩ or less is recommended.
249
8152A–AVR–11/08

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.

Figure 22-8. Analog Input Circuitry

ADCn

IIH

1..100 kΩ
CS/H= 14 pF

VCC/2

IIL
250
8152A–AVR–11/08

ATmega324PA

ATmega324PA
22.7.2 Analog Noise Canceling Techniques

Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over the
analog ground plane, and keep them well away from high-speed switching digital
tracks.

b. The AVCC pin on the device should be connected to the digital VCC supply voltage
via an LC network as shown in Figure 22-9.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC port pins are used as digital outputs, it is essential that these do not
switch while a conversion is in progress.

Figure 22-9. ADC Power Connections

22.7.3 Offset Compensation Schemes

The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential mea-
surements as much as possible. The remaining offset in the analog path can be measured
directly by selecting the same channel for both differential inputs. This offset residue can be then
subtracted in software from the measurement results. Using this kind of software based offset
correction, offset on any channel can be reduced below one LSB.

G
N

D

V
C

C

P
A

0
(A

D
C

0)

P
A

1
(A

D
C

1)

P
A

2
(A

D
C

2)

P
A

3
(A

D
C

3)

PA4 (ADC4)

PA5 (ADC5)

PA6 (ADC6)

PA7 (ADC7)

AREF

AVCC

GND

PC7

10
μH

10
0n

F
A

na
lo

g
G

ro
un

d
P

la
ne
251
8152A–AVR–11/08

22.7.4 ADC Accuracy Definitions

An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1.

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at
0.5 LSB). Ideal value: 0 LSB.

Figure 22-10. Offset Error

• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the last
transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum).
Ideal value: 0 LSB

Figure 22-11. Gain Error

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0
LSB.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Offset
Error

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

Gain
Error
252
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 22-12. Integral Non-linearity (INL)

• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval
between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 22-13. Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number of codes, a
range of input voltages (1 LSB wide) will code to the same value. Always ±0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition compared to
an ideal transition for any code. This is the compound effect of Offset, Gain Error, Differential
Error, Non-linearity, and Quantization Error. Ideal value: ±0.5 LSB.

Output Code

VREF Input Voltage

Ideal ADC

Actual ADC

IN
L

Output Code

0x3FF

0x000

0 VREF Input Voltage

DNL

1 LSB
253
8152A–AVR–11/08

22.8 ADC Conversion Result

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH).

For single ended conversion, the result is

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see
Table 22-3 on page 256 and Table 22-4 on page 257). 0x000 represents analog ground, and
0x3FF represents the selected reference voltage minus one LSB.

If differential channels are used, the result is

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative input pin,
GAIN the selected gain factor, and VREF the selected voltage reference. The result is presented
in two’s complement form, from 0x200 (-512d) through 0x1FF (+511d). Note that if the user
wants to perform a quick polarity check of the results, it is sufficient to read the MSB of the result
(ADC9 in ADCH). If this bit is one, the result is negative, and if this bit is zero, the result is posi-
tive. Figure 22-14 on page 255 shows the decoding of the differential input range.

Table 22-2 on page 255 shows the resulting output codes if the differential input channel pair
(ADCn - ADCm) is selected with a gain of GAIN and a reference voltage of VREF.

ADC
VIN 1024⋅

VREF
--------------------------=

ADC
VPOS VNEG–() GAIN 512⋅ ⋅

VREF
--=
254
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 22-14. Differential Measurement Range

Table 22-2. Correlation between Input Voltage and Output Codes

VADCn Read code Corresponding Decimal Value

 VADCm + VREF/GAIN 0x1FF 511

VADCm + 0.999 VREF/GAIN 0x1FF 511

VADCm + 0.998 VREF/GAIN 0x1FE 510

...

VADCm + 0.001 VREF/GAIN 0x001 1

VADCm 0x000 0

VADCm - 0.001 VREF/GAIN 0x3FF -1

...

VADCm - 0.999 VREF/GAIN 0x201 -511

VADCm - VREF/GAIN 0x200 -512

0

Output Code

0x1FF

0x000

VREF/GAIN Differential Input
Voltage (Volts)

0x3FF

0x200

- VREF/GAIN
255
8152A–AVR–11/08

Example:

ADMUX = 0xED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result)

Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.

ADCR = 512 * 10 * (300 - 500) / 2560 = -400 = 0x270

ADCL will thus read 0x00, and ADCH will read 0x9C. Writing zero to ADLAR right adjusts the
result: ADCL = 0x70, ADCH = 0x02.

22.9 Register Description

22.9.1 ADMUX – ADC Multiplexer Selection Register

• Bit 7:6 – REFS1:0: Reference Selection Bits
These bits select the voltage reference for the ADC, as shown in Table 22-3. If these bits are
changed during a conversion, the change will not go in effect until this conversion is complete
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an external
reference voltage is being applied to the AREF pin.

Note: If differential channels are selected, only 2.56V should be used as Internal Voltage Reference.

• Bit 5 – ADLAR: ADC Left Adjust Result
The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register.
Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the
ADLAR bit will affect the ADC Data Register immediately, regardless of any ongoing conver-
sions. For a complete description of this bit, see ”ADCL and ADCH – The ADC Data Register” on
page 259.

• Bits 4:0 – MUX4:0: Analog Channel and Gain Selection Bits
The value of these bits selects which combination of analog inputs are connected to the ADC.
These bits also select the gain for the differential channels. See Table 22-4 on page 257 for
details. If these bits are changed during a conversion, the change will not go in effect until this
conversion is complete (ADIF in ADCSRA is set).

Bit 7 6 5 4 3 2 1 0

(0x7C) REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22-3. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor at AREF pin

1 0 Internal 1.1V Voltage Reference with external capacitor at AREF pin

1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin
256
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Note: 1. The differential input channels are not tested for devices in PDIP Package. This feature is only
guaranteed to work for devices in TQFP and VQFN/QFN/MLF Packages.

Table 22-4. Input Channel and Gain Selections

MUX4..0
Single Ended
Input

Positive Differential
Input

Negative Differential
Input Gain

00000 ADC0

00001 ADC1

00010 ADC2

00011 ADC3 N/A

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000 ADC0 ADC0 10x

01001 ADC1 ADC0 10x

01010(1) ADC0 ADC0 200x

01011(1) ADC1 ADC0 200x

01100 ADC2 ADC2 10x

01101 ADC3 ADC2 10x

01110(1) ADC2 ADC2 200x

01111(1) ADC3 ADC2 200x

10000 ADC0 ADC1 1x

10001 ADC1 ADC1 1x

10010 N/A ADC2 ADC1 1x

10011 ADC3 ADC1 1x

10100 ADC4 ADC1 1x

10101 ADC5 ADC1 1x

10110 ADC6 ADC1 1x

10111 ADC7 ADC1 1x

11000 ADC0 ADC2 1x

11001 ADC1 ADC2 1x

11010 ADC2 ADC2 1x

11011 ADC3 ADC2 1x

11100 ADC4 ADC2 1x

11101 ADC5 ADC2 1x

11110 1.1V (VBG)
N/A

11111 0 V (GND)
257
8152A–AVR–11/08

22.9.2 ADCSRA – ADC Control and Status Register A

• Bit 7 – ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion
In Single Conversion mode, write this bit to one to start each conversion. In Free Running Mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the Data Registers are updated. The
ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.
ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-
Write on ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI
instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits
These bits determine the division factor between the XTAL frequency and the input clock to the
ADC.

Bit 7 6 5 4 3 2 1 0

(0x7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22-5. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8
258
8152A–AVR–11/08

ATmega324PA

ATmega324PA
22.9.3 ADCL and ADCH – The ADC Data Register

ADLAR = 0

ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers. If differential
channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if
the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result
is right adjusted.

• ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in ”ADC Conversion Result” on
page 254.

22.9.4 ADCSRB – ADC Control and Status Register B

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Table 22-5. ADC Prescaler Selections (Continued)

ADPS2 ADPS1 ADPS0 Division Factor

Bit 15 14 13 12 11 10 9 8

(0x79) – – – – – – ADC9 ADC8 ADCH

(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

(0x79) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

(0x78) ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
259
8152A–AVR–11/08

• Bit 7, 5:3 – Res: Reserved Bits
These bits are reserved for future use in the ATmega324PA. For ensuring compability with
future devices, these bits must be written zero when ADCSRB is written.

• Bit 2:0 – ADTS2:0: ADC Auto Trigger Source
If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger
an ADC conversion. If ADATE is cleared, the ADTS[2:0] settings will have no effect. A conver-
sion will be triggered by the rising edge of the selected Interrupt Flag. Note that switching from a
trigger source that is cleared to a trigger source that is set, will generate a positive edge on the
trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free Running
mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is set.

22.9.5 DIDR0 – Digital Input Disable Register 0

• Bit 7..0 – ADC7D..ADC0D: ADC7..0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-
abled. The corresponding PIN Register bit will always read as zero when this bit is set. When an
analog signal is applied to the ADC7..0 pin and the digital input from this pin is not needed, this
bit should be written logic one to reduce power consumption in the digital input buffer.

Table 22-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event

Bit 7 6 5 4 3 2 1 0

(0x7E) ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
260
8152A–AVR–11/08

ATmega324PA

ATmega324PA
23. JTAG Interface and On-chip Debug System

23.1 Features

• JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
• Debugger Access to:

– All Internal Peripheral Units
– Internal and External RAM
– The Internal Register File
– Program Counter
– EEPROM and Flash Memories

• Extensive On-chip Debug Support for Break Conditions, Including
– AVR Break Instruction
– Break on Change of Program Memory Flow
– Single Step Break
– Program Memory Break Points on Single Address or Address Range
– Data Memory Break Points on Single Address or Address Range

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• On-chip Debugging Supported by AVR Studio®

23.2 Overview

The AVR IEEE std. 1149.1 compliant JTAG interface can be used for

• Testing PCBs by using the JTAG Boundary-scan capability

• Programming the non-volatile memories, Fuses and Lock bits

• On-chip debugging

A brief description is given in the following sections. Detailed descriptions for Programming via
the JTAG interface, and using the Boundary-scan Chain can be found in the sections ”Program-
ming via the JTAG Interface” on page 311 and ”IEEE 1149.1 (JTAG) Boundary-scan” on page
267, respectively. The On-chip Debug support is considered being private JTAG instructions,
and distributed within ATMEL and to selected third party vendors only.

Figure 23-1 shows a block diagram of the JTAG interface and the On-chip Debug system. The
TAP Controller is a state machine controlled by the TCK and TMS signals. The TAP Controller
selects either the JTAG Instruction Register or one of several Data Registers as the scan chain
(Shift Register) between the TDI – input and TDO – output. The Instruction Register holds JTAG
instructions controlling the behavior of a Data Register.

The ID-Register, Bypass Register, and the Boundary-scan Chain are the Data Registers used
for board-level testing. The JTAG Programming Interface (actually consisting of several physical
and virtual Data Registers) is used for serial programming via the JTAG interface. The Internal
Scan Chain and Break Point Scan Chain are used for On-chip debugging only.

23.3 TAP – Test Access Port

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port – TAP. These pins are:

• TMS: Test mode select. This pin is used for navigating through the TAP-controller state
machine.
261
8152A–AVR–11/08

• TCK: Test Clock. JTAG operation is synchronous to TCK.

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register
(Scan Chains).

• TDO: Test Data Out. Serial output data from Instruction Register or Data Register.

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT – which is not
provided.

When the JTAGEN Fuse is unprogrammed, these four TAP pins are normal port pins, and the
TAP controller is in reset. When programmed, the input TAP signals are internally pulled high
and the JTAG is enabled for Boundary-scan and programming. The device is shipped with this
fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is moni-
tored by the debugger to be able to detect external reset sources. The debugger can also pull
the RESET pin low to reset the whole system, assuming only open collectors on the reset line
are used in the application.

Figure 23-1. Block Diagram

TAP
CONTROLLER

TDI
TDO
TCK
TMS

FLASH
MEMORY

AVR CPU

DIGITAL
PERIPHERAL

UNITS

JTAG / AVR CORE
COMMUNICATION

INTERFACE

BREAKPOINT
UNIT

FLOW CONTROL
UNIT

OCD STATUS
AND CONTROL

INTERNAL
SCAN
CHAIN

M
U
X

INSTRUCTION
REGISTER

ID
REGISTER

BYPASS
REGISTER

JTAG PROGRAMMING
INTERFACE

PC
Instruction

Address
Data

BREAKPOINT
SCAN CHAIN

ADDRESS
DECODER

ANALOG
PERIPHERIAL

UNITS

I/O PORT 0

I/O PORT n

BOUNDARY SCAN CHAIN

Analog inputs

Control & Clock lines

DEVICE BOUNDARY
262
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 23-2. TAP Controller State Diagram

23.4 TAP Controller

The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-
scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions
depicted in Figure 23-2 depend on the signal present on TMS (shown adjacent to each state
transition) at the time of the rising edge at TCK. The initial state after a Power-on Reset is Test-
Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift
Instruction Register – Shift-IR state. While in this state, shift the four bits of the JTAG
instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK.
The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR
state. The MSB of the instruction is shifted in when this state is left by setting TMS high. While
the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on the
TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI and
TDO and controls the circuitry surrounding the selected Data Register.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11
263
8152A–AVR–11/08

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched
onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-
IR, and Exit2-IR states are only used for navigating the state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data
Register – Shift-DR state. While in this state, upload the selected Data Register (selected by
the present JTAG instruction in the JTAG Instruction Register) from the TDI input at the rising
edge of TCK. In order to remain in the Shift-DR state, the TMS input must be held low during
input of all bits except the MSB. The MSB of the data is shifted in when this state is left by
setting TMS high. While the Data Register is shifted in from the TDI pin, the parallel inputs to
the Data Register captured in the Capture-DR state is shifted out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data
Register has a latched parallel-output, the latching takes place in the Update-DR state. The
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers, and some JTAG instructions may select certain
functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in ”Bibliography”
on page 266.

23.5 Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section ”IEEE 1149.1
(JTAG) Boundary-scan” on page 267.

23.6 Using the On-chip Debug System

As shown in Figure 23-1, the hardware support for On-chip Debugging consists mainly of

• A scan chain on the interface between the internal AVR CPU and the internal peripheral units.

• Break Point unit.

• Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O
memory mapped location which is part of the communication interface between the CPU and the
JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Break Points, and two combined Break Points. Together, the four Break
Points can be configured as either:

• 4 single Program Memory Break Points.

• 3 Single Program Memory Break Point + 1 single Data Memory Break Point.

• 2 single Program Memory Break Points + 2 single Data Memory Break Points.

• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range
Break Point”).

• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range Break
Point”).
264
8152A–AVR–11/08

ATmega324PA

ATmega324PA
A debugger, like the AVR Studio, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in ”On-chip Debug Specific JTAG
Instructions” on page 265.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addition, the
OCDEN Fuse must be programmed and no Lock bits must be set for the On-chip debug system
to work. As a security feature, the On-chip debug system is disabled when either of the LB1 or
LB2 Lock bits are set. Otherwise, the On-chip debug system would have provided a back-door
into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR device with
On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator.
AVR Studio® supports source level execution of Assembly programs assembled with Atmel Cor-
poration’s AVR Assembler and C programs compiled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000 and Microsoft Windows NT®.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide. Only high-
lights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level and on
disassembly level. The user can execute the program, single step through the code either by
tracing into or stepping over functions, step out of functions, place the cursor on a statement and
execute until the statement is reached, stop the execution, and reset the execution target. In
addition, the user can have an unlimited number of code Break Points (using the BREAK
instruction) and up to two data memory Break Points, alternatively combined as a mask (range)
Break Point.

23.7 On-chip Debug Specific JTAG Instructions

The On-chip debug support is considered being private JTAG instructions, and distributed within
ATMEL and to selected third party vendors only. Instruction opcodes are listed for reference.

23.7.1 PRIVATE0; 0x8

Private JTAG instruction for accessing On-chip debug system.

23.7.2 PRIVATE1; 0x9

Private JTAG instruction for accessing On-chip debug system.

23.7.3 PRIVATE2; 0xA

Private JTAG instruction for accessing On-chip debug system.

23.7.4 PRIVATE3; 0xB

Private JTAG instruction for accessing On-chip debug system.

23.8 Using the JTAG Programming Capabilities

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS, TDI, and
TDO. These are the only pins that need to be controlled/observed to perform JTAG program-
ming (in addition to power pins). It is not required to apply 12V externally. The JTAGEN Fuse
must be programmed and the JTD bit in the MCUCR Register must be cleared to enable the
JTAG Test Access Port.
265
8152A–AVR–11/08

The JTAG programming capability supports:

• Flash programming and verifying.

• EEPROM programming and verifying.

• Fuse programming and verifying.

• Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or LB2 are
programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a
security feature that ensures no back-door exists for reading out the content of a secured
device.

The details on programming through the JTAG interface and programming specific JTAG
instructions are given in the section ”Programming via the JTAG Interface” on page 311.

23.9 Bibliography

For more information about general Boundary-scan, the following literature can be consulted:

• IEEE: IEEE Std. 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan
Architecture, IEEE, 1993.

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley, 1992.

23.10 Register Description

23.10.1 OCDR – On-chip Debug Register

The OCDR Register provides a communication channel from the running program in the micro-
controller to the debugger. The CPU can transfer a byte to the debugger by writing to this
location. At the same time, an internal flag; I/O Debug Register Dirty – IDRD – is set to indicate
to the debugger that the register has been written. When the CPU reads the OCDR Register the
7 LSB will be from the OCDR Register, while the MSB is the IDRD bit. The debugger clears the
IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case, the OCDR
Register can only be accessed if the OCDEN Fuse is programmed, and the debugger enables
access to the OCDR Register. In all other cases, the standard I/O location is accessed.

Refer to the debugger documentation for further information on how to use this register.

Bit 7 6 5 4 3 2 1 0

0x31 (0x51) MSB/IDRD LSB OCDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
266
8152A–AVR–11/08

ATmega324PA

ATmega324PA
24. IEEE 1149.1 (JTAG) Boundary-scan

24.1 Features

• JTAG (IEEE std. 1149.1 compliant) Interface
• Boundary-scan Capabilities According to the JTAG Standard
• Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
• Supports the Optional IDCODE Instruction
• Additional Public AVR_RESET Instruction to Reset the AVR

24.2 Overview

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by
the TDI/TDO signals to form a long Shift Register. An external controller sets up the devices to
drive values at their output pins, and observe the input values received from other devices. The
controller compares the received data with the expected result. In this way, Boundary-scan pro-
vides a mechanism for testing interconnections and integrity of components on Printed Circuits
Boards by using the four TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-
LOAD, and EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be
used for testing the Printed Circuit Board. Initial scanning of the Data Register path will show the
ID-Code of the device, since IDCODE is the default JTAG instruction. It may be desirable to
have the AVR device in reset during test mode. If not reset, inputs to the device may be deter-
mined by the scan operations, and the internal software may be in an undetermined state when
exiting the test mode. Entering reset, the outputs of any port pin will instantly enter the high
impedance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction
can be issued to make the shortest possible scan chain through the device. The device can be
set in the reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data.
The data from the output latch will be driven out on the pins as soon as the EXTEST instruction
is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRELOAD should also be used for
setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST
instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the
external pins during normal operation of the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR must be
cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher
than the internal chip frequency is possible. The chip clock is not required to run.
267
8152A–AVR–11/08

24.3 Data Registers

The Data Registers relevant for Boundary-scan operations are:

• Bypass Register

• Device Identification Register

• Reset Register

• Boundary-scan Chain

24.3.1 Bypass Register

The Bypass Register consists of a single Shift Register stage. When the Bypass Register is
selected as path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR
controller state. The Bypass Register can be used to shorten the scan chain on a system when
the other devices are to be tested.

24.3.2 Device Identification Register

Figure 24-1 shows the structure of the Device Identification Register.

Figure 24-1. The Format of the Device Identification Register

Version Version is a 4-bit number identifying the revision of the component. The JTAG version number
follows the revision of the device. Revision A is 0x0, revision B is 0x1 and so on.

