Features

- High Performance, Low Power AVR[®] 8-bit Microcontroller
- Advanced RISC Architecture
 - 124 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 8 MIPS Throughput at 8 MHz
- High Endurance Non-volatile Memory Segments
 - 16K/32K Bytes of In-System Self-Programmable Flash (ATmega16HVB/32HVB)
 - 512/1K Bytes EEPROM
 - 1K/2K Bytes Internal SRAM
 - Write/Erase Cycles 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
 - Programming Lock for Software Security
- Battery Management Features
 - Two, three or Four Cells in Series
 - High-current Protection (Charge and Discharge)
 - Over-current Protection (Charge and Discharge)
 - Short-circuit Protection (Discharge)
 - High Voltage Outputs to Drive N-Channel Charge/Discharge FETs
 - High Voltage Output to drive P-Channel Precharge FET
 - Integrated Cell Balancing FETs
- Peripheral Features
 - Two configurable 8- or 16-bit Timers with Separate Prescaler, Optional Input Capture (IC), Compare Mode and CTC
 - SPI Serial Programmable Interface
 - 12-bit Voltage ADC, Six External and One Internal ADC Input
 - High Resolution Coulomb Counter ADC for Current Measurements
 - TWI Serial Interface for SM-Bus
 - Programmable Watchdog Timer
- Special Microcontroller Features
 - debugWIRE On-chip Debug System
 - In-System Programmable via SPI ports
 - Power-on Reset
 - On-chip Voltage Regulator with Short-circuit Monitoring Interface
 - External and Internal Interrupt Sources
 - Sleep Modes: Idle, ADC Noise Reduction, Power-save, and Power-off
- Additional Secure Authentication Features available only under NDA
- Packages
 - 44-lead TSSOP
- Operating Voltage: 4 25V
- Maximum Withstand Voltage (High-voltage pins): 35V
- Temperature Range: -30°C to 85°C
- Speed Grade: 1-8 MHz

8-bit **AVR**[®] Microcontroller with 16K/32K Bytes In-System Programmable Flash

ATmega16HVB ATmega32HVB

Advance Information

Summary

1. Pin Configurations

1.1 TSSOP

Figure 1-1. TSSOP - pinout ATmega16HVB/32HVB

1.2 Pin Descriptions

1.2.1 VFET

High voltage supply pin. This pin is used as supply for the internal voltage regulator, described in "Voltage Regulator" on page 132.

1.2.2 VCC

Digital supply voltage. Normally connected to VREG.

1.2.3 VREG

Output from the internal Voltage Regulator. Used for external decoupling to ensure stable regulator operation. For details, see "Voltage Regulator" on page 132.

² ATmega16HVB/32HVB

1.2.4 VREF

Internal Voltage Reference for external decoupling. For details, see "Voltage Reference and Temperature Sensor" on page 124.

1.2.5 VREFGND

Ground for decoupling of Internal Voltage Reference. For details, see "Voltage Reference and Temperature Sensor" on page 124. Do not connect to GND or SGND on PCB.

1.2.6 GND

Ground

1.2.7 Port A (PA3..PA0)

Port A serves as a low-voltage 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega16HVB/32HVB as listed in "Alternate Functions of Port A" on page 76.

1.2.8 Port B (PB7..PB0)

Port B is a low-voltage 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega16HVB/32HVB as listed in "Alternate Functions of Port B" on page 77.

1.2.9 Port C (PC5)

Port C (PC5) is a high voltage Open Drain output port. Port C serves the functions of various special features of the ATmega16HVB/32HVB as listed in "Alternate Functions of Port C" on page 67.

1.2.10 Port C (PC4..PC0)

Port C is a 5-bit high voltage Open Drain bi-directional I/O port. Port C serves the functions of various special features of the ATmega16HVB/32HVB as listed in "Alternate Functions of Port C" on page 67.

1.2.11 OC/OD

High voltage output to drive Charge/Discharge. For details, see "FET Driver" on page 147.

1.2.12 PI/NI

Filtered positive/negative input from external current sense resistor, used to by the Coulomb Counter ADC to measure charge/discharge currents flowing in the battery pack. For details, see "Coulomb Counter - Dedicated Fuel Gauging Sigma-delta ADC" on page 110.

