Features

* High Performance, Low Power AVR®32 32-Bit Microcontroller

— 210 DMIPS throughput at 150 MHz

— 16 KB instruction cache and 16 KB data caches

— Memory Management Unit enabling use of operating systems

— Single-cycle RISC instruction set including SIMD and DSP instructions

— Java Hardware Acceleration
* Pixel Co-Processor

— Pixel Co-Processor for video acceleration through color-space conversion

(YUV<->RGB), image scaling and filtering, quarter pixel motion compensation

e Multi-hierarchy bus system

— High-performance data transfers on separate buses for increased performance
e Data Memories

— 32KBytes SRAM
* External Memory Interface

— SDRAM, DataFlash™, SRAM, Multi Media Card (MMC), Secure Digital (SD),

— Compact Flash, Smart Media, NAND Flash

* Direct Memory Access Controller
— External Memory access without CPU intervention
* Interrupt Controller
— Individually maskable Interrupts
— Each interrupt request has a programmable priority and autovector address
* System Functions
— Power and Clock Manager
— Crystal Oscillator with Phase-Lock-Loop (PLL)
— Watchdog Timer
— Real-time Clock
* 6 Multifunction timer/counters
— Three external clock inputs, I/O pins, PWM, capture and various counting
capabilities
* 4 Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
— 115.2 kbps IrDA Modulation and Demodulation
— Hardware and software handshaking
* 3 Synchronous Serial Protocol controllers
— Supports 12S, SPI and generic frame-based protocols
* Two-Wire Interface
— Sequential Read/Write Operations, Philips’ 12C© compatible
* Liquid Crystal Display (LCD) interface
— Supports TFT displays
— Configurable pixel resolution supporting QCIF/QVGA/VGA/SVGA configurations.
* Image Sensor Interface
— 12-bit Data Interface for CMOS cameras
* Universal Serial Bus (USB) 2.0 High Speed (480 Mbps) Device
— On-chip Transceivers with physical interface
* 16-bit stereo audio bitstream DAC
— Sample rates up to 50 kHz
* On-Chip Debug System
— Nexus Class 3
— Full speed, non-intrusive data and program trace
— Runtime control and JTAG interface
* Package/Pins
— AT32AP7002: 196-ball CTBGA
* Power supplies
— 1.65V to1.95V VDDCORE
— 3.0Vto 3.6V VDDIO

ATMEL

L ________________(0G]

Y)

AVR®32 32-bit
Microcontroller

AT32AP7002

Preliminary

32054D-AVR32-10/07

s A T32AP7002

1. Part Description

32054D-AVR32-10/07

The AT32AP7002 is a complete System-on-chip application processor with an AVR32 RISC
processor achieving 210 DMIPS running 150 MHz. AVR32 is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular empha-
sis on low power consumption, high code density and high application performance.

AT32AP7002 implements a Memory Management Unit (MMU) and a flexible interrupt controller
supporting modern operating systems and real-time operating systems. The processor also
includes a rich set of DSP and SIMD instructions, specially designed for multimedia and telecom
applications.

AT32AP7002 incorporates SRAM memories on-chip for fast and secure access. For applica-
tions requiring additional memory, external 16-bit SRAM is accessible. Additionally, an SDRAM
controller provides off-chip volatile memory access as well as controllers for all industry standard
off-chip non-volatile memories, like Compact Flash, Multi Media Card (MMC), Secure Digital
(SD)-card, SmartCard, NAND Flash and Atmel DataFlash™.

The Direct Memory Access controller for all the serial peripherals enables data transfer between
memories without processor intervention. This reduces the processor overhead when transfer-
ring continuous and large data streams between modules in the MCU.

The Timer/Counters includes three identical 16-bit timer/counter channels. Each channel can be
independently programmed to perform a wide range of functions including frequency measure-
ment, event counting, interval measurement, pulse generation, delay timing and pulse width
modulation.

AT32AP7002 also features an onboard LCD Controller, supporting single and double scan
monochrome and color passive STN LCD modules and single scan active TFT LCD modules.
On monochrome STN displays, up to 16 gray shades are supported using a time-based dither-
ing algorithm and Frame Rate Control (FRC) method. This method is also used in color STN
displays to generate up to 4096 colors.