Part Number The part number is a 16-bit code identifying the component. The JTAG Part Number for
ATmega324PA is listed in Table 26-6 on page 295.

Manufacturer ID The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufacturer ID
for ATMEL is listed in Table 26-6 on page 295.

24.3.3 Reset Register

The Reset Register is a test Data Register used to reset the part. Since the AVR tri-states Port
Pins when reset, the Reset Register can also replace the function of the unimplemented optional
JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is
reset as long as there is a high value present in the Reset Register. Depending on the fuse set-
tings for the clock options, the part will remain reset for a reset time-out period (refer to ”Clock
Sources” on page 31) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 24-2.

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1-bit
268
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 24-2. Reset Register

24.3.4 Boundary-scan Chain

The Boundary-scan Chain has the capability of driving and observing the logic levels on the dig-
ital I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connections.

See ”Boundary-scan Chain” on page 270 for a complete description.

24.4 Boundary-scan Specific JTAG Instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are the
JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction
is not implemented, but all outputs with tri-state capability can be set in high-impedant state by
using the AVR_RESET instruction, since the initial state for all port pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

24.4.1 EXTEST; 0x0

Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing
circuitry external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output
Data, and Input Data are all accessible in the scan chain. For Analog circuits having off-chip
connections, the interface between the analog and the digital logic is in the scan chain. The con-
tents of the latched outputs of the Boundary-scan chain is driven out as soon as the JTAG IR-
Register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

D Q
From
TDI

ClockDR · AVR_RESET

To
TDO

From Other Internal and
External Reset Sources

Internal reset
269
8152A–AVR–11/08

24.4.2 IDCODE; 0x1

Optional JTAG instruction selecting the 32 bit ID-Register as Data Register. The ID-Register
consists of a version number, a device number and the manufacturer code chosen by JEDEC.
This is the default instruction after power-up.

The active states are:

• Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan Chain.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

24.4.3 SAMPLE_PRELOAD; 0x2

Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of the
input/output pins without affecting the system operation. However, the output latches are not
connected to the pins. The Boundary-scan Chain is selected as Data Register.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

• Update-DR: Data from the Boundary-scan chain is applied to the output latches. However, the
output latches are not connected to the pins.

24.4.4 AVR_RESET; 0xC

The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or
releasing the JTAG reset source. The TAP controller is not reset by this instruction. The one bit
Reset Register is selected as Data Register. Note that the reset will be active as long as there is
a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

24.4.5 BYPASS; 0xF

Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

• Capture-DR: Loads a logic “0” into the Bypass Register.

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

24.5 Boundary-scan Chain

The Boundary-scan chain has the capability of driving and observing the logic levels on the digi-
tal I/O pins, as well as the boundary between digital and analog logic for analog circuitry having
off-chip connection.

24.5.1 Scanning the Digital Port Pins

Figure 24-3 shows the Boundary-scan Cell for a bi-directional port pin. The pull-up function is
disabled during Boundary-scan when the JTAG IC contains EXTEST or SAMPLE_PRELOAD.
The cell consists of a bi-directional pin cell that combines the three signals Output Control -
OCxn, Output Data - ODxn, and Input Data - IDxn, into only a two-stage Shift Register. The port
and pin indexes are not used in the following description
270
8152A–AVR–11/08

ATmega324PA

ATmega324PA
The Boundary-scan logic is not included in the figures in the datasheet. Figure 24-4 shows a
simple digital port pin as described in the section ”I/O-Ports” on page 73. The Boundary-scan
details from Figure 24-3 replaces the dashed box in Figure 24-4.

When no alternate port function is present, the Input Data - ID - corresponds to the PINxn Regis-
ter value (but ID has no synchronizer), Output Data corresponds to the PORT Register, Output
Control corresponds to the Data Direction - DD Register, and the Pull-up Enable - PUExn - cor-
responds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 24-4 to make the
scan chain read the actual pin value. For analog function, there is a direct connection from the
external pin to the analog circuit. There is no scan chain on the interface between the digital and
the analog circuitry, but some digital control signal to analog circuitry are turned off to avoid driv-
ing contention on the pads.

When JTAG IR contains EXTEST or SAMPLE_PRELOAD the clock is not sent out on the port
pins even if the CKOUT fuse is programmed. Even though the clock is output when the JTAG IR
contains SAMPLE_PRELOAD, the clock is not sampled by the boundary scan.

Figure 24-3. Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function.

D Q D Q

G

0

1
0

1

D Q D Q

G

0

1
0

1

0

1

P
or

t P
in

 (
P

X
n)

VccEXTESTTo Next CellShiftDR

Output Control (OC)

Output Data (OD)

Input Data (ID)

From Last Cell UpdateDRClockDR

FF1 LD1

LD0FF0

0

1

Pull-up Enable (PUE)
271
8152A–AVR–11/08

Figure 24-4. General Port Pin Schematic Diagram

24.5.2 Scanning the RESET Pin

The RESET pin accepts 5V active low logic for standard reset operation, and 12V active high
logic for High Voltage Parallel programming. An observe-only cell as shown in Figure 24-5 is
inserted for the 5V reset signal.

Figure 24-5. Observe-only Cell

CLK

RPx

RRx

WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

CLK : I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTROL

Pxn

I/O

I/O

See Boundary-scan
Description for Details!

PUExn

OCxn

ODxn

IDxn

PUExn: PULLUP ENABLE for pin Pxn
OCxn: OUTPUT CONTROL for pin Pxn
ODxn: OUTPUT DATA to pin Pxn
IDxn: INPUT DATA from pin Pxn

0

1
D Q

From
Previous

Cell

ClockDR

ShiftDR

To
Next
Cell

From System Pin To System Logic

FF1
272
8152A–AVR–11/08

ATmega324PA

ATmega324PA
24.6 ATmega324PA Boundary-scan Order

Table 24-1 shows the Scan order between TDI and TDO when the Boundary-scan chain is
selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The
scan order follows the pin-out order as far as possible. Therefore, the bits of Port A and Port K is
scanned in the opposite bit order of the other ports. Exceptions from the rules are the Scan
chains for the analog circuits, which constitute the most significant bits of the scan chain regard-
less of which physical pin they are connected to. In Figure 24-3, PXn. Data corresponds to FF0,
PXn. Control corresponds to FF1, PXn. Bit 4, 5, 6 and 7 of Port F is not in the scan chain, since
these pins constitute the TAP pins when the JTAG is enabled.

Table 24-1. ATmega324PA Boundary-scan Order

Bit Number Signal Name Module

56 PB0.Data

Port B

55 PB0.Control

54 PB1.Data

53 PB1.Control

52 PB2.Data

51 PB2.Control

50 PB3.Data

49 PB3.Control

48 PB4.Data

47 PB4.Control

46 PB5.Data

45 PB5.Control

44 PB6.Data

43 PB6.Control

42 PB7.Data

41 PB7.Control

40 RSTT Reset Logic (Observe Only)
273
8152A–AVR–11/08

39 PD0.Data

Port D

38 PD0.Control

37 PD1.Data

36 PD1.Control

35 PD2.Data

34 PD2.Control

33 PD3.Data

32 PD3.Control

31 PD4.Data

30 PD4.Control

29 PD5.Data

28 PD5.Control

27 PD6.Data

26 PD6.Control

25 PD7.Data

24 PD7.Control

23 PC0.Data

Port C

22 PC0.Control

21 PC1.Data

20 PC1.Control

19 PC6.Data

18 PC6.Control

17 PC7.Data

16 PC7.Control

15 PA7.Data

Table 24-1. ATmega324PA Boundary-scan Order (Continued)

Bit Number Signal Name Module
274
8152A–AVR–11/08

ATmega324PA

ATmega324PA
24.7 Boundary-scan Description Language Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in
a standard format used by automated test-generation software. The order and function of bits in
the Boundary-scan Data Register are included in this description. BSDL files are available for
ATmega324PA.

14 PA7.Control

Port A

13 PA6.Data

12 PA6.Control

11 PA5.Data

10 PA5.Control

9 PA4.Data

8 PA4.Control

7 PA3.Data

6 PA3.Control

5 PA2.Data

4 PA2.Control

3 PA1.Data

2 PA1.Control

1 PA0.Data

0 PA0.Control

Table 24-1. ATmega324PA Boundary-scan Order (Continued)

Bit Number Signal Name Module
275
8152A–AVR–11/08

24.8 Register Description

24.8.1 MCUCR – MCU Control Register

The MCU Control Register contains control bits for general MCU functions.

• Bits 7 – JTD: JTAG Interface Disable
When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed. If this
bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of
the JTAG interface, a timed sequence must be followed when changing this bit: The application
software must write this bit to the desired value twice within four cycles to change its value. Note
that this bit must not be altered when using the On-chip Debug system.

24.8.2 MCUSR – MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 4 – JTRF: JTAG Reset Flag
This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) JTD BODS BODSE PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x34 (0x54) – – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
276
8152A–AVR–11/08

ATmega324PA

ATmega324PA
25. Boot Loader Support – Read-While-Write Self-Programming

25.1 Features

• Read-While-Write Self-Programming
• Flexible Boot Memory Size
• High Security (Separate Boot Lock Bits for a Flexible Protection)
• Separate Fuse to Select Reset Vector
• Optimized Page(1) Size
• Code Efficient Algorithm
• Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 26-7 on page 295) used
during programming. The page organization does not affect normal operation.

25.2 Overview

The Boot Loader Support provides a real Read-While-Write Self-Programming mechanism for
downloading and uploading program code by the MCU itself. This feature allows flexible applica-
tion software updates controlled by the MCU using a Flash-resident Boot Loader program. The
Boot Loader program can use any available data interface and associated protocol to read code
and write (program) that code into the Flash memory, or read the code from the program mem-
ory. The program code within the Boot Loader section has the capability to write into the entire
Flash, including the Boot Loader memory. The Boot Loader can thus even modify itself, and it
can also erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with fuses and the Boot Loader has two separate sets of Boot
Lock bits which can be set independently. This gives the user a unique flexibility to select differ-
ent levels of protection.

25.3 Application and Boot Loader Flash Sections

The Flash memory is organized in two main sections, the Application section and the Boot
Loader section (see Figure 25-2 on page 280). The size of the different sections is configured by
the BOOTSZ Fuses as shown in Table 25-7 on page 289 and Figure 25-2. These two sections
can have different level of protection since they have different sets of Lock bits.

25.3.1 Application Section

The Application section is the section of the Flash that is used for storing the application code.
The protection level for the Application section can be selected by the application Boot Lock bits
(Boot Lock bits 0), see Table 25-2 on page 281. The Application section can never store any
Boot Loader code since the SPM instruction is disabled when executed from the Application
section.

25.3.2 BLS – Boot Loader Section

While the Application section is used for storing the application code, the The Boot Loader soft-
ware must be located in the BLS since the SPM instruction can initiate a programming when
executing from the BLS only. The SPM instruction can access the entire Flash, including the
BLS itself. The protection level for the Boot Loader section can be selected by the Boot Loader
Lock bits (Boot Lock bits 1), see Table 25-3 on page 281.
277
8152A–AVR–11/08

25.4 Read-While-Write and No Read-While-Write Flash Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader soft-
ware update is dependent on which address that is being programmed. In addition to the two
sections that are configurable by the BOOTSZ Fuses as described above, the Flash is also
divided into two fixed sections, the Read-While-Write (RWW) section and the No Read-While-
Write (NRWW) section. The limit between the RWW- and NRWW sections is given in Table 25-
1 and Figure 25-1 on page 279. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be
read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted during the
entire operation.

Note that the user software can never read any code that is located inside the RWW section dur-
ing a Boot Loader software operation. The syntax “Read-While-Write section” refers to which
section that is being programmed (erased or written), not which section that actually is being
read during a Boot Loader software update.

25.4.1 RWW – Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible
to read code from the Flash, but only code that is located in the NRWW section. During an on-
going programming, the software must ensure that the RWW section never is being read. If the
user software is trying to read code that is located inside the RWW section (i.e., by load program
memory, call, or jump instructions or an interrupt) during programming, the software might end
up in an unknown state. To avoid this, the interrupts should either be disabled or moved to the
Boot Loader section. The Boot Loader section is always located in the NRWW section. The
RWW Section Busy bit (RWWSB) in the Store Program Memory Control and Status Register
(SPMCSR) will be read as logical one as long as the RWW section is blocked for reading. After
a programming is completed, the RWWSB must be cleared by software before reading code
located in the RWW section. See Section “25.9.1” on page 290. for details on how to clear
RWWSB.

25.4.2 NRWW – No Read-While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is updating
a page in the RWW section. When the Boot Loader code updates the NRWW section, the CPU
is halted during the entire Page Erase or Page Write operation.

Table 25-1. Read-While-Write Features

Which Section does the Z-pointer
Address During the Programming?

Which Section Can
be Read During
Programming?

Is the CPU
Halted?

Read-While-Write
Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No
278
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 25-1. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

No Read-While-Write
(NRWW) Section

Z-pointer
Addresses RWW
Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
During the Operation

Code Located in
NRWW Section
Can be Read During
the Operation
279
8152A–AVR–11/08

Figure 25-2. Memory Sections

Note: 1. The parameters in the figure above are given in Table 25-7 on page 289.

25.5 Boot Loader Lock Bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives
the user a unique flexibility to select different levels of protection.

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To protect only the Boot Loader Flash section from a software update by the MCU.

• To protect only the Application Flash section from a software update by the MCU.

• Allow software update in the entire Flash.

See Table 25-2 on page 281 and Table 25-3 on page 281 for further details. The Boot Lock bits
can be set in software and in Serial or Parallel Programming mode, but they can be cleared by a
Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control the pro-
gramming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock
(Lock Bit mode 1) does not control reading nor writing by (E)LPM/SPM, if it is attempted.

0x0000

Flashend

Program Memory
BOOTSZ = '11'

Application Flash Section

Boot Loader Flash Section
Flashend

Program Memory
BOOTSZ = '10'

0x0000

Program Memory
BOOTSZ = '01'

Program Memory
BOOTSZ = '00'

Application Flash Section

Boot Loader Flash Section

0x0000

Flashend

Application Flash Section

Flashend

End RWW

Start NRWW

Application Flash Section

Boot Loader Flash Section

Boot Loader Flash Section

End RWW

Start NRWW

End RWW

Start NRWW

0x0000

End RWW, End Application

Start NRWW, Start Boot Loader

Application Flash SectionApplication Flash Section

Application Flash Section

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

R
ea

d-
W

hi
le

-W
rit

e
S

ec
tio

n
N

o
R

ea
d-

W
hi

le
-W

rit
e

S
ec

tio
n

End Application

Start Boot Loader

End Application

Start Boot Loader

End Application

Start Boot Loader
280
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

25.6 Entering the Boot Loader Program

Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,
the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash
start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-
tion code is loaded, the program can start executing the application code. Note that the fuses
cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-
grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be
changed through the serial or parallel programming interface.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 25-2. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1
No restrictions for SPM or (E)LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and
(E)LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

4 0 1

(E)LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

Table 25-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 Mode BLB12 BLB11 Protection

1 1 1
No restrictions for SPM or (E)LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and
(E)LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

4 0 1

(E)LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Table 25-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 25-7 on page 289)
281
8152A–AVR–11/08

25.7 Addressing the Flash During Self-Programming

The Z-pointer is used to address the SPM commands. The Z pointer consists of the Z-registers
ZL and ZH in the register file, and RAMPZ in the I/O space. The number of bits actually used is
implementation dependent. Note that the RAMPZ register is only implemented when the pro-
gram space is larger than 64K bytes.

Since the Flash is organized in pages (see Table 26-7 on page 295), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits, is
addressing the words within a page, while the most significant bits are addressing the pages.
This is shown in Figure 25-3. Note that the Page Erase and Page Write operations are
addressed independently. Therefore it is of major importance that the Boot Loader software
addresses the same page in both the Page Erase and Page Write operation. Once a program-
ming operation is initiated, the address is latched and the Z-pointer can be used for other
operations.

The (E)LPM instruction use the Z-pointer to store the address. Since this instruction addresses
the Flash byte-by-byte, also bit Z0 of the Z-pointer is used.

Figure 25-3. Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 25-3 are listed in Table 25-9 on page 289.

Bit 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

RAMPZ RAMPZ7 RAMPZ6 RAMPZ5 RAMPZ4 RAMPZ3 RAMPZ2 RAMPZ1 RAMPZ0

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
282
8152A–AVR–11/08

ATmega324PA

ATmega324PA
25.8 Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page buf-
fer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example
in the temporary page buffer) before the erase, and then be rewritten. When using alternative 1,
the Boot Loader provides an effective Read-Modify-Write feature which allows the user software
to first read the page, do the necessary changes, and then write back the modified data. If alter-
native 2 is used, it is not possible to read the old data while loading since the page is already
erased. The temporary page buffer can be accessed in a random sequence. It is essential that
the page address used in both the Page Erase and Page Write operation is addressing the same
page. See ”Simple Assembly Code Example for a Boot Loader” on page 287 for an assembly
code example.

25.8.1 Performing Page Erase by SPM

To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
The page address must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will
be ignored during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the Page Erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

25.8.2 Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

25.8.3 Performing a Page Write

To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is ignored.
283
8152A–AVR–11/08

The page address must be written to PCPAGE. Other bits in the Z-pointer must be written to
zero during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

25.8.4 Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of polling
the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors should
be moved to the BLS section to avoid that an interrupt is accessing the RWW section when it is
blocked for reading. How to move the interrupts is described in ”Interrupts” on page 62.

25.8.5 Consideration While Updating BLS

Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.

25.8.6 Prevent Reading the RWW Section During Self-Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW
section is busy. During Self-Programming the Interrupt Vector table should be moved to the BLS
as described in ”Interrupts” on page 62, or the interrupts must be disabled. Before addressing
the RWW section after the programming is completed, the user software must clear the
RWWSB by writing the RWWSRE. See ”Simple Assembly Code Example for a Boot Loader” on
page 287 for an example.

25.8.7 Setting the Boot Loader Lock Bits by SPM

To set the Boot Loader Lock bits and general lock bits, write the desired data to R0, write
“X0001001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR.

See Table 25-2 and Table 25-3 for how the different settings of the Boot Loader bits affect the
Flash access.

If bits 5..0 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR.
The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to
load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For future compatibility it
is also recommended to set bits 7 and 6 in R0 to “1” when writing the Lock bits. When program-
ming the Lock bits the entire Flash can be read during the operation.

25.8.8 EEPROM Write Prevents Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1
284
8152A–AVR–11/08

ATmega324PA

ATmega324PA
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.

25.8.9 Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an (E)LPM
instruction is executed within three CPU cycles after the BLBSET and SPMEN bits are set in
SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET and
SPMEN bits will auto-clear upon completion of reading the Lock bits or if no (E)LPM instruction
is executed within three CPU cycles or no SPM instruction is executed within four CPU cycles.
When BLBSET and SPMEN are cleared, (E)LPM will work as described in the Instruction set
Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SPMEN bits in SPMCSR. When an (E)LPM instruction is executed within three cycles after
the BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will
be loaded in the destination register as shown below. Refer to Table 26-5 on page 294 for a
detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an (E)LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in the
SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination register as
shown below. Refer to Table 26-4 on page 294 for detailed description and mapping of the Fuse
High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an (E)LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,
the value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown
below. Refer to Table 26-3 on page 293 for detailed description and mapping of the Extended
Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

25.8.10 Reading the Signature Row from Software

To read the Signature Row from software, load the Z-pointer with the signature byte address
given in Table 25-5 on page 286 and set the SIGRD and SPMEN bits in SPMCSR. When an
LPM instruction is executed within three CPU cycles after the SIGRD and SPMEN bits are set in
SPMCSR, the signature byte value will be loaded in the destination register. The SIGRD and
SPMEN bits will auto-clear upon completion of reading the Signature Row Lock bits or if no LPM

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd – – – – – EFB2 EFB1 EFB0
285
8152A–AVR–11/08

instruction is executed within three CPU cycles. When SIGRD and SPMEN are cleared, LPM will
work as described in the Instruction set Manual.

Note: All other addresses are reserved for future use.