1.2.13 PPI/NNI

Unfiltered positive/negative input from external current sense resistor, used by the battery protection circuit, for over-current and short-circuit detection. For details, see "Battery Protection" on page 135.

1.2.14 NV/PV1/PV2/PV3/PV4

NV, PV1, PV2, PV3, and PV4 are the inputs for battery cells 1, 2, 3 and 4, used by the Voltage ADC to measure each cell voltage. For details, see "Voltage ADC – 7-channel General Purpose 12-bit Sigma-Delta ADC" on page 118.

1.2.15 PVT

Defines the source voltage level for the Charge FET driver. For details, see "FET Driver" on page 147.

1.2.16 BATT

Input for detecting when a charger is connected. Defines the source voltage level for the Discharge FET driver. For details, see "FET Driver" on page 147.

1.2.17 RESET/dw

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 11 on page 38. Shorter pulses are not guaranteed to generate a reset. This pin is also used as debugWIRE communication pin.

2. Overview

The ATmega16HVB/32HVB is a monitoring and protection circuit for 3 and 4-cell Li-ion applications with focus on high security/authentication, low cost and high utilization of the cell energy. The device contains secure authentication features as well as autonomous battery protection during charging and discharging. The External Protection Input can be used to implement other battery protection mechanisms using external components, e.g. protection against chargers with too high charge voltage can be easily implemented with a few low cost passive components. The feature set makes the ATmega16HVB/32HVB a key component in any system focusing on high security, battery protection, high system utilization and low cost.

Figure 2-1. Block Diagram

ATmega16HVB/32HVB provides the necessary redundancy on-chip to make sure that the battery is protected in critical failure modes. The chip is specifically designed to provide safety for the battery cells in case of pin shorting, loss of power (either caused by battery pack short or V_{CC}

short), illegal charger connection or software runaway. This makes ATmega16HVB/32HVB the ideal 1-chip solution for applications with focus on high safety.

The ATmega16HVB/32HVB features an integrated voltage regulator that operates at a wide range of input voltages, 4 - 25 volts. This voltage is regulated to a constant supply voltage of nominally 3.3 volts for the integrated logic and analog functions. The regulator capabilities, combined with a extremely low power consumption in the power saving modes, greatly enhances the cell energy utilization compared to existing solutions.

The chip utilizes Atmel's patented Deep Under-voltage Recovery (DUVR) mode that supports pre-charging of deeply discharged battery cells without using a separate Pre-charge FET. Optionally, Pre-charge FETs are supported for integration into many existing battery charging schemes.

The battery protection monitors the charge and discharge current to detect illegal conditions and protect the battery from these when required. A 12-bit Voltage ADC allows software to monitor each cell voltage individually with high accuracy. The ADC also provides one internal input channel to measure on-chip temperature and two input channels intended for external thermistors. An 18-bit ADC optimized for Coulomb Counting accumulates charge and discharge currents and reports accumulated current with high resolution and accuracy. It can also be used to provide instantaneous current measurements with 13 bit resolution. Integrated Cell Balancing FETs allow cell balancing algorithms to be implemented in software.

The MCU provides the following features: 16K/32K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512/1K bytes EEPROM, 1K/2K bytes SRAM. 32 general purpose working registers, 12 general purpose I/O lines, 5 general purpose high voltage open drain I/O lines, one general purpose super high voltage open drain output, debugWIRE for On-chip debugging and SPI for In-system Programming, a SM-Bus compliant TWI module, two flexible Timer/Counters with Input Capture and compare modes.

Internal and external interrupts, a 12-bit Sigma Delta ADC for voltage and temperature measurements, a high resolution Sigma Delta ADC for Coulomb Counting and instantaneous current measurements, integrated cell balancing FETs, Additional Secure Authentication Features, an autonomous Battery Protection module, a programmable Watchdog Timer with internal Oscillator, and software selectable power saving modes.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The device is manufactured using Atmel's high voltage high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System, through an SPI serial interface, by a conventional non-volatile memory programmer or by an Onchip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable-Flash and highly accurate analog front-end in a monolithic chip.

The Atmel ATmega16HVB/32HVB is a powerful microcontroller that provides a highly flexible and cost effective solution. It is part of the AVR Smart Battery family that provides secure

authentication, highly accurate monitoring and autonomous protection for Lithium-ion battery cells.