The LCD Controller is programmable for supporting resolutions up to 2048 x 2048 with a pixel
depth from 1 to 24 bits per pixel.

A pixel co-processor provides color space conversions for images and video, in addition to a
wide variety of hardware filter support

The media-independent interface (MIl) and reduced MIl (RMII) 10/100 Ethernet MAC modules
provides on-chip solutions for network-connected devices.

Synchronous Serial Controllers provide easy access to serial communication protocols, audio
standards like 12S and frame-based protocols.

The Java hardware acceleration implementation in AVR32 allows for a very high-speed Java
byte-code execution. AVR32 implements Java instructions in hardware, reusing the existing
RISC data path, which allows for a near-zero hardware overhead and cost with a very high
performance.

The Image Sensor Interface supports cameras with up to 12-bit data buses.

PS2 connectivity is provided for standard input devices like mice and keyboards.

AIMEL 2

L ________________(0G]

s A T32AP7002

AT32AP7002 integrates a class 3 Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive
real-time trace, full-speed read/write memory access in addition to basic runtime control.

The C-compiler is closely linked to the architecture and is able to utilize code optimization fea-
tures, both for size and speed.

AIMEL 3

32054D-AVR32-10/07 I ©

s A T32AP7002

2. Signals Description

The following table gives details on the signal name classified by peripheral. The pinout multi-
plexing of these signals is given in the Peripheral Muxing table in the Peripherals chapter.

Table 2-1. Signal Description List

Active
Signal Name Function Type Level Comments
Power

AVDDPLL PLL Power Supply Power 1.65t01.95V
AVDDUSB USB Power Supply Power 1.65t01.95V
AVDDOSC Oscillator Power Supply Power 1.65t01.95V
VDDCORE Core Power Supply Power 1.65t01.95V
VDDIO 1/0 Power Supply Power 3.0to 3.6V
AGNDPLL PLL Ground Ground
AGNDUSB USB Ground Ground
AGNDOSC Oscillator Ground Ground
GND Ground Ground

Clocks, Oscillators, and PLL's
XINO, XIN1, XIN32 Crystal 0, 1, 32 Input Analog
igglg,zxoun, Crystal 0, 1, 32 Output Analog
PLLO, PLL1 PLL 0,1 Filter Pin Analog

JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
TMS Test Mode Select Input
TRST_N Test Reset Input Low
Auxiliary Port - AUX

MCKO Trace Data Output Clock Output
MDOO - MDO5 Trace Data Output Output
MSEOO - MSEO1 Trace Frame Control Output
EVTI_N Event In Input Low

AIMEL 4

32054D-AVR32-10/07 I ©

s A T32AP7002

Table 2-1. Signal Description List
Active
Signal Name Function Type Level Comments
EVTO_N Event Out Output Low
Power Manager - PM
GCLKO - GCLK4 Generic Clock Pins Output
OSCEN_N Oscillator Enable Input Low
RESET_N Reset Pin Input Low
WAKE_N Wake Pin Input Low
External Interrupt Controller - EIC
EXTINTO - EXTINT3 External Interrupt Pins Input
NMI_N Non-Maskable Interrupt Pin Input Low
AC97 Controller - AC97C
SCLK AC97 Clock Signal Input
SDI AC97 Receive Signal Output
SDO AC97 Transmit Signal Output
SYNC AC97 Frame Synchronization Signal Input
Audio Bitstream DAC - ABDAC
DATAO - DATA1 D/A Data Out Output
DATANO - DATAN1 D/A Inverted Data Out Output
External Bus Interface - EBI
PXO0 - PX53 1/0 Controlled by EBI I/O
ADDRO - ADDR25 Address Bus Output
CAS Column Signal Output Low
CFCE1 Compact Flash 1 Chip Enable Output Low
CFCE2 Compact Flash 2 Chip Enable Output Low
CFRNW Compact Flash Read Not Write Output
DATAO - DATA31 Data Bus 1/0
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
NCSO0 - NCS5 Chip Select Output Low