25.8.11 Preventing Flash Corruption

During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock
bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating volt-
age matches the detection level. If not, an external low VCC reset protection circuit can be
used. If a reset occurs while a write operation is in progress, the write operation will be
completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will pre-
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.

25.8.12 Programming Time for Flash when Using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 25-6 on page 286 shows the
typical programming time for Flash accesses from the CPU.

Note: 1. Minimum and maximum programming times is per individual operation.

Table 25-5. Signature Row Addressing

Signature Byte Z-Pointer Address

Device Signature Byte 1 0x0000

Device Signature Byte 2 0x0002

Device Signature Byte 3 0x0004

RC Oscillator Calibration Byte 0x0001

Table 25-6. SPM Programming Time(1)

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and
write Lock bits by SPM)

3.7 ms 4.5 ms
286
8152A–AVR–11/08

ATmega324PA

ATmega324PA
25.8.13 Simple Assembly Code Example for a Boot Loader

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
elpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
287
8152A–AVR–11/08

sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
288
8152A–AVR–11/08

ATmega324PA

ATmega324PA
25.8.14 ATmega324PA Boot Loader Parameters

In Table 25-7 through Table 25-9, the parameters used in the description of the Self-Programming are given.

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 25-2 on page 280.

Note: 1. For details about these two section, see ”NRWW – No Read-While-Write Section” on page 278 and ”RWW – Read-While-
Write Section” on page 278.

Note: 1. Z0: should be zero for all SPM commands, byte select for the (E)LPM instruction.

See ”Addressing the Flash During Self-Programming” on page 282 for details about the use of Z-pointer during Self-
Programming.

Table 25-7. Boot Size Configuration(1)

BOOTSZ1 BOOTSZ0 Boot Size Pages
Application
Flash Section

Boot Loader
Flash Section

End
Application
Section

Boot Reset
Address
(Start Boot
Loader Section)

1 1 256 words 4 0x0000 - 0x3EFF 0x3F00 - 0x3FFF 0x3EFF 0x3F00

1 0 512 words 8 0x0000 - 0x1DFF 0x3E00 - 0x3FFF 0x3DFF 0x3E00

0 1 1024 words 16 0x0000 - 0x1BFF 0x3C00 - 0x3FFF 0x3BFF 0x3C00

0 0 2048 words 32 0x0000 - 0x37FF 0x3800 - 0x3FFF 0x37FF 0x3800

Table 25-8. Read-While-Write Limit(1)

Section Pages Address

Read-While-Write section (RWW) 224 0x0000 - 0x37FF

No Read-While-Write section (NRWW) 32 0x3800 - 0x3FFF

Table 25-9. Explanation of different variables used in Figure 25-3 on page 282 and the mapping to the Z-pointer

Variable
Corresponding

Z-value Description(1)

PCMSB 13
Most significant bit in the Program Counter. (The Program Counter is 14 bits
PC[13:0])

PAGEMSB 6
Most significant bit which is used to address the words within one page (128
words in a page requires seven bits PC [5:0]).

ZPCMSB Z14
Bit in Z-pointer that is mapped to PCMSB. Because Z0 is not used, the
ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z7
Bit in Z-pointer that is mapped to PCMSB. Because Z0 is not used, the
ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[13:6] Z14:Z7 Program Counter page address: Page select, for Page Erase and Page Write

PCWORD PC[5:0] Z6:Z1
Program Counter word address: Word select, for filling temporary buffer (must
be zero during Page Write operation)
289
8152A–AVR–11/08

25.9 Register Description

25.9.1 SPMCSR – Store Program Memory Control and Status Register

The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN
bit in the SPMCSR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy
When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-
ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section
cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a
Self-Programming operation is completed. Alternatively the RWWSB bit will automatically be
cleared if a page load operation is initiated.

• Bit 5 – SIGRD: Signature Row Read
If this bit is written to one at the same time as SPMEN, the next LPM instruction within three
clock cycles will read a byte from the signature row into the destination register. see ”Reading
the Signature Row from Software” on page 285 for details. An SPM instruction within four cycles
after SIGRD and SPMEN are set will have no effect. This operation is reserved for future use
and should not be used.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable
When programming (Page Erase or Page Write) to the RWW section, the RWW section is
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the
user software must wait until the programming is completed (SPMEN will be cleared). Then, if
the RWWSRE bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles re-enables the RWW section. The RWW section cannot be re-enabled while
the Flash is busy with a Page Erase or a Page Write (SPMEN is set). If the RWWSRE bit is writ-
ten while the Flash is being loaded, the Flash load operation will abort and the data loaded will
be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles sets Boot Lock bits, according to the data in R0. The data in R1 and the address in the Z-
pointer are ignored. The BLBSET bit will automatically be cleared upon completion of the Lock
bit set, or if no SPM instruction is executed within four clock cycles.

An (E)LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCSR
Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the Z-pointer) into the
destination register. See ”Reading the Fuse and Lock Bits from Software” on page 285 for
details.

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR

Read/Write R/W R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
290
8152A–AVR–11/08

ATmega324PA

ATmega324PA
• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Write, with the data stored in the temporary buffer. The page address is
taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The PGWRT bit
will auto-clear upon completion of a Page Write, or if no SPM instruction is executed within four
clock cycles. The CPU is halted during the entire Page Write operation if the NRWW section is
addressed.

• Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock
cycles executes Page Erase. The page address is taken from the high part of the Z-pointer. The
data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion of a Page Erase,
or if no SPM instruction is executed within four clock cycles. The CPU is halted during the entire
Page Write operation if the NRWW section is addressed.

• Bit 0 – SPMEN: Store Program Memory Enable
This bit enables the SPM instruction for the next four clock cycles. If written to one together with
either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM instruction will have a spe-
cial meaning, see description above. If only SPMEN is written, the following SPM instruction will
store the value in R1:R0 in the temporary page buffer addressed by the Z-pointer. The LSB of
the Z-pointer is ignored. The SPMEN bit will auto-clear upon completion of an SPM instruction,
or if no SPM instruction is executed within four clock cycles. During Page Erase and Page Write,
the SPMEN bit remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.

Note: Only one SPM instruction should be active at any time.
291
8152A–AVR–11/08

26. Memory Programming

26.1 Program And Data Memory Lock Bits

The ATmega324PA provides six Lock bits which can be left unprogrammed (“1”) or can be pro-
grammed (“0”) to obtain the additional features listed in Table 26-2. The Lock bits can only be
erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 26-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 26-2. Lock Bit Protection Modes(1)(2)

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the Flash and EEPROM is disabled in
Parallel and Serial Programming mode. The Fuse bits are
locked in both Serial and Parallel Programming mode.(1)

3 0 0

Further programming and verification of the Flash and EEPROM
is disabled in Parallel and Serial Programming mode. The Boot
Lock bits and Fuse bits are locked in both Serial and Parallel
Programming mode.(1)

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or (E)LPM accessing the Application
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and
(E)LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.

4 0 1

(E)LPM executing from the Boot Loader section is not allowed to
read from the Application section. If Interrupt Vectors are placed
in the Boot Loader section, interrupts are disabled while
executing from the Application section.
292
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

26.2 Fuse Bits

The ATmega324PA has four Fuse bytes. Table 26-3 - Table 26-5 describe briefly the functional-
ity of all the fuses and how they are mapped into the Fuse bytes. Note that the fuses are read as
logical zero, “0”, if they are programmed.

Note: 1. See ”System and Reset Characteristics” on page 329 for BODLEVEL Fuse decoding.

BLB1 Mode BLB12 BLB11

1 1 1
No restrictions for SPM or (E)LPM accessing the Boot Loader
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and
(E)LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

4 0 1

(E)LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled while
executing from the Boot Loader section.

Table 26-2. Lock Bit Protection Modes(1)(2) (Continued)

Memory Lock Bits Protection Type

Table 26-3. Extended Fuse Byte

Fuse Low Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

BODLEVEL2(1) 2 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL1(1) 1 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL0(1) 0 Brown-out Detector trigger level 1 (unprogrammed)
293
8152A–AVR–11/08

Note: 1. The SPIEN Fuse is not accessible in serial programming mode.

2. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 25-7 on page 289
for details.

3. See ”WDTCSR – Watchdog Timer Control Register” on page 60 for details.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of Lock bits

and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to
be running in all sleep modes. This may increase the power consumption.

Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock source.
See ”System and Reset Characteristics” on page 329 for details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 8 MHz. See Table 8-1 on
page 31 for details.

3. The CKOUT Fuse allow the system clock to be output on PORTB1. See ”Clock Output Buffer”
on page 39 for details.

4. See ”System Clock Prescaler” on page 39 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

Table 26-4. Fuse High Byte

Fuse High Byte Bit No Description Default Value

OCDEN(4) 7 Enable OCD
1 (unprogrammed, OCD
disabled)

JTAGEN 6 Enable JTAG 0 (programmed, JTAG enabled)

SPIEN(1) 5
Enable Serial Program and Data
Downloading

0 (programmed, SPI prog.
enabled)

WDTON(3) 4 Watchdog Timer always on 1 (unprogrammed)

EESAVE 3
EEPROM memory is preserved
through the Chip Erase

1 (unprogrammed, EEPROM
not preserved)

BOOTSZ1 2
Select Boot Size (see Table 26-9 for
details)

0 (programmed)(2)

BOOTSZ0 1
Select Boot Size (see Table 26-9 for
details)

0 (programmed)(2)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Table 26-5. Fuse Low Byte

Fuse Low Byte Bit No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)
294
8152A–AVR–11/08

ATmega324PA

ATmega324PA
26.2.1 Latching of Fuses

The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

26.3 Signature Bytes

All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space. For the ATmega324PA the signature bytes are given
in Table 26-6.

26.4 Calibration Byte

The ATmega324PA has a byte calibration value for the internal RC Oscillator. This byte resides
in the high byte of address 0x000 in the signature address space. During reset, this byte is auto-
matically written into the OSCCAL Register to ensure correct frequency of the calibrated RC
Oscillator.

26.5 Page Size

Table 26-6. Device and JTAG ID

Part

Signature Bytes Address JTAG

0x000 0x001 0x002 Part Number Manufacture ID

ATmega324PA 0x1E 0x95 0x11 9511 0x1F

Table 26-7. No. of Words in a Page and No. of Pages in the Flash

Device Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

ATmega324PA 16K words (32 Kbytes) 64 words PC[5:0] 256 PC[13:6] 13

Table 26-8. No. of Words in a Page and No. of Pages in the EEPROM

Device EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

ATmega324PA 1 Kbytes 4 bytes EEA[1:0] 256 EEA[9:2] 9
295
8152A–AVR–11/08

26.6 Parallel Programming Parameters, Pin Mapping, and Commands

This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the ATmega324PA. Pulses are assumed to
be at least 250 ns unless otherwise noted.

26.6.1 Signal Names

In this section, some pins of the ATmega324PA are referenced by signal names describing their
functionality during parallel programming, see Figure 26-1 on page 296 and Figure 26-9 on page
296. Pins not described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse.
The bit coding is shown in Table 26-12 on page 297.

When pulsing WR or OE, the command loaded determines the action executed. The different
commands are shown in Table 26-13 on page 297.

Figure 26-1. Parallel Programming(1)

Note: 1. Unused Pins should be left floating.

Table 26-9. Pin Name Mapping

Signal Name in
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is ready for
new command.

OE PD2 I Output Enable (Active low).

WR PD3 I Write Pulse (Active low).

BS1 PD4 I Byte Select 1.

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

VCC

+5V

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PB7 - PB0 DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PA0

WR

BS2

AVCC

+5V
296
8152A–AVR–11/08

ATmega324PA

ATmega324PA
,

PAGEL PD7 I Program Memory and EEPROM data Page Load.

BS2 PA0 I Byte Select 2.

DATA PB7-0 I/O Bi-directional Data bus (Output when OE is low).

Table 26-10. BS2 and BS1 Encoding

BS2 BS1
Flash / EEPROM
Address

Flash Data
Loading /
Reading

Fuse
Programming

Reading Fuse
and Lock Bits

0 0 Low Byte Low Byte Low Byte Fuse Low Byte

0 1 High Byte High Byte High Byte Lockbits

1 0
Extended High
Byte

Reserved Extended Byte
Extended Fuse
Byte

1 1 Reserved Reserved Reserved Fuse High Byte

Table 26-11. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

Table 26-12. XA1 and XA0 Enoding

XA1 XA0 Action when XTAL1 is Pulsed

0 0
Load Flash or EEPROM Address (High or low address byte determined
by BS2 and BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle

Table 26-13. Command Byte Bit Encoding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

Table 26-9. Pin Name Mapping

Signal Name in
Programming Mode Pin Name I/O Function
297
8152A–AVR–11/08

26.7 Parallel Programming

26.7.1 Enter Programming Mode

The following algorithm puts the device in parallel programming mode:

1. Apply 4.5 - 5.5V between VCC and GND.

2. Set RESET to “0” and toggle XTAL1 at least six times.

3. Set the Prog_enable pins listed in Table 26-11 on page 297 to “0000” and wait at least
100 ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns after +12V
has been applied to RESET, will cause the device to fail entering programming mode.

5. Wait at least 50 µs before sending a new command.

26.7.2 Considerations for Efficient Programming

The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the
EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address high byte needs only be loaded before programming or reading a new 256 word
window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes
reading.

26.7.3 Chip Erase

The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits are
not reset until the program memory has been completely erased. The Fuse bits are not
changed. A Chip Erase must be performed before the Flash and/or EEPROM are
reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

Table 26-13. Command Byte Bit Encoding

Command Byte Command Executed
298
8152A–AVR–11/08

ATmega324PA

ATmega324PA
26.7.4 Programming the Flash

The Flash is organized in pages, see Table 26-7 on page 295. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be pro-
grammed simultaneously. The following procedure describes how to program the entire Flash
memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte (Address bits 7..0)

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS2, BS1 to “00”. This selects the address low byte.

3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 26-3 on page 301
for signal waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits address
the pages within the FLASH. This is illustrated in Figure 26-2 on page 300. Note that if less than
eight bits are required to address words in the page (pagesize < 256), the most significant bit(s)
in the address low byte are used to address the page when performing a Page Write.

G. Load Address High byte (Address bits15..8)

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS2, BS1 to “01”. This selects the address high byte.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Load Address Extended High byte (Address bits 23..16)

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS2, BS1 to “10”. This selects the address extended high byte.
299
8152A–AVR–11/08

3. Set DATA = Address extended high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

I. Program Page

1. Set BS2, BS1 to “00”

2. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY
goes low.

3. Wait until RDY/BSY goes high (See Figure 26-3 on page 301 for signal waveforms).

J. Repeat B through I until the entire Flash is programmed or until all data has been
programmed.

K. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are
reset.

Figure 26-2. Addressing the Flash Which is Organized in Pages(1)

Note: 1. PCPAGE and PCWORD are listed in Table 26-7 on page 295.

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER
300
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 26-3. Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

26.7.5 Programming the EEPROM

The EEPROM is organized in pages, see Table 26-8 on page 295. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be
programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (refer to ”Programming the Flash” on page 299 for details on Command, Address and
Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS2, BS1 to “00”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY
goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 26-4 for
signal waveforms).

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGHDATA
DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G

F

ADDR. EXT.H

H I
301
8152A–AVR–11/08

Figure 26-4. Programming the EEPROM Waveforms

26.7.6 Reading the Flash

The algorithm for reading the Flash memory is as follows (refer to ”Programming the Flash” on
page 299 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. H: Load Address Extended Byte (0x00- 0xFF).

3. G: Load Address High Byte (0x00 - 0xFF).

4. B: Load Address Low Byte (0x00 - 0xFF).

5. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

6. Set BS to “1”. The Flash word high byte can now be read at DATA.

7. Set OE to “1”.

26.7.7 Reading the EEPROM

The algorithm for reading the EEPROM memory is as follows (refer to ”Programming the Flash”
on page 299 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

26.7.8 Programming the Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to ”Programming the Flash”
on page 299 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K

302
8152A–AVR–11/08

ATmega324PA

ATmega324PA
26.7.9 Programming the Fuse High Bits

The algorithm for programming the Fuse High bits is as follows (refer to ”Programming the
Flash” on page 299 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS2, BS1 to “01”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS2, BS1 to “00”. This selects low data byte.

26.7.10 Programming the Extended Fuse Bits

The algorithm for programming the Extended Fuse bits is as follows (refer to ”Programming the
Flash” on page 299 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS2, BS1 to “10”. This selects extended data byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2, BS1 to “00”. This selects low data byte.

Figure 26-5. Programming the FUSES Waveforms

26.7.11 Programming the Lock Bits

The algorithm for programming the Lock bits is as follows (refer to ”Programming the Flash” on
page 299 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is programmed
(LB1 and LB2 is programmed), it is not possible to program the Boot Lock bits by any
External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

BS2
303
8152A–AVR–11/08

26.7.12 Reading the Fuse and Lock Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to ”Programming the Flash”
on page 299 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, and BS2, BS1 to “00”. The status of the Fuse Low bits can now be read at
DATA (“0” means programmed).

3. Set OE to “0”, and BS2, BS1 to “11”. The status of the Fuse High bits can now be read at
DATA (“0” means programmed).

4. Set OE to “0”, and BS2, BS1 to “10”. The status of the Extended Fuse bits can now be
read at DATA (“0” means programmed).

5. Set OE to “0”, and BS2, BS1 to “01”. The status of the Lock bits can now be read at DATA
(“0” means programmed).

6. Set OE to “1”.

Figure 26-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

26.7.13 Reading the Signature Bytes

The algorithm for reading the Signature bytes is as follows (refer to ”Programming the Flash” on
page 299 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS to “0”. The selected Signature byte can now be read at DATA.

4. Set OE to “1”.

26.7.14 Reading the Calibration Byte

The algorithm for reading the Calibration byte is as follows (refer to ”Programming the Flash” on
page 299 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte
304
8152A–AVR–11/08

ATmega324PA

ATmega324PA
26.7.15 Parallel Programming Characteristics

Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. tWLRH_CE is valid for the Chip Erase command.

Table 26-14. Parallel Programming Characteristics, VCC = 5V ± 10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS2/1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns
305
8152A–AVR–11/08

Figure 26-7. Parallel Programming Timing, Including some General Timing Requirements

Figure 26-8. Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 26-7 on page 306 (i.e., tDVXH, tXHXL, and tXLDX) also
apply to loading operation.

Figure 26-9. Parallel Programming Timing, Reading Sequence (within the Same Page) with
Timing Requirements(1)

Note: 1. The timing requirements shown in Table 26-7 on page 306 (i.e., tDVXH, tXHXL, and tXLDX) also
apply to reading operation.

Data & Contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ
306
8152A–AVR–11/08

ATmega324PA

ATmega324PA
26.8 Serial Downloading

Both the Flash and EEPROM memory arrays can be programmed using a serial programming
bus while RESET is pulled to GND. The serial programming interface consists of pins SCK,
MOSI (input) and MISO (output). After RESET is set low, the Programming Enable instruction
needs to be executed first before program/erase operations can be executed. NOTE, in Table
26-15 on page 307, the pin mapping for serial programming is listed. Not all packages use the
SPI pins dedicated for the internal Serial Peripheral Interface - SPI.

26.8.1 Serial Programming Pin Mapping

Figure 26-10. Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.

2. VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 1.8 - 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming
operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction. The Chip Erase operation turns the content of every memory location in both the
Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

Table 26-15. Pin Mapping Serial Programming

Symbol
Pins

(PDIP-40)
Pins

(TQFP-44) I/O Description

MOSI PB5 PB5 I Serial Data in

MISO PB6 PB6 O Serial Data out

SCK PB7 PB7 I Serial Clock

VCC

GND

XTAL1

SCK

MISO

MOSI

RESET

+1.8 - 5.5V

AVCC

+1.8 - 5.5V(2)
307
8152A–AVR–11/08

26.8.2 Serial Programming Algorithm

When writing serial data to the ATmega324PA, data is clocked on the rising edge of SCK.

When reading data from the ATmega324PA, data is clocked on the falling edge of SCK. See
Figure 26-12 for timing details.