The ATmega16HVB/32HVB AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and Onchip Debugger.

2.1 Comparison Between ATmega16HVB and ATmega32HVB

The ATmega16HVB and ATmega32HVB differ only in memory size for Flash, EEPROM and internal SRAM. Table 2-1 summarizes the different configuration for the two devices.

Table 2-1.	Configuration summary
------------	-----------------------

Device	Flash	EEPROM	SRAM
ATmega16HVB	16K	512	1K
ATmega32HVB	32K	1K	2K

3. Disclaimer

All Min, Typ and Max values contained in this datasheet are preliminary estimates based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Final values will be available after the device is characterized.

4. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.n1

5. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

6. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	BPPLR	-	-	-	-	-	-	BPPLE	BPPL	140
(0xFD)	BPCR	-	-	EPID	SCD	DOCD	COCD	DHCD	CHCD	141
(0xFC)	BPHCTR	-	-		-		PT[5:0]			142
(0xFB)	BPOCTR	-	-				PT[5:0]			142
(0xFA)	BPSCTR	-				SCPT[6:0]				142
(0xF9)	BPCHCD					DL[7:0]				145
(0xF8)	BPDHCD				DHC	DL[7:0]				144
(0xF7)	BPCOCD					DL[7:0]				144
(0xF6)	BPDOCD					DL[7:0]				143
(0xF5)	BPSCD				SCE	DL[7:0]	1			143
(0xF4)	Reserved	-	-	-	-	-	-	-	-	
(0xF3)	BPIFR	-	-	-	SCIF	DOCIF	COCIF	DHCIF	CHCIF	146
(0xF2)	BPIMSK	-	-	-	SCIE	DOCIE	COCIE	DHCIE	CHCIE	145
(0xF1)	CBCR	-	-	-	-	CBE4	CBE3	CBE2	CBE1	153
(0xF0)	FCSR	_	-	-	-	DUVRD	CPS	DFE	CFE	150
(0xEF)	Reserved	_	-	-	-	-	-	-	-	
(0xEE)	Reserved	_	-	-	-	-	-	-	-	
(0xED)	Reserved	_	-	-	-	-	-	-	-	
(0xEC)	Reserved	_	-	-	-	-	-	-	-	
(0xEB)	Reserved	-	-	-	-	-	-	-	-	
(0xEA)	CADRDC					RDC[7:0]				117
(0xE9)	CADRCC				CADR	RCC[7:0]	T		0401/07	116
(0xE8)	CADCSRC	-	-	-	-	-	-	-	CADVSE	115
(0xE7)	CADCSRB	-	CADACIE	CADRCIE	CADICIE	-	CADACIF	CADRCIF	CADICIF	114
(0xE6)	CADCSRA	CADEN	CADPOL	CADUB		\S[1:0]	CAD	SI[1:0]	CADSE	113
(0xE5)	CADICH					C[15:8]				115
(0xE4)	CADICL					IC[7:0]				115
(0xE3)	CADAC3					C[31:24]				116
(0xE2)	CADAC2		CADAC[23:16]							116
(0xE1)	CADAC1					AC[15:8]				116
(0xE0)	CADAC0			_		AC[7:0]	1		_	116
(0xDF)	Reserved	-	-		-	_	-	-		
(0xDE) (0xDD)	Reserved Reserved	-	_	_	-	_	-	-	-	
	Reserved		_					_		
(0xDC) (0xDB)	Reserved	-	_	-	-	-	-	-	-	
(0xDB) (0xDA)	Reserved	_	_	_	_	_	_	_	_	
(0xD9)	Reserved								_	
(0xD9) (0xD8)	Reserved		_		_	_		_	_	
(0xD8) (0xD7)	Reserved		_	-	_	_	_	_	_	
(0xD6)	Reserved	_	_	_	_	_	_	_	_	
(0xD6) (0xD5)	Reserved	_	_		_	_		_	_	
(0xD3) (0xD4)	CHGDCSR		_		BATTPVL	CHGDISC1	CHGDISC1	CHGDIF	CHGDIE	131
(0xD3)	Reserved				-	-	-	-	-	101
(0xD3) (0xD2)	BGCSR	_	_	BGD	BGSCDE	_	-	BGSCDIF	BGSCDIE	127
(0xD2) (0xD1)	BGCSR			200				Decobii	DOCODIL	127
(0xD0)	BGCCR	-	_		560		CC[5:0]			240
(0xD0) (0xCF)	Reserved	_	_	-	-	-	_	-	-	210
(0xCE)	Reserved	_	_	_	_	_	-	_	_	
(0xCD)	Reserved	_	_	_	_	_	-	_	_	
(0xCC)	Reserved	_	_	_	_	_	_	_	_	
(0xCB)	Reserved	_	_	_	_	_	-	_	_	
(0xCA)	Reserved	_	_	_	_	_	-	_	_	
(0xC9)	Reserved	_	_	_	_	_	_	_	_	
(0xC8)	ROCR	ROCS	_	_	ROCD	_	-	ROCWIF	ROCWIE	134
(0xC7)	Reserved	_	_	_	-	_	_	-	-	
(0xC6)	Reserved	-	_	-	_	-	_	_	-	
(0xC5)	Reserved	-	-	-	-	-	_	-	-	
(0xC4)	Reserved	-	_	-	_	-	_	_	-	
		_	_	_	_	_	_	_	_	
	Reserved					1				
(0xC3)	Reserved Reserved	-	-	_	-	-	-	-	_	
	Reserved Reserved Reserved			_	_					