32054D-AVR32-10/07

ATMEL

L ________________(0G]

s A T32AP7002

Table 2-1. Signal Description List
Active
Signal Name Function Type Level Comments
NRD Read Signal Output Low
NWAIT External Wait Signal Input Low
NWEO Write Enable 0 Output Low
NWE1 Write Enable 1 Output Low
NWE3 Write Enable 3 Output Low
RAS Row Signal Output Low
SDA10 SDRAM Address 10 Line Output
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output
SDWE SDRAM Write Enable Output Low
Image Sensor Interface - ISI
DATAO - DATA11 Image Sensor Data Input
HSYNC Horizontal Synchronization Input
PCLK Image Sensor Data Clock Input
VSYNC Vertical Synchronization Input
LCD Controller - LCDC

CcC LCD Contrast Control Output
DATAO - DATA23 LCD Data Bus Input
DVAL LCD Data Valid Output
GPLO - GPL7 LCD General Purpose Lines Output
HSYNC LCD Haorizontal Synchronization Output
MODE LCD Mode Output
PCLK LCD Clock Output
PWR LCD Power Output
VSYNC LCD Vertical Synchronization Output

MultiMedia Card Interface - MCI
CLK Multimedia Card Clock Output
CMDO - CMD1 Multimedia Card Command I/O

AIMEL 6

32054D-AVR32-10/07 I ©

s A T32AP7002

Table 2-1. Signal Description List
Active
Signal Name Function Type Level Comments
DATAO - DATA7 Multimedia Card Data 110

Parallel Input/Output - PIOA, PIOB, PIOC, PIOD

PAO - PA31 Parallel /0 Controller PIOA 110
PBO - PB30 Parallel I/0 Controller PIOB /0
PC20 - PC23/
PC28 - PC31 Parallel 1/0 Controller PIOC /0
PDO - PD17 Parallel /O Controller PIOD /0
PS2 Interface - PSIF
CLOCKO - CLOCK1 PS2 Clock Input
DATAO - DATA1 PS2 Data 110
Serial Peripheral Interface - SPI0, SPI1
MISO Master In Slave Out I/10
MOSI Master Out Slave In 110
NPCSO - NPCS3 SPI Peripheral Chip Select 110 Low
SCK Clock Output
Synchronous Serial Controller - SSC0, SSC1, SSC2
RX_CLOCK SSC Receive Clock I/0
RX_DATA SSC Receive Data Input
RX_FRAME_SYNC SSC Receive Frame Sync I/0
TX_CLOCK SSC Transmit Clock I/0
TX_DATA SSC Transmit Data Output
TX_FRAME_SYNC SSC Transmit Frame Sync I/0

DMA Controller - DMACA

DMARQO - DMARQ3

DMA Requests

Input

Timer/Counter - TIMERO, TIMER1

AO Channel O Line A /0
Al Channel 1 Line A /O
A2 Channel 2 Line A /0
BO Channel O Line B I/0

32054D-AVR32-10/07

ATMEL

L ________________(0G]

s A T32AP7002

Table 2-1. Signal Description List

Active
Signal Name Function Type Level Comments
B1 Channel 1 Line B /0
B2 Channel 2 Line B /0
CLKO Channel 0 External Clock Input Input
CLK1 Channel 1 External Clock Input Input
CLK2 Channel 2 External Clock Input Input

Two-wire Interface - TWI

SCL Serial Clock 110

SDA Serial Data 110

Universal Synchronous Asynchronous Receiver Transmitter - USARTO, USART1, USART2, USART3

CLK Clock 11O
CTS Clear To Send Input
RTS Request To Send Output
RXD Receive Data Input
TXD Transmit Data Output

Pulse Width Modulator - PWM

PWMO - PWM3 PWM Output Pins Output

USB Interface - USBA

HSDM High Speed USB Interface Data - Analog
FSDM Full Speed USB Interface Data - Analog
HSDP High Speed USB Interface Data + Analog
FSDP Full Speed USB Interface Data + Analog

Connected to a 6810 Ohm * 0.5%
VBG USB bandgap Analog resistor to gound and a 10 pF
capacitor to ground.

AIMEL 8

32054D-AVR32-10/07 I ©

s A T32AP7002

3. Power Considerations

3.1 Power Supplies

The AT32AP7002 has several types of power supply pins:

* VDDCORE pins: Power the core, memories, and peripherals. Voltage is 1.8V nominal.

* VDDIO pins: Power I/O lines. Voltage is 3.3V nominal.

* VDDPLL pin: Powers the PLL. Voltage is 1.8V nominal.