To program and verify the ATmega324PA in the serial programming mode, the following
sequence is recommended (See four byte instruction formats in Table 26-17):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Programming
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of synchro-
nization. When in sync. the second byte (0x53), will echo back when issuing the third
byte of the Programming Enable instruction. Whether the echo is correct or not, all four
bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a
positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one byte at a
time by supplying the 7 LSB of the address and data together with the Load Program
Memory Page instruction. To ensure correct loading of the page, the data low byte must
be loaded before data high byte is applied for a given address. The Program Memory
Page is stored by loading the Write Program Memory Page instruction with the address
lines 15..8. Before issuing this command, make sure the instruction Load Extended
Address Byte has been used to define the MSB of the address. The extended address
byte is stored until the command is re-issued, i.e., the command needs only be issued for
the first page, and when crossing the 64KWord boundary. If polling (RDY/BSY) is not
used, the user must wait at least tWD_FLASH before issuing the next page. (See Table 26-
16.) Accessing the serial programming interface before the Flash write operation com-
pletes can result in incorrect programming.

5. The EEPROM array is programmed one byte at a time by supplying the address and data
together with the appropriate Write instruction. An EEPROM memory location is first
automatically erased before new data is written. If polling is not used, the user must wait
at least tWD_EEPROM before issuing the next byte. (See Table 26-16.) In a chip erased
device, no 0xFFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the con-
tent at the selected address at serial output MISO. When reading the Flash memory, use
the instruction Load Extended Address Byte to define the upper address byte, which is
not included in the Read Program Memory instruction. The extended address byte is
stored until the command is re-issued, i.e., the command needs only be issued for the
first page, and when crossing the 64KWord boundary.

7. At the end of the programming session, RESET can be set high to commence normal
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off.
308
8152A–AVR–11/08

ATmega324PA

ATmega324PA
26.9 Serial Programming Instruction set

Table 26-17 on page 309 and Figure 26-11 on page 310 describes the Instruction set.

Table 26-16. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FLASH 4.5 ms

tWD_EEPROM 9.0 ms

tWD_ERASE 9.0 ms

Table 26-17. Serial Programming Instruction Set (Hexadecimal values)

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Programming Enable $AC $53 $00 $00

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load Instructions

Load Extended Address byte(1) $4D $00 Extended adr $00

Load Program Memory Page, High byte $48 $00 adr LSB high data byte in

Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in

Load EEPROM Memory Page (page access) $C1 $00 0000 000aa data byte in

Read Instructions

Read Program Memory, High byte $28 adr MSB adr LSB high data byte out

Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out

Read EEPROM Memory $A0 0000 00aa aaaa aaaa data byte out

Read Lock bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 000aa data byte out

Read Fuse bits $50 $00 $00 data byte out

Read Fuse High bits $58 $08 $00 data byte out

Read Extended Fuse Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $00 data byte out

Write Instructions(6)

Write Program Memory Page $4C adr MSB adr LSB $00

Write EEPROM Memory $C0 0000 00aa aaaa aaaa data byte in

Write EEPROM Memory Page (page access) $C2 0000 00aa aaaa aa00 $00

Write Lock bits $AC $E0 $00 data byte in

Write Fuse bits $AC $A0 $00 data byte in

Write Fuse High bits $AC $A8 $00 data byte in

Write Extended Fuse Bits $AC $A4 $00 data byte in
309
8152A–AVR–11/08

Notes: 1. Not all instructions are applicable for all parts.
2. a = address.
3. Bits are programmed ‘0’, unprogrammed ‘1’.
4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (‘1’) .
5. Refer to the correspondig section for Fuse and Lock bits, Calibration and Signature bytes and

Page size.
6. Instructions accessing program memory use a word address. This address may be random

within the page range.
7. See htt://www.atmel.com/avr for Application Notes regarding programming and programmers.

If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until
this bit returns ‘0’ before the next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 26-11 on page
310.

Figure 26-11. Serial Programming Instruction example

Byte 1 Byte 2 Byte 3 Byte 4

Adr LSB

Bit 15 B 0

Serial Programming Instruction

Program Memory/
EEPROM Memory

Page 0

Page 1

Page 2

Page N-1

Page Buffer

Write Program Memory Page/
Write EEPROM Memory Page

Load Program Memory Page (High/Low Byte)/
Load EEPROM Memory Page (page access)

Byte 1 Byte 2 Byte 3 Byte 4

Bit 15 B 0

Adr MSB

Page Offset

Page Number

Adr MMSSBA AAdrr LLSBB
310
8152A–AVR–11/08

ATmega324PA

ATmega324PA
26.9.1 Serial Programming Characteristics

For characteristics of the Serial Programming module see “SPI Timing Characteristics” on page
330.

Figure 26-12. Serial Programming Waveforms

26.10 Programming via the JTAG Interface

Programming through the JTAG interface requires control of the four JTAG specific pins: TCK,
TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is
default shipped with the fuse programmed. In addition, the JTD bit in MCUCR must be cleared.
Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be
cleared after two chip clocks, and the JTAG pins are available for programming. This provides a
means of using the JTAG pins as normal port pins in Running mode while still allowing In-Sys-
tem Programming via the JTAG interface. Note that this technique can not be used when using
the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be ded-
icated for this purpose.

During programming the clock frequency of the TCK Input must be less than the maximum fre-
quency of the chip. The System Clock Prescaler can not be used to divide the TCK Clock Input
into a sufficiently low frequency.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

26.10.1 Programming Specific JTAG Instructions

The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions
useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format. The text
describes which Data Register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be
used as an idle state between JTAG sequences. The state machine sequence for changing the
instruction word is shown in Figure 26-13 on page 312.

MSB

MSB

LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI)

(MISO)

SAMPLE

SERIAL DATA OUTPUT
311
8152A–AVR–11/08

Figure 26-13. State Machine Sequence for Changing the Instruction Word

26.10.2 AVR_RESET (0xC)

The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking
the device out from the Reset mode. The TAP controller is not reset by this instruction. The one
bit Reset Register is selected as Data Register. Note that the reset will be active as long as there
is a logic “one” in the Reset Chain. The output from this chain is not latched.

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

26.10.3 PROG_ENABLE (0x4)

The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-
bit Programming Enable Register is selected as Data Register. The active states are the
following:

• Shift-DR: The programming enable signature is shifted into the Data Register.

• Update-DR: The programming enable signature is compared to the correct value, and
Programming mode is entered if the signature is valid.

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11
312
8152A–AVR–11/08

ATmega324PA

ATmega324PA
26.10.4 PROG_COMMANDS (0x5)

The AVR specific public JTAG instruction for entering programming commands via the JTAG
port. The 15-bit Programming Command Register is selected as Data Register. The active
states are the following:

• Capture-DR: The result of the previous command is loaded into the Data Register.

• Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the previous
command and shifting in the new command.

• Update-DR: The programming command is applied to the Flash inputs

• Run-Test/Idle: One clock cycle is generated, executing the applied command

26.10.5 PROG_PAGELOAD (0x6)

The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

• Update-DR: The content of the Flash Data Byte Register is copied into a temporary register. A
write sequence is initiated that within 11 TCK cycles loads the content of the temporary
register into the Flash page buffer. The AVR automatically alternates between writing the low
and the high byte for each new Update-DR state, starting with the low byte for the first Update-
DR encountered after entering the PROG_PAGELOAD command. The Program Counter is
pre-incremented before writing the low byte, except for the first written byte. This ensures that
the first data is written to the address set up by PROG_COMMANDS, and loading the last
location in the page buffer does not make the program counter increment into the next page.

26.10.6 PROG_PAGEREAD (0x7)

The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port.
An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs
of the Programming Command Register. The active states are the following:

• Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte
Register. The AVR automatically alternates between reading the low and the high byte for each
new Capture-DR state, starting with the low byte for the first Capture-DR encountered after
entering the PROG_PAGEREAD command. The Program Counter is post-incremented after
reading each high byte, including the first read byte. This ensures that the first data is captured
from the first address set up by PROG_COMMANDS, and reading the last location in the page
makes the program counter increment into the next page.

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

26.10.7 Data Registers

The Data Registers are selected by the JTAG instruction registers described in section ”Pro-
gramming Specific JTAG Instructions” on page 311. The Data Registers relevant for
programming operations are:

• Reset Register

• Programming Enable Register

• Programming Command Register

• Flash Data Byte Register
313
8152A–AVR–11/08

26.10.8 Reset Register

The Reset Register is a Test Data Register used to reset the part during programming. It is
required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The part is reset
as long as there is a high value present in the Reset Register. Depending on the Fuse settings
for the clock options, the part will remain reset for a Reset Time-out period (refer to ”Clock
Sources” on page 31) after releasing the Reset Register. The output from this Data Register is
not latched, so the reset will take place immediately, as shown in Figure 24-2 on page 269.

26.10.9 Programming Enable Register

The Programming Enable Register is a 16-bit register. The contents of this register is compared
to the programming enable signature, binary code 0b1010_0011_0111_0000. When the con-
tents of the register is equal to the programming enable signature, programming via the JTAG
port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when
leaving Programming mode.

Figure 26-14. Programming Enable Register

26.10.10 Programming Command Register

The Programming Command Register is a 15-bit register. This register is used to serially shift in
programming commands, and to serially shift out the result of the previous command, if any. The
JTAG Programming Instruction Set is shown in Table 26-18 on page 316. The state sequence
when shifting in the programming commands is illustrated in Figure 26-16 on page 319.

TDI

TDO

D
A
T
A

= D Q

ClockDR & PROG_ENABLE

Programming Enable
0xA370
314
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 26-15. Programming Command Register
TDI

TDO

S
T
R
O
B
E
S

A
D
D
R
E
S
S
/
D
A
T
A

Flash
EEPROM

Fuses
Lock Bits
315
8152A–AVR–11/08

Table 26-18. JTAG Programming Instruction
Set a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte, o = data out,
i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes

1a. Chip Erase

0100011_10000000

0110001_10000000
0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx (10)

2c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx

2d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2e. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2f. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2g. Latch Data
0110111_00000000
1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Write Flash Page

0110111_00000000

0110101_00000000

0110111_00000000
0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

(1)

2i. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address Extended High Byte 0001011_cccccccc xxxxxxx_xxxxxxxx (10)

3c. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx

3d. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3e. Read Data Low and High Byte

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo

Low byte

High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (10)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data

0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page

0110011_00000000

0110001_00000000

0110011_00000000
0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)
316
8152A–AVR–11/08

ATmega324PA

ATmega324PA
5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (10)

5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte

0110011_bbbbbbbb

0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte(6) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6c. Write Fuse Extended Byte

0111011_00000000
0111001_00000000

0111011_00000000

0111011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6f. Write Fuse High Byte

0110111_00000000
0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6h. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6i. Write Fuse Low Byte

0110011_00000000
0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte(9) 0010011_11iiiiii xxxxxxx_xxxxxxxx (4)

7c. Write Lock Bits

0110011_00000000

0110001_00000000
0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Extended Fuse Byte(6) 0111010_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8c. Read Fuse High Byte(7) 0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8d. Read Fuse Low Byte(8) 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

Table 26-18. JTAG Programming Instruction (Continued)
Set (Continued) a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte,
o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes
317
8152A–AVR–11/08

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

2. Repeat until o = “1”.
3. Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.
4. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
5. “0” = programmed, “1” = unprogrammed.
6. The bit mapping for Fuses Extended byte is listed in Table 26-3 on page 293
7. The bit mapping for Fuses High byte is listed in Table 26-4 on page 294
8. The bit mapping for Fuses Low byte is listed in Table 26-5 on page 294
9. The bit mapping for Lock bits byte is listed in Table 26-1 on page 292
10. Address bits exceeding PCMSB and EEAMSB (Table 26-7 and Table 26-8) are don’t care
11. All TDI and TDO sequences are represented by binary digits (0b...).

8e. Read Lock Bits(9) 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxoooooo
(5)

8f. Read Fuses and Lock Bits

0111010_00000000

0111110_00000000

0110010_00000000
0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

xxxxxxx_oooooooo
xxxxxxx_oooooooo

xxxxxxx_oooooooo

(5)

Fuse Ext. byte

Fuse High byte
Fuse Low byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte
0110110_00000000
0110111_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_oooooooo

11a. Load No Operation Command
0100011_00000000
0110011_00000000

xxxxxxx_xxxxxxxx
xxxxxxx_xxxxxxxx

Table 26-18. JTAG Programming Instruction (Continued)
Set (Continued) a = address high bits, b = address low bits, c = address extended bits, H = 0 - Low byte, 1 - High Byte,
o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes
318
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 26-16. State Machine Sequence for Changing/Reading the Data Word

26.10.11 Flash Data Byte Register

The Flash Data Byte Register provides an efficient way to load the entire Flash page buffer
before executing Page Write, or to read out/verify the content of the Flash. A state machine sets
up the control signals to the Flash and senses the strobe signals from the Flash, thus only the
data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit temporary reg-
ister. During page load, the Update-DR state copies the content of the scan chain over to the
temporary register and initiates a write sequence that within 11 TCK cycles loads the content of
the temporary register into the Flash page buffer. The AVR automatically alternates between
writing the low and the high byte for each new Update-DR state, starting with the low byte for the
first Update-DR encountered after entering the PROG_PAGELOAD command. The Program
Counter is pre-incremented before writing the low byte, except for the first written byte. This
ensures that the first data is written to the address set up by PROG_COMMANDS, and loading
the last location in the page buffer does not make the Program Counter increment into the next
page.

During Page Read, the content of the selected Flash byte is captured into the Flash Data Byte
Register during the Capture-DR state. The AVR automatically alternates between reading the
low and the high byte for each new Capture-DR state, starting with the low byte for the first Cap-

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11
319
8152A–AVR–11/08

ture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is
post-incremented after reading each high byte, including the first read byte. This ensures that
the first data is captured from the first address set up by PROG_COMMANDS, and reading the
last location in the page makes the program counter increment into the next page.

Figure 26-17. Flash Data Byte Register

The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal
operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate
through the TAP controller automatically feeds the state machine for the Flash Data Byte Regis-
ter with sufficient number of clock pulses to complete its operation transparently for the user.
However, if too few bits are shifted between each Update-DR state during page load, the TAP
controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at
least 11 TCK cycles between each Update-DR state.

26.10.12 Programming Algorithm

All references below of type “1a”, “1b”, and so on, refer to Table 26-18 on page 316.

26.10.13 Entering Programming Mode

1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Program-
ming Enable Register.

26.10.14 Leaving Programming Mode

1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the program-
ming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

TDI

TDO

D
A
T
A

Flash
EEPROM

Fuses
Lock Bits

STROBES

ADDRESS

State
Machine
320
8152A–AVR–11/08

ATmega324PA

ATmega324PA
26.10.15 Performing Chip Erase

1. Enter JTAG instruction PROG_COMMANDS.

2. Start Chip Erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for tWLRH_CE (refer
to Table 26-14 on page 305).

26.10.16 Programming the Flash

Before programming the Flash a Chip Erase must be performed, see “Performing Chip Erase”
on page 321.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address Extended High byte using programming instruction 2b.

4. Load address High byte using programming instruction 2c.

5. Load address Low byte using programming instruction 2d.

6. Load data using programming instructions 2e, 2f and 2g.

7. Repeat steps 5 and 6 for all instruction words in the page.

8. Write the page using programming instruction 2h.

9. Poll for Flash write complete using programming instruction 2i, or wait for tWLRH (refer to
Table 26-14 on page 305).

10. Repeat steps 3 to 9 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b, 2c and 2d. PCWORD (refer
to Table 26-7 on page 295) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte, starting
with the LSB of the first instruction in the page and ending with the MSB of the last
instruction in the page. Use Update-DR to copy the contents of the Flash Data Byte Reg-
ister into the Flash page location and to auto-increment the Program Counter before
each new word.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2h.

8. Poll for Flash write complete using programming instruction 2i, or wait for tWLRH (refer to
Table 26-14 on page 305).

9. Repeat steps 3 to 8 until all data have been programmed.

26.10.17 Reading the Flash

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b, 3c and 3d.

4. Read data using programming instruction 3e.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:
321
8152A–AVR–11/08

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b, 3c and 3d. PCWORD (refer
to Table 26-7 on page 295) is used to address within one page and must be written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page (or Flash) by shifting out all instruction words in the page (or Flash),
starting with the LSB of the first instruction in the page (Flash) and ending with the MSB
of the last instruction in the page (Flash). The Capture-DR state both captures the data
from the Flash, and also auto-increments the program counter after each word is read.
Note that Capture-DR comes before the shift-DR state. Hence, the first byte which is
shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

26.10.18 Programming the EEPROM

Before programming the EEPROM a Chip Erase must be performed, see “Performing Chip
Erase” on page 321.

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address High byte using programming instruction 4b.

4. Load address Low byte using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH
(refer to Table 26-14 on page 305).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM.

26.10.19 Reading the EEPROM

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM.

26.10.20 Programming the Fuses

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data high byte using programming instructions 6b. A bit value of “0” will program the
corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH (refer to
Table 26-14 on page 305).
322
8152A–AVR–11/08

ATmega324PA

ATmega324PA
6. Load data low byte using programming instructions 6e. A “0” will program the fuse, a “1”
will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH (refer to
Table 26-14 on page 305).

26.10.21 Programming the Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the corre-
sponding lock bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH (refer
to Table 26-14 on page 305).

26.10.22 Reading the Fuses and Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8e.
To only read Fuse High byte, use programming instruction 8b.
To only read Fuse Low byte, use programming instruction 8c.
To only read Lock bits, use programming instruction 8d.

26.10.23 Reading the Signature Bytes

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address 0x00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third
signature bytes, respectively.

26.10.24 Reading the Calibration Byte

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address 0x00 using programming instruction 10b.

4. Read the calibration byte using programming instruction 10c.
323
8152A–AVR–11/08

27. Electrical Characteristics

Absolute Maximum Ratings*

27.1 DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage Temperature -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage .. 6.0V

DC Current per I/O Pin ... 40.0 mA

DC Current VCC and GND Pins................................ 200.0 mA

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min.(5) Typ. Max.(5) Units

VIL
Input Low Voltage,Except
XTAL1 and Reset pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

-0.5
-0.5

0.2VCC
(1)

0.3VCC
(1) V

VIL1
Input Low Voltage,
XTAL1 pin

VCC = 1.8V - 5.5V -0.5 0.1VCC
(1) V

VIL2
Input Low Voltage,
RESET pin

VCC = 1.8V - 5.5V -0.5 0.1VCC
(1) V

VIL3
Input Low Voltage.
RESET pin as I/O

VCC = 1.8V - 5.5V NA NA NA V

VIH

Input High Voltage,
Except XTAL1 and
RESET pins

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.7VCC
(2)

0.6VCC
(2)

VCC + 0.5
VCC + 0.5

V

VIH1
Input High Voltage,
XTAL1 pin

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

0.8VCC
(2)

0.7VCC
(2)

VCC + 0.5
VCC + 0.5

V

VIH2
Input High Voltage,
RESET pin

VCC = 1.8V - 5.5V 0.9VCC
(2) VCC + 0.5 V

VIH3
Input High Voltage,
RESET pin as I/O

VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V

NA NA V

VOL Output Low Voltage(3),
IOL = 20 mA, VCC = 5V
IOL = 10 mA, VCC = 3V

0.9
0.6

V

VOH Output High Voltage(4),
IOH = -20 mA, VCC = 5V
IOH = -10 mA, VCC = 3V

4.2
2.3

V

VOL3
Output Low Voltage
Reset pin as I/O

NA NA NA V

VOH3
Output High Voltage
RESET pin as I/O

NA NA NA V

IIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value)

1 µA
324
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Notes: 1. "Max" means the highest value where the pin is guaranteed to be read as low
2. "Min" means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state

conditions (non-transient), the following must be observed:
1.)The sum of all IOL, for ports PB0-PB7, XTAL2, PD0-PD7 should not exceed 100 mA.
2.)The sum of all IOL, for ports PA0-PA3, PC0-PC7 should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:
1.)The sum of all IOH, for ports PB0-PB7, XTAL2, PD0-PD7 should not exceed 100 mA.
2.)The sum of all IOH, for ports PA0-PA3, PC0-PC7 should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. These numbers are valid for ATmega324PA.

IIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

1 µA

RRST Reset Pull-up Resistor 30 60 kΩ

RPU I/O Pin Pull-up Resistor 20 50 kΩ

VACIO
Analog Comparator
Input Offset Voltage

VCC = 5V
Vin = VCC/2

<10 40 mV

IACLK
Analog Comparator
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50 50 nA

tACID
Analog Comparator
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750
500

ns

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted) (Continued)

Symbol Parameter Condition Min.(5) Typ. Max.(5) Units
325
8152A–AVR–11/08

Notes: 1. All bits set in the ”PRR – Power Reduction Register” on page 49.
2. Typical values at 25°C. Maximum values are test limits in production.
3. The current consumption values include input leakage current.

27.1.1 ATmega324PA DC Characteristics

Table 27-1. TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min. Typ.(2) Max. Units

ICC

Power Supply Current(1)

Active 1 MHz, VCC = 2V 0.3 0.5 mA

Active 4 MHz, VCC = 3V 1.5 2.7 mA

Active 8 MHz, VCC = 5V 5.2 9 mA

Idle 1 MHz, VCC = 2V 0.06 0.15 mA

Idle 4 MHz, VCC = 3V 0.35 0.7 mA

Idle 8 MHz, VCC = 5V 1.3 5 mA

Power-save mode(3)

32 kHz TOSC enabled,
VCC = 1.8V

0.5 µA

32 kHz TOSC enabled,
VCC = 3V

0.6 µA

Power-down mode(3)
WDT enabled, VCC = 3V 8 µA

WDT disabled, VCC = 3V 2 µA
326
8152A–AVR–11/08

ATmega324PA

ATmega324PA
27.2 Speed Grades

Maximum frequency is depending on VCC. As shown in Figure 27-1, the Maximum Frequency vs.
VCC curve is linear between 1.8V < VCC < 2.7 and between 2.7V < VCC < 4.5.

Figure 27-1. Maximum Frequency vs. VCC, ATmega324PA

4 MHz

1.8V 2.7V 4.5V

10 MHz

20 MHz

5.5V

Safe Operating Area
327
8152A–AVR–11/08

27.3 Clock Characteristics

Notes: 1. Voltage range for ATmega324PA.

27.3.1 External Clock Drive Waveforms

Figure 27-2. External Clock Drive Waveforms

27.3.2 External Clock Drive

Table 27-2. Calibration Accuracy of Internal RC Oscillator

Frequency VCC Temperature Calibration Accuracy

Factory
Calibration

8.0 MHz 3V 25°C ±10%

User
Calibration

7.3 - 8.1 MHz 1.8V - 5.5V(1) -40°C - 85°C ±1%

VIL1

VIH1

Table 27-3. External Clock Drive

Symbol Parameter

VCC=1.8 - 5.5V VCC=2.7 - 5.5V VCC=4.5 - 5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL Oscillator Frequency 0 4 0 10 0 20 MHz

tCLCL Clock Period 250 100 50 ns

tCHCX High Time 100 40 20 ns

tCLCX Low Time 100 40 20 ns

tCLCH Rise Time 2.0 1.6 0.5 μs

tCHCL Fall Time 2.0 1.6 0.5 μs

ΔtCLCL

Change in period from
one clock cycle to the
next

2 2 2 %
328
8152A–AVR–11/08

ATmega324PA

ATmega324PA
27.4 System and Reset Characteristics

Notes: 1. Values are guidelines only. Actual values are TBD.
2. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

Note: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is
tested down to VCC = VBOT during the production test. This guarantees that a Brown-Out Reset will occur before VCC drops to
a voltage where correct operation of the microcontroller is no longer guaranteed. The test is performed using
BODLEVEL = 101 and BODLEVEL = 110 for ATmega324PA.

27.5 External Interrupts Characteristics

Table 27-4. Reset, Brown-out and Internal Voltage Reference Characteristics

Symbol Parameter Condition Min Typ Max Units

VPOT
(1)

Power-on Reset Threshold Voltage (rising) 1.1 1.4 1.6 V

Power-on Reset Threshold Voltage (falling)(2) 0.6 1.3 1.6 V

VRST RESET Pin Threshold Voltage 0.2VCC 0.9VCC V

tRST Minimum pulse width on RESET Pin 2.5 µs

VHYST Brown-out Detector Hysteresis 50 mV

tBOD Min Pulse Width on Brown-out Reset 2 µs

VBG Bandgap reference voltage VC C= 2.7V, TA = 25°C 1.0 1.1 1.2 V

tBG Bandgap reference start-up time VC C= 2.7V, TA = 25°C 40 70 µs

IBG Bandgap reference current consumption VC C= 2.7V, TA = 25°C 10 µA

Table 27-5. BODLEVEL Fuse Coding(1)

BODLEVEL 2:0 Fuses Min VBOT Typ VBOT Max VBOT Units

111 BOD Disabled

110 1.7 1.8 2.0

V101 2.5 2.7 2.9

100 4.1 4.3 4.5

011

Reserved
010

001

000

Table 27-6. Asynchronous External Interrupt Characteristics

Symbol Parameter Condition Min Typ Max Units

tINT Minimum pulse width for asynchronous external interrupt 50 ns
329
8152A–AVR–11/08

27.6 SPI Timing Characteristics

See Figure 27-3 on page 330 and Figure 27-4 on page 331 for details.

Note: 1. In SPI Programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK < 12 MHz
- 3 tCLCL for fCK > 12 MHz

Figure 27-3. SPI Interface Timing Requirements (Master Mode)

Table 27-7. SPI Timing Parameters

Description Mode Min Typ Max

1 SCK period Master See Table 17-5

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low(1) Slave 2 • tck

12 Rise/Fall time Slave 1600

13 Setup Slave 10

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 20

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87
330
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 27-4. SPI Interface Timing Requirements (Slave Mode)

27.7 2-wire Serial Interface Characteristics

Table 27-8 describes the requirements for devices connected to the 2-wire Serial Bus. The ATmega324PA 2-wire Serial
Interface meets or exceeds these requirements under the noted conditions.

Timing symbols refer to Figure 27-5.

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

Table 27-8. 2-wire Serial Bus Requirements

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage -0.5 0.3 VCC V

VIH Input High-voltage 0.7 VCC VCC + 0.5 V

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 VCC

(2) – V

VOL
(1) Output Low-voltage 3 mA sink current 0 0.4 V

tr
(1) Rise Time for both SDA and SCL 20 + 0.1Cb

(2)(3) 300 ns

tof
(1) Output Fall Time from VIHmin to VILmax 10 pF < Cb < 400 pF(3) 20 + 0.1Cb

(2)(3) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50(2) ns

Ii Input Current each I/O Pin 0.1VCC < Vi < 0.9VCC -10 10 µA

Ci
(1) Capacitance for each I/O Pin – 10 pF

fSCL SCL Clock Frequency fCK
(4) > max(16fSCL, 250kHz)(5) 0 400 kHz

Rp Value of Pull-up resistor

fSCL ≤ 100 kHz

fSCL > 100 kHz

tHD;STA Hold Time (repeated) START Condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tLOW Low Period of the SCL Clock
fSCL ≤ 100 kHz(6) 4.7 – µs

fSCL > 100 kHz(7) 1.3 – µs

VCC 0,4V–

3mA
---------------------------- 1000ns

Cb
------------------- Ω

VCC 0,4V–

3mA
---------------------------- 300ns

Cb
---------------- Ω
331
8152A–AVR–11/08

Notes: 1. In ATmega324PA, this parameter is characterized and not 100% tested.
2. Required only for fSCL > 100 kHz.
3. Cb = capacitance of one bus line in pF.
4. fCK = CPU clock frequency
5. This requirement applies to all ATmega32 Two-wire Serial Interface operation. Other devices connected to the Two-wire

Serial Bus need only obey the general fSCL requirement.
6. The actual low period generated by the ATmega32 Two-wire Serial Interface is (1/fSCL - 2/fCK), thus fCK must be greater

than 6 MHz for the low time requirement to be strictly met at fSCL = 100 kHz.
7. The actual low period generated by the ATmega32 Two-wire Serial Interface is (1/fSCL - 2/fCK), thus the low time require-

ment will not be strictly met for fSCL > 308 kHz when fCK = 8 MHz. Still, ATmega32 devices connected to the bus may
communicate at full speed (400 kHz) with other ATmega32 devices, as well as any other device with a proper tLOW accep-
tance margin.

Figure 27-5. 2-wire Serial Bus Timing

tHIGH High period of the SCL clock
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tSU;STA Set-up time for a repeated START condition
fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 0.6 – µs

tHD;DAT Data hold time
fSCL ≤ 100 kHz 0 3.45 µs

fSCL > 100 kHz 0 0.9 µs

tSU;DAT Data setup time
fSCL ≤ 100 kHz 250 – ns

fSCL > 100 kHz 100 – ns

tSU;STO Setup time for STOP condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tBUF
Bus free time between a STOP and START
condition

fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 1.3 – µs

Table 27-8. 2-wire Serial Bus Requirements (Continued)

Symbol Parameter Condition Min Max Units

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr
332
8152A–AVR–11/08

ATmega324PA

ATmega324PA
27.8 ADC Characteristics

Notes: 1. Values are guidelines only.

Table 27-9. ADC Characteristics, Single Ended Channel

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

Resolution Single Ended Conversion 10 Bits

Absolute accuracy (Including
INL, DNL, quantization error,
gain and offset error)

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

3

LSB

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz

3.5

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
Noise Reduction Mode

2.75

Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
Noise Reduction Mode

3.5

Integral Non-Linearity (INL)
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

1.5

Differential Non-Linearity (DNL)
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

0.3

Gain Error
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

2.5

Offset Error
Single Ended Conversion
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz

2.5

Conversion Time Free Running Conversion 13 260 µs

Clock Frequency Single Ended Conversion 50 1000 kHz

AVCC Analog Supply Voltage VCC - 0.3 VCC + 0.3 V

VREF Reference Voltage 1.0 AVCC V

VIN Input Voltage GND VREF V

Input Bandwidth 38.5 kHz

VINT1 Internal Voltage Reference 1.1V 1.0 1.1 1.2 V

VINT2 Internal Voltage Reference 2.56V, VCC > 2.7V 2.33 2.56 2.79 V

RREF Reference Input Resistance 32 kΩ

RAIN Analog Input Resistance 100 MΩ
333
8152A–AVR–11/08

Table 27-10. ADC Characteristics, Differential Channels

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

Resolution

Gain = 1x 10

BitsGain = 10x 10

Gain = 200x 7

Absolute Accuracy (Including INL,
DNL Quantization Error and Offset
Error)

Gain = 1x
VCC =5 V, VREF = 4V
ADC clock = 200 kHz

19.5

LSB

Gain = 10x

VCC =5 V, VREF = 4V
ADC clock = 200 kHz

20.5

Gain = 200x

VCC =5 V, VREF = 4V
ADC clock = 200 kHz

8.5

Integral Non-linearity (INL)

Gain = 1x
VCC =5 V, VREF = 4V
ADC clock = 200 kHz

2.25

Gain = 10x

VCC =5 V, VREF = 4V
ADC clock = 200 kHz

4.25

Gain = 200x

VCC =5 V, VREF = 4V
ADC clock = 200 kHz

11.5

Differential Non-linearity (DNL)

Gain = 1x
VCC =5 V, VREF = 4V
ADC clock = 200 kHz

0.75

Gain = 10x

VCC =5 V, VREF = 4V
ADC clock = 200 kHz

0.75

Gain = 200x

VCC =5 V, VREF = 4V
ADC clock = 200 kHz

9.5
334
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Note: 1. Values are guidelines only.

Gain Error

Gain = 1x
VCC =5 V, VREF = 4V
ADC clock = 200 kHz

19.5

LSB

Gain = 10x
VCC =5 V, VREF = 4V
ADC clock = 200 kHz

19.5

Gain = 200x

VCC =5 V, VREF = 4V
ADC clock = 200 kHz

6.5

Offset Error

Gain = 1x

VCC =5 V, VREF = 4V
ADC clock = 200 kHz

1

Gain = 10x
VCC =5 V, VREF = 4V
ADC clock = 200 kHz

1.25

Gain = 200x

VCC =5 V, VREF = 4V
ADC clock = 200 kHz

2.5

Conversion Time 13 260 µs

Clock Frequency 50 1000 kHz

AVCC Analog Supply Voltage
VCC -
0.3

VCC +
0.3

V

VREF Reference Voltage 2.0
AVCC -

0.5
V

VIN Input Differential Voltage 0 AVCC V

ADC Conversion Output -511 511 LSB

Input Bandwidth 4 kHz

VINT1 Internal Voltage Reference 1.1V 1.0 1.1 1.2 V

VINT2 Internal Voltage Reference 2.56V 2.33 2.56 2.79 V

RREF Reference Input Resistance 32 kΩ

Table 27-10. ADC Characteristics, Differential Channels (Continued)

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units
335
8152A–AVR–11/08

28. Typical Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

All Active- and Idle current consumption measurements are done with all bits in the PRR regis-
ters set and thus, the corresponding I/O modules are turned off. Also the Analog Comparator is
disabled during these measurements. The power consumption in Power-down mode is indepen-
dent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where
CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.
336
8152A–AVR–11/08

ATmega324PA

ATmega324PA
28.1 ATmega324PA Typical Characteristics

28.1.1 Active Supply Current

Figure 28-1. Active Supply Current vs. Low Frequency (0.1 - 1.0 MHz).

Figure 28-2. Active Supply Current vs. Frequency (1 - 20 MHz).

ACTIVE SUPPLY CURRENT vs. LOW FREQUENCY

0.1 -1.0 MHz

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

ACTIVE SUPPLY CURRENT vs. FREQUENCY

1 - 20 MHz

5.5 V

5.0 V

4.5 V

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

3.3 V

4.0 V
337
8152A–AVR–11/08

Figure 28-3. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz).

Figure 28-4. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz).

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 8 MHz

85 °C
25 °C

-40 °C

0

1

2

3

4

5

6

7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 1 MHz

85 °C
25 °C

-40 °C

0

0.4

0.8

1.2

1.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

338
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 28-5. Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz).

28.1.2 Idle Supply Current

Figure 28-6. Idle Supply Current vs. VCC (0.1 - 1.0 MHz).

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 128 KHz

85 °C
25 °C

-40 °C

0

0.05

0.1

0.15

0.2

0.25

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

IDLE SUPPLY CURRENT vs. LOW FREQUENCY

0.1 - 1.0 MHz

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

5.5 V
339
8152A–AVR–11/08

Figure 28-7. Idle Supply Current vs. VCC (1 - 20 MHz).

Figure 28-8. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz).

IDLE SUPPLY CURRENT vs. FREQUENCY

1 - 20 MHz

5.5 V

5.0 V

4.5 V

0

1

2

3

4

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

1.8 V

2.7 V

3.3 V

4.0 V

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 8 MHz

85 °C
25 °C

-40 °C

0

0.3

0.6

0.9

1.2

1.5

1.8

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

340
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 28-9. Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz).

Figure 28-10. Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz).

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 1 MHz
85 °C
25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

IDLE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 128 KHz

85 °C
25 °C

-40 °C

0

0.02

0.04

0.06

0.08

0.1

0.12

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

341
8152A–AVR–11/08

28.1.3 Supply Current of I/O modules

The tables and formulas below can be used to calculate the additional current consumption for
the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules
are controlled by the Power Reduction Register. See ”PRR – Power Reduction Register” on
page 49 for details.

It is possible to calculate the typical current consumption based on the numbers from Table 28-2
on page 342 for other VCC and frequency settings than listed in Table 28-1 on page 342.

Example Calculate the expected current consumption in idle mode with TIMER1, ADC, and SPI enabled
at VCC = 2.0V and F = 1MHz. From Table 28-2 on page 342, third column, we see that we need
to add 6.0% for the TIMER1, 14.8 % for the ADC, and 10.3 % for the SPI module. Reading from
Figure 28-6 on page 339, we find that the idle current consumption is ~0.078 mA at VCC = 2.0V
and F = 1MHz. The total current consumption in idle mode with TIMER1, ADC, and SPI enabled,
gives:

Table 28-1. Additional Current Consumption for the different I/O modules (absolute values)

PRR bit Typical numbers

VCC = 2V, F = 1 MHz VCC = 3V, F = 4 MHz VCC = 5V, F = 8 MHz

PRUSART1 3.1 µA 21.5 µA 100.0 µA

PRUSART0 3.0 µA 21.0 µA 98.2 µA

PRTWI 6.4 µA 45.7 µA 214.5 µA

PRTIM2 5.6 µA 37.7 µA 165.8 µA

PRTIM1 3.6 µA 24.8 µA 107.0 µA

PRTIM0 1.7 µA 10.4 µA 43.2 µA

PRADC 11.8 µA 59.2 µA 257.0 µA

PRSPI 5.3 µA 40.1 µA 206.8 µA

Table 28-2. Additional Current Consumption (percentage) in Active and Idle mode

PRR bit

Additional Current consumption
compared to Active with external
clock (see Figure 28-1 on page
337 and Figure 28-2 on page 337)

Additional Current consumption
compared to Idle with external
clock (see Figure 28-6 on page
339 and Figure 28-7 on page 340)

PRUSART1 1.4 % 5.3%

PRUSART0 1.4% 5.2%

PRTWI 3.0% 11.3%

PRTIM2 2.5% 9.1%

PRTIM1 1.6% 6.0%

PRTIM0 0.7% 2.5%

PRADC 4.2% 14.8%

PRSPI 2.7% 10.3%

ICCtotal 0.078 mA (1+ 0.060 + 0.148 + 0.103)⋅ 0.102 mA≈ ≈
342
8152A–AVR–11/08

ATmega324PA

ATmega324PA
28.1.4 Power-down Supply Current

Figure 28-11. Power-down Supply Current vs. VCC (Watchdog Timer Disabled).

Figure 28-12. Power-down Supply Current vs. VCC (Watchdog Timer Enabled).

POWER-DOWN SUPPLY CURRENT vs. VCC

WATCHDOG TIMER DISABLED

85 °C

25 °C
-40 °C

0

0.2

0.4

0.6

0.8

1

1.2

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

POWER-DOWN SUPPLY CURRENT vs. VCC

WATCHDOG TIMER ENABLED

85 °C
25 °C

-40 °C

0

2

4

6

8

10

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

343
8152A–AVR–11/08

28.1.5 Power-save Supply Current

Figure 28-13. Power-save Supply Current vs. VCC (Watchdog Timer Disabled and 32 kHz Crys-
tal Oscillator Running).

28.1.6 Standby Supply Current

Figure 28-14. Standby Supply Current vs. VCC (Watchdog Timer Disabled).

POWER-SAVE SUPPLY CURRENT vs. VCC

WATCHDOG TIMER DISABLED and 32 kHz CRYSTAL OSCILLATOR RUNNING

85 °C

25 °C

-40 °C

0.00

0.50

1.00

1.50

2.00

2.50

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

STANDBY SUPPLY CURRENT vs. VCC

Watchdog Timer Disabled

 6MHz_xtal
 6MHz_res

 4MHz_xtal

 4MHz_res

 450kHz_res

 2MHz_xtal

 2MHz_res

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

344
8152A–AVR–11/08

ATmega324PA

ATmega324PA
28.1.7 Pin Pull-up

Figure 28-15. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V).

Figure 28-16. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V).

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

VCC = 1.8V

85 °C

25 °C
-40 °C

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VOP (V)

I O
P
 (

u
A

)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

Vcc = 2.7V

85 °C

25 °C

-40 °C
0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3

VOP (V)

I O
P
 (

u
A

)

345
8152A–AVR–11/08

Figure 28-17. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V).

Figure 28-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V).

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

VCC = 5V

85 °C

25 °C

-40 °C
0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

VOP (V)

I O
P
 (

u
A

)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE

VCC = 1.8V

85 °C

25 °C

-40 °C

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

VRESET (V)

I R
E

S
E

T
 (

u
A

)

346
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 28-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V).