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved	-	-	-	-	-	-	-	-	-
(0xBE)	TWBCSR	TWBCIF	TWBCIE	-	-	-	TWBDT1	TWBDT0	TWBCIP	185
(0xBD)	TWAMR	-	-		TWAM[6:0]				-	185
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	_	TWIE	182
(0xBB)	TWDR					erface Data Regis				184
(0xBA)	TWAR				TWA[6:0]	naco Bala riogio			TWGCE	184
(0xB) (0xB9)	TWSR			TWS[7:3]	1111(0.0]		_	TWPS1	TWPS0	183
(0xB8)	TWBR				wire Serial Interf	ace Bit Rate Regi		1001	101 00	182
(0xB7)	Reserved	-		-	-		_	_	_	102
(0xB6)	Reserved		_							
(0xB5)	Reserved			_	-			_	_	
(0xB3) (0xB4)	Reserved		_	_	_			_	_	
	Reserved									
(0xB3)		-	-	-	-	_	-	-	-	
(0xB2)	Reserved		-		-			-	-	
(0xB1)	Reserved	_	-	-	-	-	-	-	-	
(0xB0)	Reserved	-	-	-	-	-	-	-	-	
(0xAF)	Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA7)	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved	_	-	-	-	-	-	-	-	
(0xA1)	Reserved	-	-	-	-	-	-	-	-	
(0xA0)	Reserved	-	-	-	-	-	-	-	-	
(0x9F)	Reserved	_	_	_	-	_	_	_	-	
(0x9E)	Reserved	_	_	_	-	_	_	_	-	
(0x9D)	Reserved	_	-	_	_	_	_	_	-	
(0x9C)	Reserved	_	_	_	-	_	_	_	_	
(0x9B)	Reserved	_	_	_	-	_	_	_	-	
(0x9A)	Reserved	_	_	_	-	-	_	_	_	
(0x99)	Reserved	_	_	_	_	_	_	_	_	
(0x98)	Reserved	_	_	_	_	_	_	_	_	
(0x97)	Reserved		_	_	_	_	_	_	_	
(0x96)	Reserved	_	_	_	-	-	_	_	_	
(0x95)	Reserved		_	_	_	_	_	_	_	
(0x94)	Reserved			_	_		_		_	
. ,	Reserved			_	-		-	_	_	
(0x93)										
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	_	-	-	-	-	-	-	-	
(0x8B)	Reserved	-	-	-	-	-	-	-	-	
(0x8A)	Reserved	-	-	-	-	-	-	-	-	
(0x89)	OCR1B					put Compare Reg				97
(0x88)	OCR1A			Time		put Compare Reg	pister A			97
(0x87)	Reserved	-	-	-	-	-	-	-	-	
(0x86)	Reserved	-	-	-	-	-	-	-	-	
(0x85)	TCNT1H				Timer/Counter	1 (8 Bit) High Byte)			97
(0x84)	TCNT1L				Timer/Counter	1 (8 Bit) Low Byte				97
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	Reserved	-	-	-	-	-	-	-	-	
(0x81)	TCCR1B	-	-	-	-	-	CS12	CS11	CS10	83
		TCW1	ICEN1	ICNC1	ICES1	ICS1	-	-	WGM10	96
(0x80)	TCCR1A	10,001								
	TCCR1A Reserved	-	-	-	-	-	-	-	-	

ATmega16HVB/32HVB 10

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	Reserved	-	-	-	-	-	-	-	-	
(0x7C)	VADMUX	-	-	-	-		VADN	/UX[3:0]	_	121
(0x7B)	Reserved	-	-	-	-	-	-	-	-	
(0x7A)	VADCSR	-	-	-	-	VADEN	VADSC	VADCCIF	VADCCIE	121
(0x79)	VADCH	-	_	-	-		VADC Data R	egister High byte		122
(0x78)	VADCL				VADC Data R	egister Low byte			_	122
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0x73) (0x72)	Reserved	_	_	_		_	_	_	_	
(0x72) (0x71)	Reserved			_			_		_	
(0x70)	Reserved	_		_	_	_	_	_	_	
(0x6F)	TIMSK1	_	_	_		ICIE1	OCIE1B	OCIE1A	TOIE1	98
(0x6E)	TIMSK0	_	_	_		ICIE0	OCIE0B	OCIE0A	TOIE1	98
(0x6D)	Reserved	_	_	_	-	-	-	-	-	00
(0x6C)	PCMSK1					IT[15:8]			1	62
(0x6B)	PCMSK0	-	_	_	-	,	PCI	NT[3:0]		63
(0x6A)	Reserved	-	-	-	-	-	-	-	-	*
(0x69)	EICRA	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	60
(0x68)	PCICR	-	-	_	-	-	-	PCIE1	PCIE0	62
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	FOSCCAL				Fast Oscillator C	alibration Registe	er			34
(0x65)	Reserved	-	_	_	-	_	-	-	-	
(0x64)	PRR0	-	PRTWI	PRVRM	-	PRSPI	PRTIM1	PRTIM0	PRVADC	42
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved	-	-	-	-	-	-	-	-	
(0x61)	CLKPR	CLKPCE	-	-	-	-	-	CLKPS1	CLKPS0	34
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	51
0x3F (0x5F)	SREG	I	Т	н	S	V	N	Z	С	12
0x3E (0x5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	15
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	15
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	
0x3B (0x5B)	Reserved	-	-	-	-	-	-	-	-	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58) 0x37 (0x57)	Reserved SPMCSR	_	_	SIGRD	- CTPB	RFLB	– PGWRT	PGERS	- SPMEN	204
0x37 (0x57) 0x36 (0x56)	Reserved				-			-	-	204
0x35 (0x55)	MCUCR			CKOE	PUD		_	IVSEL	IVCE	80/34
0x34 (0x54)	MCUSR	_		-	OCDRF	WDRF	BODRF	EXTRF	PORF	51
0x33 (0x53)	SMCR	_	_	_	-	WDIG	SM[2:0]	EXIM	SE	41
0x32 (0x52)	Reserved	_		_		-	-	-	-	
0x31 (0x51)	DWDR					Data Register				188
0x30 (0x50)	Reserved	-	-	-	-	-	-	-	-	
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	
0x2E (0x4E)	SPDR				SPI Dat	a Register				109
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	108
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	107
0x2B (0x4B)	GPIOR2				General Purpo	se I/O Register 2				26
0x2A (0x4A)	GPIOR1				General Purpo	se I/O Register 1				26
0x29 (0x49)	OCR0B			Tim	er/Counter0 Outp	out Compare Reg	ister B			97
0x28 (0x48)	OCR0A	<u>_</u>		Tim	er/Counter0 Outp	out Compare Reg	ister A			97
0x27 (0x47)	TCNT0H Timer/Counter0 (8 Bit) High Byte							97		
0x26 (0x46)	TCNT0L				Timer/Counter	0 (8 Bit) Low Byte		1		97
0x25 (0x45)	TCCR0B	-	-	-	-	-	CS02	CS01	CS00	83
0x24 (0x44)	TCCR0A	TCW0	ICEN0	ICNC0	ICES0	ICS0	-	-	WGM00	96
0x23 (0x43)	GTCCR	TSM	-	_	-	-	-	-	PSRSYNC	
0x22 (0x42)	EEARH	-	-	-	-	L	-	EEPRON	1 High byte	22
0x21 (0x41)	EEARL			E		s Register Low B	yte			22
0x20 (0x40)	EEDR		i		1	Data Register			·	22
0x1F (0x3F)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	23
0x1E (0x3E)	GPIOR0	-		-		se I/O Register 0			INITO	26
0x1D (0x3D)	EIMSK		-		-	INT3	INT2	INT1	INT0	61
0x1C (0x3C)	EIFR	-	-	-	-	INTF3	INTF2	INTF1	INTF0	61