Figure 28-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V).

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE

VCC = 2.7V

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3

VRESET (V)

I R
E

S
E

T
 (

u
A

)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE

VCC = 5V

85 °C

25 °C

-40 °C

0

20

40

60

80

100

120

0 1 2 3 4 5 6

VRESET (V)

I R
E

S
E

T
 (

u
A

)

347
8152A–AVR–11/08

28.1.8 Pin Driver Strength

Figure 28-21. I/O Pin Output Voltage vs. Sink Current (VCC = 3V).

Figure 28-22. I/O Pin Output Voltage vs. Sink Current (VCC = 5V).

I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT

VCC = 3V

85 °C

25 °C

-40 °C

0

0.2

0.4

0.6

0.8

1

5 8 11 14 17 20

IOL(mA)

V
O

L
 (

V
)

I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT

VCC = 5V

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

5 8 11 14 17 20

IOL(mA)

V
O

L
 (

V
)

348
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 28-23. I/O Pin Output Voltage vs. Source Current (VCC = 3V).

Figure 28-24. I/O Pin Output Voltage vs. Source Current (VCC = 5V).

I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT

VCC = 3V

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

5 8 11 14 17 20

IOH(mA)

V
O

H
 (

V
)

I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT

VCC = 5V

85 °C

25 °C

-40 °C

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5 8 11 14 17 20

IOH(mA)

V
O

H
 (

V
)

349
8152A–AVR–11/08

28.1.9 Pin Threshold and Hysteresis

Figure 28-25. I/O Pin Input Threshold vs. VCC (VIH , I/O Pin Read as ‘1’).

Figure 28-26. I/O Pin Input Threshold vs. VCC (VIL, I/O Pin Read as ‘0’).

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIH, IO PIN READ AS '1'
85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

sh
o
ld

 (
V

)

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIL, IO PIN READ AS '0'

85 °C

25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

sh
o
ld

 (
V

)

350
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 28-27. I/O Pin Input Hysteresis vs. VCC

Figure 28-28. Reset Pin Input Threshold vs. VCC (VIH , I/O Pin Read as ‘1’).

I/O PIN INPUT HYSTERESIS vs. VCC

85 °C

25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p
u
t

H
ys

te
re

si
s

(m
V

)

RESET PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIH, IO PIN READ AS '1'

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

sh
o
ld

 (
V

)

351
8152A–AVR–11/08

Figure 28-29. Reset Pin Input Threshold vs. VCC (VIL, I/O Pin Read as ‘0’).

Figure 28-30. Reset Pin Input Hysteresis vs. VCC

RESET PIN INPUT THRESHOLD VOLTAGE vs. VCC

VIL, IO PIN READ AS '0'

85 °C

25 °C
-40 °C

0

0.5

1

1.5

2

2.5

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

T
h
re

sh
o
ld

 (
V

)

RESET PIN INPUT HYSTERESIS vs. VCC

85 °C
25 °C

-40 °C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

In
p
u
t

H
ys

te
re

si
s

(m
V

)

352
8152A–AVR–11/08

ATmega324PA

ATmega324PA
28.1.10 BOD Threshold

Figure 28-31. BOD Threshold vs. Temperature (VCC = 4.3V)

Figure 28-32. BOD Threshold vs. Temperature (VCC = 2.7V)

BOD THRESHOLDS vs. TEMPERATURE

VCC= 4.3V

Rising Vcc

Falling Vcc

4.28

4.3

4.32

4.34

4.36

4.38

4.4

-40 -20 0 20 40 60 80 100

Temperature (°C)

T
h
re

sh
o
ld

 (
V

)

BOD THRESHOLDS vs. TEMPERATURE

VCC = 2.7V

Rising Vcc

Falling Vcc

2.66

2.68

2.7

2.72

2.74

2.76

2.78

2.8

-40 -20 0 20 40 60 80 100

Temperature (°C)

T
h
re

sh
o
ld

 (
V

)

353
8152A–AVR–11/08

Figure 28-33. BOD Threshold vs. Temperature (VCC = 1.8V)

28.1.11 Internal Oscillator Speed

Figure 28-34. Watchdog Oscillator Frequency vs. Temperature

BOD THRESHOLDS vs. TEMPERATURE

VCC = 1.8V

Rising Vcc

Falling Vcc

1.76

1.78

1.8

1.82

1.84

1.86

-40 -20 0 20 40 60 80 100

Temperature (°C)

T
h
re

sh
o
ld

 (
V

)

WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE

5.5 V
4.0 V
3.3 V
2.7 V
2.1 V

110

113

116

119

122

-40 -20 0 20 40 60 80 100

Temperature (°C)

F
R

C
 (

kH
z)
354
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 28-35. Watchdog Oscillator Frequency vs. VCC

Figure 28-36. Calibrated 8 MHz RC Oscillator vs. VCC

WATCHDOG OSCILLATOR FREQUENCY vs. Vcc

85 °C

25 °C

-40 °C

111

114

117

120

123

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

kH
z)

CALIBRATED 8 MHz RC OSCILLATOR vs. VCC

85 °C

25 °C

-40 °C

7

7.4

7.8

8.2

8.6

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z)
355
8152A–AVR–11/08

Figure 28-37. Calibrated 8 MHz RC Oscillator vs. Temperature

Figure 28-38. Calibrated 8 MHz RC Oscillator vs. OSCCAL Value

CALIBRATED 8 MHz RC OSCILLATOR vs. TEMPERATURE

5.0 V

3.0 V

7.4

7.7

8

8.3

8.6

-40 -20 0 20 40 60 80 100

Temperature (°C)

F
R

C
 (

M
H

z)

CALIBRATED 8 MHz RC OSCILLATOR vs. OSCCAL VALUE

85 °C
25 °C

-40 °C

0

2

4

6

8

10

12

14

16

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL (X1)

F
R

C
 (

M
H

z)
356
8152A–AVR–11/08

ATmega324PA

ATmega324PA
28.1.12 Current Consumption of Peripheral Units

Figure 28-39. ADC Current vs. VCC (AREF = AVCC)

Figure 28-40. Analog Comparator Current vs. VCC

ADC CURRENT vs. VCC

AREF = AVCC

85 °C
25 °C

-40 °C

0

50

100

150

200

250

300

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

ANALOG COMPARATOR CURRENT vs. VCC

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

70

80

90

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

357
8152A–AVR–11/08

Figure 28-41. AREF External Reference Current vs. VCC

Figure 28-42. Brownout Detector Current vs. VCC

AREF EXTERNAL REFERENCE CURRENT vs. VCC

85 °C
25 °C

-40 °C

0

40

80

120

160

200

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

BROWNOUT DETECTOR CURRENT vs. VCC

85 °C
25 °C

-40 °C

0

5

10

15

20

25

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

358
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 28-43. Programming Current vs. VCC

Figure 28-44. Watchdog Timer Current vs. VCC

PROGRAMMING CURRENT vs. Vcc

85 °C

25 °C
-40 °C

0

2

4

6

8

10

12

14

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

m
A

)

WATCHDOG TIMER CURRENT vs. VCC

85 °C
25 °C

-40 °C

1

3

5

7

9

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C
 (

u
A

)

359
8152A–AVR–11/08

28.1.13 Current Consumption in Reset and Reset Pulsewidth

Figure 28-45. Reset Supply Current vs. Low Frequency

Figure 28-46. Reset Supply Current vs. Frequency

RESET SUPPLY CURRENT vs. LOW FREQUENCY

0.1 - 1.0 MHz

5.5 V

5.0 V

4.5 V

4.0 V

3.3 V

2.7 V

1.8 V

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

I C
C
 (

m
A

)

RESET SUPPLY CURRENT vs. FREQUENCY

1 - 20 MHz

5.5 V

5.0 V

4.5 V

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

Frequency (MHz)

I C
C
 (

m
A

)

4.0 V

3.3 V

1.8 V

2.7 V
360
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Figure 28-47. Minimum Reset Pulsewidth vs. VCC

MINIMUM RESET PULSE WIDTH vs. VCC

85 °C
25 °C

-40 °C

0

300

600

900

1200

1500

1800

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

P
u
ls

e
w

id
th

 (
n
s)
361
8152A–AVR–11/08

29. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved - - - - - - -

(0xFE) Reserved - - - - - - - -

(0xFD) Reserved - - - - - - - -

(0xFC) Reserved - - - - - - - -

(0xFB) Reserved - - - - - - -

(0xFA) Reserved - - - - - - - -

(0xF9) Reserved - - - - - - -

(0xF8) Reserved - - - - - - - -

(0xF7) Reserved - - - - - - - -

(0xF6) Reserved - - - - - - - -

(0xF5) Reserved - - - - - - -

(0xF4) Reserved - - - - - - - -

(0xF3) Reserved - - - - - - - -

(0xF2) Reserved - - - - - - - -

(0xF1) Reserved - - - - - - -

(0xF0) Reserved - - - - - - - -

(0xEF) Reserved - - - - - - -

(0xEE) Reserved - - - - - - - -

(0xED) Reserved - - - - - - - -

(0xEC) Reserved - - - - - - - -

(0xEB) Reserved - - - - - - -

(0xEA) Reserved - - - - - - - -

(0xE9) Reserved - - - - - - - -

(0xE8) Reserved - - - - - - - -

(0xE7) Reserved - - - - - - -

(0xE6) Reserved - - - - - - - -

(0xE5) Reserved - - - - - - - -

(0xE4) Reserved - - - - - - - -

(0xE3) Reserved - - - - - - -

(0xE2) Reserved - - - - - - - -

(0xE1) Reserved - - - - - - -

(0xE0) Reserved - - - - - - -

(0xDF) Reserved - - - - - - - -

(0xDE) Reserved - - - - - - - -

(0xDD) Reserved - - - - - - - -

(0xDC) Reserved - - - - - - -

(0xDB) Reserved - - - - - - - -

(0xDA) Reserved - - - - - - - -

(0xD9) Reserved - - - - - - - -

(0xD8) Reserved - - - - - - - -

(0xD7) Reserved - - - - - - - -

(0xD6) Reserved - - - - - - - -

(0xD5) Reserved - - - - - - - -

(0xD4) Reserved - - - - - - - -

(0xD3) Reserved - - - - - - - -

(0xD2) Reserved - - - - - - - -

(0xD1) Reserved - - - - - - - -

(0xD0) Reserved - - - - - - - -

(0xCF) Reserved - - - - - - - -

(0xCE) UDR1 USART1 I/O Data Register 190

(0xCD) UBRR1H - - - - USART1 Baud Rate Register High Byte 194/207

(0xCC) UBRR1L USART1 Baud Rate Register Low Byte 194/207

(0xCB) Reserved - - - - - - - -

(0xCA) UCSR1C UMSEL11 UMSEL10 - - - UDORD1 UCPHA1 UCPOL1 192/206

(0xC9) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 191/205

(0xC8) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 190/205

(0xC7) Reserved - - - - - - - -

(0xC6) UDR0 USART0 I/O Data Register 190

(0xC5) UBRR0H - - - - USART0 Baud Rate Register High Byte 194/207

(0xC4) UBRR0L USART0 Baud Rate Register Low Byte 194/207

(0xC3) Reserved - - - - - - - -

(0xC2) UCSR0C UMSEL01 UMSEL00 - - - UDORD0 UCPHA0 UCPOL0 192/206

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 191/205
362
8152A–AVR–11/08

ATmega324PA

ATmega324PA
(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 190/205

(0xBF) Reserved - - - - - - - -

(0xBE) Reserved - - - - - - - -

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 - 236

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE 233

(0xBB) TWDR 2-wire Serial Interface Data Register 235

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 236

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 TWPS0 235

(0xB8) TWBR 2-wire Serial Interface Bit Rate Register 233

(0xB7) Reserved - - - - - - - -

(0xB6) ASSR - EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB 158

(0xB5) Reserved - - - - - - - -

(0xB4) OCR2B Timer/Counter2 Output Compare Register B 158

(0xB3) OCR2A Timer/Counter2 Output Compare Register A 158

(0xB2) TCNT2 Timer/Counter2 (8 Bit) 157

(0xB1) TCCR2B FOC2A FOC2B - - WGM22 CS22 CS21 CS20 156

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 - - WGM21 WGM20 153

(0xAF) Reserved - - - - - - - -

(0xAE) Reserved - - - - - - - -

(0xAD) Reserved - - - - - - - -

(0xAC) Reserved - - - - - - - -

(0xAB) Reserved - - - - - - - -

(0xAA) Reserved - - - - - - - -

(0xA9) Reserved - - - - - - - -

(0xA8) Reserved - - - - - - - -

(0xA7) Reserved - - - - - - - -

(0xA6) Reserved - - - - - - - -

(0xA5) Reserved - - - - - - - -

(0xA4) Reserved - - - - - - - -

(0xA3) Reserved - - - - - - - -

(0xA2) Reserved - - - - - - - -

(0xA1) Reserved - - - - - - - -

(0xA0) Reserved - - - - - - - -

(0x9F) Reserved - - - - - - - -

(0x9E) Reserved - - - - - - - -

(0x9D) Reserved - - - - - - - -

(0x9C) Reserved - - - - - - - -

(0x9B) Reserved - - - - - - - -

(0x9A) Reserved - - - - - - - -

(0x99) Reserved - - - - - - - -

(0x98) Reserved - - - - - - - -

(0x97) Reserved - - - - - - - -

(0x96) Reserved - - - - - - - -

(0x95) Reserved - - - - - - - -

(0x94) Reserved - - - - - - - -

(0x93) Reserved - - - - - - - -

(0x92) Reserved - - - - - - - -

(0x91) Reserved - - - - - - - -

(0x90) Reserved - - - - - - - -

(0x8F) Reserved - - - - - - - -

(0x8E) Reserved - - - - - - - -

(0x8D) Reserved - - - - - - - -

(0x8C) Reserved - - - - - - - -

(0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 137

 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 137

(0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 137

(0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 137

(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 138

(0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 138

(0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 137

(0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 137

(0x83) Reserved - - - - - - - -

(0x82) TCCR1C FOC1A FOC1B - - - - - - 136

(0x81) TCCR1B ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 135

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 - - WGM11 WGM10 133

(0x7F) DIDR1 - - - - - - AIN1D AIN0D 240

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
363
8152A–AVR–11/08

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 260

(0x7D) Reserved - - - - - - - -

(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 256

(0x7B) ADCSRB - ACME - - - ADTS2 ADTS1 ADTS0 239

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 258

(0x79) ADCH ADC Data Register High byte 259

(0x78) ADCL ADC Data Register Low byte 259

(0x77) Reserved - - - - - - - -

(0x76) Reserved - - - - - - - -

(0x75) Reserved - - - - - - - -

(0x74) Reserved - - - - - - - -

(0x73) PCMSK3 PCINT31 PCINT30 PCINT29 PCINT28 PCINT27 PCINT26 PCINT25 PCINT24 71

(0x72) Reserved - - - - - - - -

(0x71) Reserved - - - - - - - -

(0x70) TIMSK2 - - - - - OCIE2B OCIE2A TOIE2 159

(0x6F) TIMSK1 - - ICIE1 - - OCIE1B OCIE1A TOIE1 138

(0x6E) TIMSK0 - - - - - OCIE0B OCIE0A TOIE0 110

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 71

(0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 71

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 72

(0x6A) Reserved - - - - - - - -

(0x69) EICRA - - ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 68

(0x68) PCICR - - - - PCIE3 PCIE2 PCIE1 PCIE0 70

(0x67) Reserved - - - - - - - -

(0x66) OSCCAL Oscillator Calibration Register 41

(0x65) Reserved - - - - - - - -

(0x64) PRR PRTWI PRTIM2 PRTIM0 PRUSART1 PRTIM1 PRSPI PRUSART0 PRADC 49

(0x63) Reserved - - - - - - - -

(0x62) Reserved - - - - - - - -

(0x61) CLKPR CLKPCE - - - CLKPS3 CLKPS2 CLKPS1 CLKPS0 41

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 60

0x3F (0x5F) SREG I T H S V N Z C 11

0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 12

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12

0x3C (0x5C) Reserved - - - - - - - -

0x3B (0x5B) RAMPZ - - - - - - - RAMPZ0 15

0x3A (0x5A) Reserved - - - - - - - -

0x39 (0x59) Reserved - - - - - - - -

0x38 (0x58) Reserved - - - - - - - -

0x37 (0x57) SPMCSR SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SPMEN 290

0x36 (0x56) Reserved - - - - - - - -

0x35 (0x55) MCUCR JTD BODS BODSE PUD - - IVSEL IVCE 92/276

0x34 (0x54) MCUSR - - - JTRF WDRF BORF EXTRF PORF 59/276

0x33 (0x53) SMCR - - - - SM2 SM1 SM0 SE 48

0x32 (0x52) Reserved - - - - - - - -

0x31 (0x51) OCDR On-Chip Debug Register 266

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 258

0x2F (0x4F) Reserved - - - - - - - -

0x2E (0x4E) SPDR SPI 0 Data Register 171

0x2D (0x4D) SPSR SPIF0 WCOL0 - - - - - SPI2X0 170

0x2C (0x4C) SPCR SPIE0 SPE0 DORD0 MSTR0 CPOL0 CPHA0 SPR01 SPR00 169

0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 29

0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 29

0x29 (0x49) Reserved - - - - - - - -

0x28 (0x48) OCR0B Timer/Counter0 Output Compare Register B 110

0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A 109

0x26 (0x46) TCNT0 Timer/Counter0 (8 Bit) 109

0x25 (0x45) TCCR0B FOC0A FOC0B - - WGM02 CS02 CS01 CS00 108

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 - - WGM01 WGM00 110

0x23 (0x43) GTCCR TSM - - - - - PSRASY PSR5SYNC 160

0x22 (0x42) EEARH - - - - EEPROM Address Register High Byte 24

0x21 (0x41) EEARL EEPROM Address Register Low Byte 24

0x20 (0x40) EEDR EEPROM Data Register 24

0x1F (0x3F) EECR - - EEPM1 EEPM0 EERIE EEMPE EEPE EERE 24

0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 29

0x1D (0x3D) EIMSK - - - - - INT2 INT1 INT0 69

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
364
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these reg-
isters, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O regis-
ters as data space using LD and ST instructions, $20 must be added to these addresses. The ATmega324PA is a complex
microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and
OUT instructions. For the Extended I/O space from $60 - $FF, only the ST/STS/STD and LD/LDS/LDD instructions can be
used.

0x1C (0x3C) EIFR - - - - - INTF2 INTF1 INTF0 69

0x1B (0x3B) PCIFR - - - - PCIF3 PCIF2 PCIF1 PCIF0 70

0x1A (0x3A) Reserved - - - - - - - -

0x19 (0x39) Reserved - - - - - - - -

0x18 (0x38) Reserved - - - - - - - -

0x17 (0x37) TIFR2 - - - - - OCF2B OCF2A TOV2 160

0x16 (0x36) TIFR1 - - ICF1 - - OCF1B OCF1A TOV1 139

0x15 (0x35) TIFR0 - - - - - OCF0B OCF0A TOV0 110

0x14 (0x34) Reserved - - - - - - - -

0x13 (0x33) Reserved - - - - - - - -

0x12 (0x32) Reserved - - - - - - - -

0x11 (0x31) Reserved - - - - - - - -

0x10 (0x30) Reserved - - - - - - - -

0x0F (0x2F) Reserved - - - - - - - -

0x0E (0x2E) Reserved - - - - - - - -

0x0D (0x2D) Reserved - - - - - - - -

0x0C (0x2C) Reserved - - - - - - - -

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 93

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 93

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 93

0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 93

0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 93

0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 93

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 92

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 92

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 92

0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 92

0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 92

0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 92

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
365
8152A–AVR–11/08

30. Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← 0xFF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 4

ICALL Indirect Call to (Z) PC ← Z None 4

CALL k Direct Subroutine Call PC ← k None 5

RET Subroutine Return PC ← STACK None 5

RETI Interrupt Return PC ← STACK I 5

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2

BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2
366
8152A–AVR–11/08

ATmega324PA

ATmega324PA
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

ELPM Extended Load Program Memory R0 ← (RAMPZ:Z) None 3

ELPM Rd, Z Extended Load Program Memory Rd ← (Z) None 3

ELPM Rd, Z+ Extended Load Program Memory Rd ← (RAMPZ:Z), RAMPZ:Z ←RAMPZ:Z+1 None 3

Mnemonics Operands Description Operation Flags #Clocks
367
8152A–AVR–11/08

SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks
368
8152A–AVR–11/08

ATmega324PA

ATmega324PA
31. Ordering Information

31.1 ATmega324PA

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.