AMEL

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	PCIFR	-	-	-	-	-	-	PCIF1	PCIF0	62
0x1A (0x3A)	Reserved	_	-	-	-	-	-	_	-	
0x19 (0x39)	Reserved	-	-	-	-	-	_	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	_	-	-	
0x17 (0x37)	OSICSR	_	_	_	OSISEL0	_	_	OSIST	OSIEN	35
0x16 (0x36)	TIFR1	-	-	-	_	ICF1	OCF1B	OCF1A	TOV1	98
0x15 (0x35)	TIFR0	-	-	-	-	ICF0	OCF0B	OCF0A	TOV0	98
0x14 (0x34)	Reserved	_	_	_	_	_	_	_	_	
0x13 (0x33)	Reserved	_	_	_	_	_	_	_	_ [
0x12 (0x32)	Reserved	-	-	-	-	-	_	-	-	
0x11 (0x31)	Reserved	_	_	_	_	_	_	_	_	
0x10 (0x30)	Reserved	_	_	_	_	_	_	_	_ [
0x0F (0x2F)	Reserved	-	-	-	-	-	_	-	-	
0x0E (0x2E)	Reserved	_	_	_	_	_	_	_	_	
0x0D (0x2D)	Reserved	-	-	-	-	-	-	-	-	
0x0C (0x2C)	Reserved	-	-	-	-	-	-	-	-	
0x0B (0x2B)	Reserved	-	-	-	-	-	-	-	-	
0x0A (0x2A)	Reserved	-	-	-	-	-	-	-	-	
0x09 (0x29)	Reserved	-	-	-	-	-	-	-	-	
0x08 (0x28)	PORTC	-	-	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	68
0x07 (0x27)	Reserved	-	-	-	-	-	-	-	-	
0x06 (0x26)	PINC	-	-	-	PINC4	PINC3	PINC2	PINC1	PINC0	68
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	80
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	80
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	80
0x02 (0x22)	PORTA	-	-	-	-	PORTA3	PORTA2	PORTA1	PORTA0	80
0x01 (0x21)	DDRA	-	-	-	-	DDA3	DDA2	DDA1	DDA0	80
0x00 (0x20)	PINA	_	_	_	_	PINA3	PINA2	PINA1	PINA0	80

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. I/O registers within the address range \$00 - \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

- 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses \$00 \$3F must be used. When addressing I/O registers as data space using LD and ST instructions, \$20 must be added to these addresses. The ATmega16HVB/32HVB is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from \$60 \$FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