3. For Speed vs. VCC see ”Speed Grades” on page 327.
4. NiPdAu Lead Finish.

Speed (MHz)(3) Power Supply Ordering Code(2) Package(1) Operational Range

20 1.8 - 5.5V

ATmega324PA-AU

ATmega324PA-PU
ATmega324PA-MU

ATmega324PA-MCH(4)

ATmega324PA-CU

44A

40P6
44M1

44MC

49C2

Industrial
(-40oC to 85oC)

Package Type

44A 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)

40P6 40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP)

44M1 44-pad, 7 x 7 x 1.0 mm body, lead pitch 0.50 mm, Thermally Enhanced Plastic Very Thin Quad Flat No-Lead (VQFN)

44MC 44-lead (2-row Staggered), 5 x 5 x 1.0 mm body, 2.60 x 2.60 mm Exposed Pad, Quad Flat No-Lead Package (QFN)

49C2 49-ball, (7 x 7 Array) 0.65 mm Pitch, 5 x 5 x 1 mm, Very Thin, Fine-Pitch Ball Grid Array Package (VFBGA)
369
8152A–AVR–11/08

32. Packaging Information

32.1 44A

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.

44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

B44A

10/5/2001

PIN 1 IDENTIFIER

0˚~7˚

PIN 1

L

C

A1 A2 A

D1

D

e E1 E

B

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

Notes: 1. This package conforms to JEDEC reference MS-026, Variation ACB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable

protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.

3. Lead coplanarity is 0.10 mm maximum.

A – – 1.20

A1 0.05 – 0.15

A2 0.95 1.00 1.05

D 11.75 12.00 12.25

D1 9.90 10.00 10.10 Note 2

E 11.75 12.00 12.25

E1 9.90 10.00 10.10 Note 2

B 0.30 – 0.45

C 0.09 – 0.20

L 0.45 – 0.75

e 0.80 TYP
370
8152A–AVR–11/08

ATmega324PA

ATmega324PA
32.2 40P6

 2325 Orchard Parkway
 San Jose, CA 95131

TITLE DRAWING NO.

R

REV.
40P6, 40-lead (0.600"/15.24 mm Wide) Plastic Dual
Inline Package (PDIP) B40P6

09/28/01

PIN
1

E1

A1

B

REF

E

B1

C

L

SEATING PLANE

A

0º ~ 15º

D

e

eB

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

A – – 4.826

A1 0.381 – –

D 52.070 – 52.578 Note 2

E 15.240 – 15.875

E1 13.462 – 13.970 Note 2

B 0.356 – 0.559

B1 1.041 – 1.651

L 3.048 – 3.556

C 0.203 – 0.381

eB 15.494 – 17.526

e 2.540 TYP

Notes: 1. This package conforms to JEDEC reference MS-011, Variation AC.
2. Dimensions D and E1 do not include mold Flash or Protrusion.

Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").
371
8152A–AVR–11/08

32.3 44M1

TITLE DRAWING NO.GPC REV.
 Package Drawing Contact:
 packagedrawings@atmel.com 44M1ZWS H

44M1, 44-pad, 7 x 7 x 1.0 mm Body, Lead
Pitch 0.50 mm, 5.20 mm Exposed Pad, Thermally
Enhanced Plastic Very Thin Quad Flat No
Lead Package (VQFN)

9/26/08

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

 A 0.80 0.90 1.00

 A1 – 0.02 0.05

 A3 0.20 REF

 b 0.18 0.23 0.30

 D

 D2 5.00 5.20 5.40

6.90 7.00 7.10

6.90 7.00 7.10

 E

 E2 5.00 5.20 5.40

 e 0.50 BSC

 L 0.59 0.64 0.69

K 0.20 0.26 0.41Note: JEDEC Standard MO-220, Fig. 1 (SAW Singulation) VKKD-3.

TOP VIEW

SIDE VIEW

BOTTOM VIEW

D

E

Marked Pin# 1 ID

E2

D2

b e

Pin #1 Corner
L

A1

A3

A

SEATING PLANE

Pin #1
Triangle

Pin #1
Chamfer
(C 0.30)

Option A

Option B

Pin #1
Notch
(0.20 R)

Option C

K

K

1
2
3

372
8152A–AVR–11/08

ATmega324PA

ATmega324PA
32.4 44MC

TITLE DRA WING NO . REV .
 Package Drawing Contact:
 packagedrawings@atmel.com 44MC A

9/13/07

D2

E2 L L

B15

A18

B11

A13

B10

A12

B6

A7

A6

B5

B1

B20

A1

A24

eT

L

b

R0.20 0.40

eR

A19

B16

eT/2

SIDE VIEW

A1
A

y

C

D

E

Pin 1 ID

TOP VIEW

BOTTOM VIEW

Note: 1. The terminal #1 ID is a Laser-marked Feature.

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX N O T E

 A 0.80 0.90 1.00

 A1 0.00 0.02 0.05

 b 0.18 0.23 0.30

 C 0.20 REF

 D 4.90 5.00 5.10

 D2 2.55 2.60 2.65

 E 4.90 5.00 5.10

 E2 2.55 2.60 2.65

 eT – 0.70 –

 eR – 0.40 –

 K 0.45 – –

 L 0.30 0.35 0.40

 y 0.00 – 0.075

44MC, 44QFN (2-Row Staggered), 5 x 5 x 1.00 mm Body,
2.60 x 2.60 mm Exposed Pad, Quad Flat No Lead Package

373
8152A–AVR–11/08

32.5 49C2

TITLE DRAWING NO.GPC REV.
 Package Drawing Contact:
 packagedrawings@atmel.com 49C2CBD A

49C2, 49-ball (7 x 7 Array), 0.65 mm Pitch,
5.0 x 5.0 x 1.0 mm, Very Thin, Fine-Pitch
Ball Grid Array Package (VFBGA)

3/14/08

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL MIN NOM MAX NOTE

A – – 1.00

A1 0.20 – –

A2 0.65 – –

D 4.90 5.00 5.10

D1 3.90 BSC

E 4.90 5.00 5.10

E1 3.90 BSC

b 0.30 0.35 0.40

e 0.65 BSC

TOP VIEW

SIDE VIEW

A1 BALL ID

G

F

E

D

C

B

A

1 2 3 4 5 6 7

A

A1

A2

D

E
0.10

E1

D1

49 - Ø0.35 ± 0.05

e

A1 BALL CORNER

BOTTOM VIEW

b e
374
8152A–AVR–11/08

ATmega324PA

ATmega324PA
33. Errata

33.1 ATmega324PA Rev. F

No known Errata.
375
8152A–AVR–11/08

34. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.

34.1 Rev. 8152A- 11/08

1. Initial revision (Based on the ATmega164P/324P/644P datasheet 8011K-AVR-09/08).

2. Changes done compared to ATmega164P/324P/644P datasheet 8011K-AVR-09/08:

– New graphics in ”Typical Characteristics” on page 336

– New ”Ordering Information” on page 369
376
8152A–AVR–11/08

ATmega324PA

ATmega324PA
Table of Contents

Features ... 1

1 Pin Configurations ... 2

1.1Pinout - PDIP/TQFP/VQFN/QFN/MLF ..2

1.2Pinout - DRQFN ..3

1.3Pinout - VFBGA ...4

2 Overview ... 5

2.1Block Diagram ...5

2.2Pin Descriptions ...7

3 Resources ... 9

4 About Code Examples ... 9

5 Data Retention .. 9

6 AVR CPU Core .. 10

6.1Overview ..10

6.2ALU – Arithmetic Logic Unit ...11

6.3Status Register ..11

6.4General Purpose Register File ..13

6.5Stack Pointer ...14

6.6Instruction Execution Timing ...15

6.7Reset and Interrupt Handling ...16

7 AVR Memories .. 19

7.1Overview ..19

7.2In-System Reprogrammable Flash Program Memory ...19

7.3SRAM Data Memory ..20

7.4EEPROM Data Memory ..22

7.5I/O Memory ..23

7.6Register Description ..24

8 System Clock and Clock Options ... 30

8.1Clock Systems and their Distribution ...30

8.2Clock Sources ...31

8.3Low Power Crystal Oscillator ...33

8.4Full Swing Crystal Oscillator ..34

8.5Low Frequency Crystal Oscillator ..35
i
8152A–AVR–11/08

8.6Calibrated Internal RC Oscillator ...37

8.7128 kHz Internal Oscillator ..38

8.8External Clock ...38

8.9Timer/Counter Oscillator ..39

8.10Clock Output Buffer ...39

8.11System Clock Prescaler ..39

8.12Register Description ..41

9 Power Management and Sleep Modes ... 43

9.1Overview ..43

9.2Sleep Modes ..43

9.3BOD Disable ..44

9.4Idle Mode ...44

9.5ADC Noise Reduction Mode ..44

9.6Power-down Mode ...45

9.7Power-save Mode ..45

9.8Standby Mode ...45

9.9Extended Standby Mode ...45

9.10Power Reduction Register ...46

9.11Minimizing Power Consumption ..46

9.12Register Description ..48

10 System Control and Reset .. 51

10.1Internal Voltage Reference ..55

10.2Watchdog Timer ..56

10.3Register Description ..59

11 Interrupts .. 62

11.1Overview ..62

11.2Interrupt Vectors in ATmega324PA ...62

11.3Register Description ..66

12 External Interrupts ... 68

12.1Overview ..68

12.2Register Description ..68

13 I/O-Ports .. 73

13.1Overview ..73

13.2Ports as General Digital I/O ...74
ii
8152A–AVR–11/08

ATmega324PA

ATmega324PA
13.3Alternate Port Functions ..79

13.4Register Description ..92

14 8-bit Timer/Counter0 with PWM .. 94

14.1Features ..94

14.2Overview ..94

14.3Timer/Counter Clock Sources ...95

14.4Counter Unit ..95

14.5Output Compare Unit ...96

14.6Compare Match Output Unit ..98

14.7Modes of Operation ...99

14.8Timer/Counter Timing Diagrams ...103

14.9Register Description ..105

15 16-bit Timer/Counter1 with PWM .. 112

15.1Features ..112

15.2Overview ..112

15.3Accessing 16-bit Registers ..114

15.4Timer/Counter Clock Sources ...117

15.5Counter Unit ..118

15.6Input Capture Unit ...119

15.7Output Compare Units ...121

15.8Compare Match Output Unit ..123

15.9Modes of Operation ...124

15.10Timer/Counter Timing Diagrams ...131

15.11Register Description ..133

16 8-bit Timer/Counter2 with PWM and Asynchronous Operation 140

16.1Features ..140

16.2Overview ..140

16.3Timer/Counter Clock Sources ...141

16.4Counter Unit ..142

16.5Output Compare Unit ...142

16.6Compare Match Output Unit ..144

16.7Modes of Operation ...145

16.8Timer/Counter Timing Diagrams ...149

16.9Asynchronous Operation of Timer/Counter2 ...151

16.10Timer/Counter Prescaler ...153
iii
8152A–AVR–11/08

16.11Register Description ..153

17 SPI – Serial Peripheral Interface ... 162

17.1Features ..162

17.2Overview ..162

17.3SS Pin Functionality ..167

17.4Data Modes ...167

17.5Register Description ..169

18 USART ... 172

18.1Features ..172

18.2USART1 and USART0 ..172

18.3Overview ..172

18.4Clock Generation ...173

18.5Frame Formats ..176

18.6USART Initialization ...177

18.7Data Transmission – The USART Transmitter ..178

18.8Data Reception – The USART Receiver ...181

18.9Asynchronous Data Reception ..185

18.10Multi-processor Communication Mode ..188

18.11Register Description ..190

18.12Examples of Baud Rate Setting ...195

19 USART in SPI Mode ... 199

19.1Features ..199

19.2Overview ..199

19.3Clock Generation ...199

19.4SPI Data Modes and Timing ..200

19.5Frame Formats ..200

19.6Data Transfer ...202

19.7AVR USART MSPIM vs. AVR SPI ..204

19.8Register Description ..205

20 2-wire Serial Interface .. 208

20.1Features ..208

20.22-wire Serial Interface Bus Definition ..208

20.3Data Transfer and Frame Format ..209

20.4Multi-master Bus Systems, Arbitration and Synchronization212

20.5Overview of the TWI Module ...214
iv
8152A–AVR–11/08

ATmega324PA

ATmega324PA
20.6Using the TWI ..216

20.7Transmission Modes ...219

20.8Multi-master Systems and Arbitration ..232

20.9Register Description ..233

21 AC - Analog Comparator ... 238

21.1Overview ..238

21.2Analog Comparator Multiplexed Input ...238

21.3Register Description ..239

22 ADC - Analog-to-digital Converter .. 241

22.1Features ..241

22.2Overview ..241

22.3Operation ...242

22.4Starting a Conversion ..243

22.5Prescaling and Conversion Timing ..244

22.6Changing Channel or Reference Selection ...247

22.7ADC Noise Canceler ...249

22.8ADC Conversion Result ...254

22.9Register Description ..256

23 JTAG Interface and On-chip Debug System 261

23.1Features ..261

23.2Overview ..261

23.3TAP – Test Access Port ..261

23.4TAP Controller ...263

23.5Using the Boundary-scan Chain ..264

23.6Using the On-chip Debug System ...264

23.7On-chip Debug Specific JTAG Instructions ...265

23.8Using the JTAG Programming Capabilities ...265

23.9Bibliography ...266

23.10Register Description ..266

24 IEEE 1149.1 (JTAG) Boundary-scan ... 267

24.1Features ..267

24.2Overview ..267

24.3Data Registers ...268

24.4Boundary-scan Specific JTAG Instructions ...269

24.5Boundary-scan Chain ..270
v
8152A–AVR–11/08

24.6ATmega324PA Boundary-scan Order ...273

24.7Boundary-scan Description Language Files ..275

24.8Register Description ..276

25 Boot Loader Support – Read-While-Write Self-Programming 277

25.1Features ..277

25.2Overview ..277

25.3Application and Boot Loader Flash Sections ...277

25.4Read-While-Write and No Read-While-Write Flash Sections278

25.5Boot Loader Lock Bits ...280

25.6Entering the Boot Loader Program ..281

25.7Addressing the Flash During Self-Programming ...282

25.8Self-Programming the Flash ..283

25.9Register Description ..290

26 Memory Programming ... 292

26.1Program And Data Memory Lock Bits ...292

26.2Fuse Bits ..293

26.3Signature Bytes ...295

26.4Calibration Byte ...295

26.5Page Size ..295

26.6Parallel Programming Parameters, Pin Mapping, and Commands296

26.7Parallel Programming ..298

26.8Serial Downloading ..307

26.9Serial Programming Instruction set ...309

26.10Programming via the JTAG Interface ..311

27 Electrical Characteristics .. 324

27.1DC Characteristics ...324

27.2Speed Grades ...327

27.3Clock Characteristics ...328

27.4System and Reset Characteristics ..329

27.5External Interrupts Characteristics ..329

27.6SPI Timing Characteristics ..330

27.72-wire Serial Interface Characteristics ...331

27.8ADC Characteristics ..333

28 Typical Characteristics .. 336

28.1ATmega324PA Typical Characteristics ...337
vi
8152A–AVR–11/08

ATmega324PA

ATmega324PA
29 Register Summary ... 362

30 Instruction Set Summary ... 366

31 Ordering Information ... 369

31.1ATmega324PA ..369

32 Packaging Information .. 370

32.144A ..370

32.240P6 ..371

32.344M1 ..372

32.444MC ...373

32.549C2 ...374

33 Errata ... 375

33.1ATmega324PA Rev. F ...375

34 Datasheet Revision History ... 376

34.1Rev. 8152A- 11/08 ...376

Table of Contents... i
vii
8152A–AVR–11/08

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others are registered trademarks or trade-
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
8152A–AVR–11/08

	Features
	1. Pin Configurations
	1.1 Pinout - PDIP/TQFP/VQFN/QFN/MLF
	1.2 Pinout - DRQFN
	1.3 Pinout - VFBGA

	2. Overview
	2.1 Block Diagram
	2.2 Pin Descriptions
	2.2.1 VCC
	2.2.2 GND
	2.2.3 Port A (PA7:PA0)
	2.2.4 Port B (PB7:PB0)
	2.2.5 Port C (PC7:PC0)
	2.2.6 Port D (PD7:PD0)
	2.2.7 RESET
	2.2.8 XTAL1
	2.2.9 XTAL2
	2.2.10 AVCC
	2.2.11 AREF

	3. Resources
	4. About Code Examples
	5. Data Retention
	6. AVR CPU Core
	6.1 Overview
	6.2 ALU – Arithmetic Logic Unit
	6.3 Status Register
	6.3.1 SREG – Status Register

	6.4 General Purpose Register File
	6.4.1 The X-register, Y-register, and Z-register

	6.5 Stack Pointer
	6.5.1 SPH and SPL – Stack Pointer High and Stack pointer Low
	6.5.2 RAMPZ – Extended Z-pointer Register for ELPM/SPM

	6.6 Instruction Execution Timing
	6.7 Reset and Interrupt Handling
	6.7.1 Interrupt Response Time

	7. AVR Memories
	7.1 Overview
	7.2 In-System Reprogrammable Flash Program Memory
	7.3 SRAM Data Memory
	7.3.1 Data Memory Access Times

	7.4 EEPROM Data Memory
	7.4.1 EEPROM Read/Write Access
	7.4.2 Preventing EEPROM Corruption

	7.5 I/O Memory
	7.6 Register Description
	7.6.1 EEARH and EEARL – The EEPROM Address Register
	7.6.2 EEDR – The EEPROM Data Register
	7.6.3 EECR – The EEPROM Control Register
	7.6.4 GPIOR2 – General Purpose I/O Register 2
	7.6.5 GPIOR1 – General Purpose I/O Register 1
	7.6.6 GPIOR0 – General Purpose I/O Register 0

	8. System Clock and Clock Options
	8.1 Clock Systems and their Distribution
	8.1.1 CPU Clock – clkCPU
	8.1.2 I/O Clock – clkI/O
	8.1.3 Flash Clock – clkFLASH
	8.1.4 Asynchronous Timer Clock – clkASY
	8.1.5 ADC Clock – clkADC

	8.2 Clock Sources
	8.2.1 Default Clock Source
	8.2.2 Clock Startup Sequence
	8.2.3 Clock Source Connections

	8.3 Low Power Crystal Oscillator
	8.4 Full Swing Crystal Oscillator
	8.5 Low Frequency Crystal Oscillator
	8.6 Calibrated Internal RC Oscillator
	8.7 128 kHz Internal Oscillator
	8.8 External Clock
	8.9 Timer/Counter Oscillator
	8.10 Clock Output Buffer
	8.11 System Clock Prescaler
	8.12 Register Description
	8.12.1 OSCCAL – Oscillator Calibration Register
	8.12.2 CLKPR – Clock Prescale Register

	9. Power Management and Sleep Modes
	9.1 Overview
	9.2 Sleep Modes
	9.3 BOD Disable
	9.4 Idle Mode
	9.5 ADC Noise Reduction Mode
	9.6 Power-down Mode
	9.7 Power-save Mode
	9.8 Standby Mode
	9.9 Extended Standby Mode
	9.10 Power Reduction Register
	9.11 Minimizing Power Consumption
	9.11.1 Analog to Digital Converter
	9.11.2 Analog Comparator
	9.11.3 Brown-out Detector
	9.11.4 Internal Voltage Reference
	9.11.5 Watchdog Timer
	9.11.6 Port Pins
	9.11.7 On-chip Debug System