7. Instruction Set Summary

ARITHMETIC AND L	Operands	Description	Operation	Flags	#Clocks
	OGIC INSTRUCTIONS	8			
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	$Rdh:RdI \leftarrow Rdh:RdI + K$	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \vee Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow 0xFF$	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMUL			$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULS	Rd, Rr Rd, Rr	Fractional Multiply Unsigned Fractional Multiply Signed	$R1:R0 \leftarrow (Rd x Rr) << 1$	Z,C Z,C	2
FMULSU	Rd, Rr		$R1:R0 \leftarrow (Rd x Rr) << 1$	Z,C	2
		Fractional Multiply Signed with Unsigned	$R I: R 0 \leftarrow (R 0 \times R I) \leq 1$	2,0	Z
BRANCH INSTRUCT		Deleting large		News	
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
JMP	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
CALL	k	Direct Subroutine Call		None	4
RET		Subroutine Return		None	4
RETI		Interrupt Return			4
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC \leftarrow PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC+k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC+k + 1$	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
DDOLL	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRSH BRLO	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
	ĸ		if $(N = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Plus		None	=
BRLO BRMI		Branch if Plus Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLO BRMI BRPL	k		if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO BRMI BRPL BRGE BRLT	k k k	Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed	$\begin{array}{l} \mbox{if } (N \oplus V = 0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V = 1) \mbox{ then } PC \leftarrow PC + k + 1 \end{array}$	None None	1/2 1/2
BRLO BRMI BRPL BRGE BRLT BRHS	k k k k	Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set	$\begin{array}{l} \mbox{if } (N \oplus V{=} \ 0) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (N \oplus V{=} \ 1) \mbox{ then } PC \leftarrow PC + k + 1 \\ \mbox{if } (H = 1) \mbox{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None	1/2 1/2 1/2
BRLO BRMI BRPL BRGE BRLT BRHS BRHC	k k k k k	Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set Branch if Half Carry Flag Cleared	$\begin{array}{l} \text{if } (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N \oplus V = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (H = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (H = 0) \text{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None None	1/2 1/2 1/2 1/2
BRLO BRMI BRPL BRGE BRLT BRHS BRHC BRTS	k k k k k k	Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set Branch if Half Carry Flag Cleared Branch if T Flag Set	$\begin{array}{l} \text{if } (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N \oplus V = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (H = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (H = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (T = 1) \text{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None None None	1/2 1/2 1/2 1/2 1/2
BRLO BRMI BRPL BRGE BRLT BRHS BRHC	k k k k k	Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set Branch if Half Carry Flag Cleared	$\begin{array}{l} \text{if } (N \oplus V = 0) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (N \oplus V = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (H = 1) \text{ then } PC \leftarrow PC + k + 1 \\ \text{if } (H = 0) \text{ then } PC \leftarrow PC + k + 1 \end{array}$	None None None None	1/2 1/2 1/2 1/2

ATmega16HVB/32HVB

7. Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
BIT AND BIT-TEST					
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V Z,C,N,V	1
ROR ASR	Rd Rd	Rotate Right Through Carry Arithmetic Shift Right	$\frac{Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)}{Rd(n)\leftarrow Rd(n+1), n=06}$	Z,C,N,V Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(11) \leftarrow Rd(11+1), 11=00$ $Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	C	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	l ← 1	1	1
CLI		Global Interrupt Disable	l ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I					-
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+ Rd, -Z	Load Indirect and Post-Inc. Load Indirect and Pre-Dec.	$Rd \leftarrow (Z), Z \leftarrow Z+1$ $Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect and Fie-Dec.	$Rd \leftarrow (Z + q)$	None None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
- 1	Z+q,Rr	Store Indirect with Displacement	$(Z+q) \leftarrow Rr$	None	2
STD	k, Rr	Store Direct to SRAM	(2+4) ← Rr	None	2
STD STS			$(k) \leftarrow (k)$ $R0 \leftarrow (Z)$	None	3
STS		Load Prodram Memory			
STS LPM	Rd Z	Load Program Memory			3
STS LPM LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
STS LPM	Rd, Z Rd, Z+				3

7. Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	#Clocks
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	$STACK \leftarrow Rr$	None	2
POP	Rd	Pop Register from Stack	$Rd \leftarrow STACK$	None	2
MCU CONTROL INS	STRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

8. Ordering Information – TBD

8.1 ATmega16HVB

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
1 - 8 MHz	4 - 25V	ATmega16HVB - TBD	44X1	-30°C to 85°C

	Package Type	
44X1	44-lead, 4.4 mm Body Width, Plastic Thin Shrink Small Outline Package (TSSOP)	

8.2 ATmega32HVB

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
1 - 8 MHz	4 - 25V	ATmega32HVB - TBD	44X1	-30°C to 85°C

	Package Type
44X1	44-lead, 4.4 mm Body Width, Plastic Thin Shrink Small Outline Package (TSSOP)

9. Packaging Information

9.1 44X1

10. Errata

10.1 ATmega16HVB

10.1.1 Rev. A

No known errata.

10.2 ATmega32HVB

10.2.1 Rev. A

No known errata.

ATmega16HVB/32HVB

11. Revision history

11.1 Rev.A - 09/08

1. Initial revision

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, AVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.