	9.12 Register Description
	9.12.1 SMCR – Sleep Mode Control Register
	9.12.2 MCUCR – MCU Control Register
	9.12.3 PRR – Power Reduction Register

	10. System Control and Reset
	10.0.1 Resetting the AVR
	10.0.2 Reset Sources
	10.0.3 Power-on Reset
	10.0.4 External Reset
	10.0.5 Brown-out Detection
	10.0.6 Watchdog Reset
	10.1 Internal Voltage Reference
	10.1.1 Voltage Reference Enable Signals and Start-up Time

	10.2 Watchdog Timer
	10.2.1 Features
	10.2.2 Overview

	10.3 Register Description
	10.3.1 MCUSR – MCU Status Register
	10.3.2 WDTCSR – Watchdog Timer Control Register

	11. Interrupts
	11.1 Overview
	11.2 Interrupt Vectors in ATmega324PA
	11.2.1 Moving Interrupts Between Application and Boot Space

	11.3 Register Description
	11.3.1 MCUCR – MCU Control Register

	12. External Interrupts
	12.1 Overview
	12.2 Register Description
	12.2.1 EICRA – External Interrupt Control Register A
	12.2.2 EIMSK – External Interrupt Mask Register
	12.2.3 EIFR –External Interrupt Flag Register
	12.2.4 PCICR – Pin Change Interrupt Control Register
	12.2.5 PCIFR – Pin Change Interrupt Flag Register
	12.2.6 PCMSK3 – Pin Change Mask Register 3
	12.2.7 PCMSK2 – Pin Change Mask Register 2
	12.2.8 PCMSK1 – Pin Change Mask Register 1
	12.2.9 PCMSK0 – Pin Change Mask Register 0

	13. I/O-Ports
	13.1 Overview
	13.2 Ports as General Digital I/O
	13.2.1 Configuring the Pin
	13.2.2 Toggling the Pin
	13.2.3 Switching Between Input and Output
	13.2.4 Reading the Pin Value
	13.2.5 Digital Input Enable and Sleep Modes
	13.2.6 Unconnected Pins

	13.3 Alternate Port Functions
	13.3.1 Alternate Functions of Port A
	13.3.2 Alternate Functions of Port B
	13.3.3 Alternate Functions of Port C
	13.3.4 Alternate Functions of Port D

	Register Description
	13.3.5 MCUCR – MCU Control Register
	13.3.6 PORTA – Port A Data Register
	13.3.7 DDRA – Port A Data Direction Register
	13.3.8 PINA – Port A Input Pins Address
	13.3.9 PORTB – Port B Data Register
	13.3.10 DDRB – Port B Data Direction Register
	13.3.11 PINB – Port B Input Pins Address
	13.3.12 PORTC – Port C Data Register
	13.3.13 DDRC – Port C Data Direction Register
	13.3.14 PINC – Port C Input Pins Address
	13.3.15 PORTD – Port D Data Register
	13.3.16 DDRD – Port D Data Direction Register
	13.3.17 PIND – Port D Input Pins Address

	14. 8-bit Timer/Counter0 with PWM
	14.1 Features
	14.2 Overview
	14.2.1 Registers
	14.2.2 Definitions

	14.3 Timer/Counter Clock Sources
	14.4 Counter Unit
	14.5 Output Compare Unit
	14.5.1 Force Output Compare
	14.5.2 Compare Match Blocking by TCNT0 Write
	14.5.3 Using the Output Compare Unit

	14.6 Compare Match Output Unit
	14.6.1 Compare Output Mode and Waveform Generation

	14.7 Modes of Operation
	14.7.1 Normal Mode
	14.7.2 Clear Timer on Compare Match (CTC) Mode
	14.7.3 Fast PWM Mode
	14.7.4 Phase Correct PWM Mode

	14.8 Timer/Counter Timing Diagrams
	14.9 Register Description
	14.9.1 TCCR0A – Timer/Counter Control Register A
	14.9.2 TCCR0B – Timer/Counter Control Register B
	14.9.3 TCNT0 – Timer/Counter Register
	14.9.4 OCR0A – Output Compare Register A
	14.9.5 OCR0B – Output Compare Register B
	14.9.6 TIMSK0 – Timer/Counter Interrupt Mask Register
	14.9.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register

	15. 16-bit Timer/Counter1 with PWM
	15.1 Features
	15.2 Overview
	15.2.1 Registers
	15.2.2 Definitions

	15.3 Accessing 16-bit Registers
	15.3.1 Reusing the Temporary High Byte Register

	15.4 Timer/Counter Clock Sources
	15.5 Counter Unit
	15.6 Input Capture Unit
	15.6.1 Input Capture Trigger Source
	15.6.2 Noise Canceler
	15.6.3 Using the Input Capture Unit

	15.7 Output Compare Units
	15.7.1 Force Output Compare
	15.7.2 Compare Match Blocking by TCNTn Write
	15.7.3 Using the Output Compare Unit

	15.8 Compare Match Output Unit
	15.8.1 Compare Output Mode and Waveform Generation

	15.9 Modes of Operation
	15.9.1 Normal Mode
	15.9.2 Clear Timer on Compare Match (CTC) Mode
	15.9.3 Fast PWM Mode
	15.9.4 Phase Correct PWM Mode
	15.9.5 Phase and Frequency Correct PWM Mode

	15.10 Timer/Counter Timing Diagrams
	15.11 Register Description
	15.11.1 TCCR1A – Timer/Counter1 Control Register A
	15.11.2 TCCR1B – Timer/Counter1 Control Register B
	15.11.3 TCCR1C – Timer/Counter1 Control Register C
	15.11.4 TCNT1H and TCNT1L –Timer/Counter1
	15.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A
	15.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B
	15.11.7 ICR1H and ICR1L – Input Capture Register 1
	15.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register
	15.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

	16. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
	16.1 Features
	16.2 Overview
	16.2.1 Registers
	16.2.2 Definitions

	16.3 Timer/Counter Clock Sources
	16.4 Counter Unit
	16.5 Output Compare Unit
	16.5.1 Force Output Compare
	16.5.2 Compare Match Blocking by TCNT2 Write
	16.5.3 Using the Output Compare Unit

	16.6 Compare Match Output Unit
	16.6.1 Compare Output Mode and Waveform Generation

	16.7 Modes of Operation
	16.7.1 Normal Mode
	16.7.2 Clear Timer on Compare Match (CTC) Mode
	16.7.3 Fast PWM Mode
	16.7.4 Phase Correct PWM Mode

	16.8 Timer/Counter Timing Diagrams
	16.9 Asynchronous Operation of Timer/Counter2
	16.10 Timer/Counter Prescaler
	16.11 Register Description
	16.11.1 TCCR2A – Timer/Counter Control Register A
	16.11.2 TCCR2B – Timer/Counter Control Register B
	16.11.3 TCNT2 – Timer/Counter Register
	16.11.4 OCR2A – Output Compare Register A
	16.11.5 OCR2B – Output Compare Register B
	16.11.6 ASSR – Asynchronous Status Register
	16.11.7 TIMSK2 – Timer/Counter2 Interrupt Mask Register
	16.11.8 TIFR2 – Timer/Counter2 Interrupt Flag Register
	16.11.9 GTCCR – General Timer/Counter Control Register

	17. SPI – Serial Peripheral Interface
	17.1 Features
	17.2 Overview
	17.3 SS Pin Functionality
	17.3.1 Slave Mode
	17.3.2 Master Mode

	17.4 Data Modes
	17.5 Register Description
	17.5.1 SPCR – SPI Control Register
	17.5.2 SPSR – SPI Status Register
	17.5.3 SPDR – SPI Data Register

	18. USART
	18.1 Features
	18.2 USART1 and USART0
	18.3 Overview
	18.4 Clock Generation
	18.4.1 Internal Clock Generation – The Baud Rate Generator
	18.4.2 Double Speed Operation (U2Xn)
	18.4.3 External Clock
	18.4.4 Synchronous Clock Operation

	18.5 Frame Formats
	18.5.1 Parity Bit Calculation

	18.6 USART Initialization
	18.7 Data Transmission – The USART Transmitter
	18.7.1 Sending Frames with 5 to 8 Data Bit
	18.7.2 Sending Frames with 9 Data Bit
	18.7.3 Transmitter Flags and Interrupts
	18.7.4 Parity Generator
	18.7.5 Disabling the Transmitter

	18.8 Data Reception – The USART Receiver
	18.8.1 Receiving Frames with 5 to 8 Data Bits
	18.8.2 Receiving Frames with 9 Data Bits
	18.8.3 Receive Compete Flag and Interrupt
	18.8.4 Receiver Error Flags
	18.8.5 Parity Checker
	18.8.6 Disabling the Receiver
	18.8.7 Flushing the Receive Buffer

	18.9 Asynchronous Data Reception
	18.9.1 Asynchronous Clock Recovery
	18.9.2 Asynchronous Data Recovery
	18.9.3 Asynchronous Operational Range

	18.10 Multi-processor Communication Mode
	18.10.1 Using MPCMn

	18.11 Register Description
	18.11.1 UDRn – USART I/O Data Register n
	18.11.2 UCSRnA – USART Control and Status Register A
	18.11.3 UCSRnB – USART Control and Status Register n B
	18.11.4 UCSRnC – USART Control and Status Register n C
	18.11.5 UBRRnL and UBRRnH – USART Baud Rate Registers

	18.12 Examples of Baud Rate Setting

	19. USART in SPI Mode
	19.1 Features
	19.2 Overview
	19.3 Clock Generation
	19.4 SPI Data Modes and Timing
	19.5 Frame Formats
	19.5.1 USART MSPIM Initialization

	19.6 Data Transfer
	19.6.1 Transmitter and Receiver Flags and Interrupts
	19.6.2 Disabling the Transmitter or Receiver

	19.7 AVR USART MSPIM vs. AVR SPI
	19.8 Register Description
	19.8.1 UDRn – USART MSPIM I/O Data Register
	19.8.2 UCSRnA – USART MSPIM Control and Status Register n A
	19.8.3 UCSRnB – USART MSPIM Control and Status Register n B
	19.8.4 UCSRnC – USART MSPIM Control and Status Register n C
	19.8.5 UBRRnL and UBRRnH –USART MSPIM Baud Rate Registers

	20. 2-wire Serial Interface
	20.1 Features
	20.2 2-wire Serial Interface Bus Definition
	20.2.1 TWI Terminology
	20.2.2 Electrical Interconnection

	20.3 Data Transfer and Frame Format
	20.3.1 Transferring Bits
	20.3.2 START and STOP Conditions
	20.3.3 Address Packet Format
	20.3.4 Data Packet Format
	20.3.5 Combining Address and Data Packets into a Transmission

	20.4 Multi-master Bus Systems, Arbitration and Synchronization
	20.5 Overview of the TWI Module
	20.5.1 SCL and SDA Pins
	20.5.2 Bit Rate Generator Unit
	20.5.3 Bus Interface Unit
	20.5.4 Address Match Unit
	20.5.5 Control Unit

	20.6 Using the TWI
	20.7 Transmission Modes
	20.7.1 Master Transmitter Mode
	20.7.2 Master Receiver Mode
	20.7.3 Slave Receiver Mode
	20.7.4 Slave Transmitter Mode
	20.7.5 Miscellaneous States
	20.7.6 Combining Several TWI Modes

	20.8 Multi-master Systems and Arbitration
	20.9 Register Description
	20.9.1 TWBR – TWI Bit Rate Register
	20.9.2 TWCR – TWI Control Register
	20.9.3 TWSR – TWI Status Register
	20.9.4 TWDR – TWI Data Register
	20.9.5 TWAR – TWI (Slave) Address Register
	20.9.6 TWAMR – TWI (Slave) Address Mask Register

	21. AC - Analog Comparator
	21.1 Overview
	21.2 Analog Comparator Multiplexed Input
	21.3 Register Description
	21.3.1 ADCSRB – ADC Control and Status Register B
	21.3.2 ACSR – Analog Comparator Control and Status Register
	21.3.3 DIDR1 – Digital Input Disable Register 1

	22. ADC - Analog-to-digital Converter
	22.1 Features
	22.2 Overview
	22.3 Operation
	22.4 Starting a Conversion
	22.5 Prescaling and Conversion Timing
	22.5.1 Differential Gain Channels

	22.6 Changing Channel or Reference Selection
	22.6.1 ADC Input Channels
	22.6.2 ADC Voltage Reference

	22.7 ADC Noise Canceler
	22.7.1 Analog Input Circuitry
	22.7.2 Analog Noise Canceling Techniques
	22.7.3 Offset Compensation Schemes
	22.7.4 ADC Accuracy Definitions

	22.8 ADC Conversion Result
	22.9 Register Description
	22.9.1 ADMUX – ADC Multiplexer Selection Register
	22.9.2 ADCSRA – ADC Control and Status Register A
	22.9.3 ADCL and ADCH – The ADC Data Register
	ADLAR = 0
	ADLAR = 1

	22.9.4 ADCSRB – ADC Control and Status Register B
	22.9.5 DIDR0 – Digital Input Disable Register 0

	23. JTAG Interface and On-chip Debug System
	23.1 Features
	23.2 Overview
	23.3 TAP – Test Access Port
	23.4 TAP Controller
	23.5 Using the Boundary-scan Chain
	23.6 Using the On-chip Debug System
	23.7 On-chip Debug Specific JTAG Instructions
	23.7.1 PRIVATE0; 0x8
	23.7.2 PRIVATE1; 0x9
	23.7.3 PRIVATE2; 0xA
	23.7.4 PRIVATE3; 0xB

	23.8 Using the JTAG Programming Capabilities
	23.9 Bibliography
	23.10 Register Description
	23.10.1 OCDR – On-chip Debug Register

	24. IEEE 1149.1 (JTAG) Boundary-scan
	24.1 Features
	24.2 Overview
	24.3 Data Registers
	24.3.1 Bypass Register
	24.3.2 Device Identification Register
	Version
	Part Number
	Manufacturer ID

	24.3.3 Reset Register
	24.3.4 Boundary-scan Chain

	24.4 Boundary-scan Specific JTAG Instructions
	24.4.1 EXTEST; 0x0
	24.4.2 IDCODE; 0x1
	24.4.3 SAMPLE_PRELOAD; 0x2
	24.4.4 AVR_RESET; 0xC
	24.4.5 BYPASS; 0xF

	24.5 Boundary-scan Chain
	24.5.1 Scanning the Digital Port Pins
	24.5.2 Scanning the RESET Pin

	24.6 ATmega324PA Boundary-scan Order
	24.7 Boundary-scan Description Language Files
	24.8 Register Description
	24.8.1 MCUCR – MCU Control Register
	24.8.2 MCUSR – MCU Status Register

	25. Boot Loader Support – Read-While-Write Self-Programming
	25.1 Features
	25.2 Overview
	25.3 Application and Boot Loader Flash Sections
	25.3.1 Application Section
	25.3.2 BLS – Boot Loader Section

	25.4 Read-While-Write and No Read-While-Write Flash Sections
	25.4.1 RWW – Read-While-Write Section
	25.4.2 NRWW – No Read-While-Write Section

	25.5 Boot Loader Lock Bits
	25.6 Entering the Boot Loader Program
	25.7 Addressing the Flash During Self-Programming
	25.8 Self-Programming the Flash
	25.8.1 Performing Page Erase by SPM
	25.8.2 Filling the Temporary Buffer (Page Loading)
	25.8.3 Performing a Page Write
	25.8.4 Using the SPM Interrupt
	25.8.5 Consideration While Updating BLS
	25.8.6 Prevent Reading the RWW Section During Self-Programming
	25.8.7 Setting the Boot Loader Lock Bits by SPM
	25.8.8 EEPROM Write Prevents Writing to SPMCSR
	25.8.9 Reading the Fuse and Lock Bits from Software
	25.8.10 Reading the Signature Row from Software
	25.8.11 Preventing Flash Corruption
	25.8.12 Programming Time for Flash when Using SPM
	25.8.13 Simple Assembly Code Example for a Boot Loader
	25.8.14 ATmega324PA Boot Loader Parameters

	25.9 Register Description
	25.9.1 SPMCSR – Store Program Memory Control and Status Register

	26. Memory Programming
	26.1 Program And Data Memory Lock Bits
	26.2 Fuse Bits
	26.2.1 Latching of Fuses

	26.3 Signature Bytes
	26.4 Calibration Byte
	26.5 Page Size
	26.6 Parallel Programming Parameters, Pin Mapping, and Commands
	26.6.1 Signal Names

	26.7 Parallel Programming
	26.7.1 Enter Programming Mode
	26.7.2 Considerations for Efficient Programming
	26.7.3 Chip Erase
	26.7.4 Programming the Flash
	26.7.5 Programming the EEPROM
	26.7.6 Reading the Flash
	26.7.7 Reading the EEPROM
	26.7.8 Programming the Fuse Low Bits
	26.7.9 Programming the Fuse High Bits
	26.7.10 Programming the Extended Fuse Bits
	26.7.11 Programming the Lock Bits
	26.7.12 Reading the Fuse and Lock Bits
	26.7.13 Reading the Signature Bytes
	26.7.14 Reading the Calibration Byte
	26.7.15 Parallel Programming Characteristics

	26.8 Serial Downloading
	26.8.1 Serial Programming Pin Mapping
	26.8.2 Serial Programming Algorithm

	26.9 Serial Programming Instruction set
	26.9.1 Serial Programming Characteristics

	26.10 Programming via the JTAG Interface
	26.10.1 Programming Specific JTAG Instructions
	26.10.2 AVR_RESET (0xC)
	26.10.3 PROG_ENABLE (0x4)
	26.10.4 PROG_COMMANDS (0x5)
	26.10.5 PROG_PAGELOAD (0x6)
	26.10.6 PROG_PAGEREAD (0x7)
	26.10.7 Data Registers
	26.10.8 Reset Register
	26.10.9 Programming Enable Register
	26.10.10 Programming Command Register
	26.10.11 Flash Data Byte Register
	26.10.12 Programming Algorithm
	26.10.13 Entering Programming Mode
	26.10.14 Leaving Programming Mode
	26.10.15 Performing Chip Erase
	26.10.16 Programming the Flash
	26.10.17 Reading the Flash
	26.10.18 Programming the EEPROM
	26.10.19 Reading the EEPROM
	26.10.20 Programming the Fuses
	26.10.21 Programming the Lock Bits
	26.10.22 Reading the Fuses and Lock Bits
	26.10.23 Reading the Signature Bytes
	26.10.24 Reading the Calibration Byte

	27. Electrical Characteristics
	27.1 DC Characteristics
	27.1.1 ATmega324PA DC Characteristics

	27.2 Speed Grades
	27.3 Clock Characteristics
	27.3.1 External Clock Drive Waveforms
	27.3.2 External Clock Drive

	27.4 System and Reset Characteristics
	27.5 External Interrupts Characteristics
	27.6 SPI Timing Characteristics
	27.7 2-wire Serial Interface Characteristics
	27.8 ADC Characteristics

	28. Typical Characteristics
	28.1 ATmega324PA Typical Characteristics
	28.1.1 Active Supply Current
	28.1.2 Idle Supply Current
	28.1.3 Supply Current of I/O modules
	Example

	28.1.4 Power-down Supply Current
	28.1.5 Power-save Supply Current
	28.1.6 Standby Supply Current
	28.1.7 Pin Pull-up
	28.1.8 Pin Driver Strength
	28.1.9 Pin Threshold and Hysteresis
	28.1.10 BOD Threshold
	28.1.11 Internal Oscillator Speed
	28.1.12 Current Consumption of Peripheral Units
	28.1.13 Current Consumption in Reset and Reset Pulsewidth

	29. Register Summary
	30. Instruction Set Summary
	31. Ordering Information
	31.1 ATmega324PA

	32. Packaging Information
	32.1 44A
	32.2 40P6
	32.3 44M1
	32.4 44MC
	32.5 49C2

	33. Errata
	33.1 ATmega324PA Rev. F

	34. Datasheet Revision History
	34.1 Rev. 8152A- 11/08

	Table of Contents