* VDDUSB pin: Powers the USB. Voltage is 1.8V hominal.

* VDDOSC pin: Powers the oscillators. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE and VDDIO. The ground pin for VDDPLL is
GNDPLL, and the GND pin for VDDOSC is GNDOSC.

See "Electrical Characteristics” on page 855 for power consumption on the various supply pins.

3.2 Power Supply Connections

Special considerations should be made when connecting the power and ground pins on a PCB.
Figure 3-1 shows how this should be done.

Figure 3-1. Connecting analog power supplies

C54

| oa0ou
AVDDUSB]
AVDDPLL I
AVDDOSC
AGNDUSB)\
AGNDPLL l: 8 o100
AGNDOSC l

L L4
3.3uH l

VDDCORE O VvCC 1v8

AIMEL 9

32054D-AVR32-10/07 I ©

AT32AP7002

3.3 Package and PinoutAvR32AP7002
Figure 3-2. 196 CTBGA Pinout
Ball A1
4 1234567 8 91011121314 14131211109 8 7 6 54 3 2 1
A. OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0O 0O |A
B O 0O 00O OO OO0 O0OO0OO0OO0OO0OO0O |B
C OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0O 0 |C
D OO0 00O O0OO0OO0OO0OO0OO0OO0OO0OO0O0 |D
E O O 0O OO O0OO0OO0OO0OO0OO0OO0 o0 |E
F OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0 0 |F
G I ©0000000000O0O0O0 |G
H OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |H
J OO0 00O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0O [J
K O O 0O O OO0 OO0 0 00 0 o0 o0 K
L OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0 |L
M AVR32 OO0 0O O0OO0OO0OO0OO0OO0OO0OO0OO0OO0O |M
N OO0 00O OO OO0 O0O OO0 00 0o |N
P OO0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0O0 |P
Table 3-1. CTBGA196 Package Pinout A1..T8
1 2 3 4 5 6 7 8
A| PX49 PX48 PX47 AVDDPLL PC28 PC23 PC20 PB22
B| PX50 GND VDDIO PLLO PLL1 XIN32 pPC22 PB23
C| PX51 PDO1 PX05 GND AGNDPLL XOUT32 PC29 PC21
D| PX32 PDO00O VDDIO PX02 XINO XOUTO AGNDOSC PC30
E| PX33 PX00 PX04 GND PDO7 AVDDOSC OSCEN_N PC31
F| PX01 PX03 VDDCORE PD04 PD09 TDI RESET_N VDDCORE
G| PDO05 PD08 PD06 TDO PAO4 PAO2 PAO8 PX22
H| TMS TRST_N TCK EVTI_N PB24 PA10 PA14 PX38
J| PAO1 PAO3 PAOO VDDIO GND PAQ9 PA18 GND
K| PAO5 PA11 PA12 PA16 GND GND PA26 WAKE_N
L| PB25 PA21 PA19 GND VDDIO VDDIO PA25 PA29
M PA13 PA22 PA23 PD17 AVDDUSB VDDCORE VBG PA30
N| PA15 PA20 PD12 PD15 PD16 AGNDUSB FSDP HSDP
P| PAl17 PA24 PD13 PD14 XIN1 XOUT1 FSDM HSDM

32054D-AVR32-10/07

ATMEL

L ________________(0G]

10

s A T32AP7002

Table 3-2. CTBGA196 Package Pinout A9..T16

9 10 11 12 13 14
A | PB18 PB16 PB11 PB08 PB05 PB04
B | PB21 PB17 PB12 PB09 PB06 PB03
C | PA0O6 PB19 PB14 PB10 PBO7 PB02
D | vDDIO PB20 PB15 PB13 GND PBO1
E | PAO7 GND PB00O PX44 VDDIO PX45
F | PX42 GND GND PX43 PX46 PX40
G | PX30 PX25 PX31 VDDIO VDDCORE PX39
H | PA28 PX20 PX28 PX29 VDDCORE PX26
J | PB27 PX37 PX23 PX27 PX21 PX24
K | PB28 PX15 PX36 PX19 PX34 PX18
L | PX41 GND PX07 VDDIO GND PX35
M | PX53 PX06 PX11 PX12 PX17 PX14
N | PB26 VDDIO PX09 PB29 PX16 PX13
P | PA27 PA31 PX52 PX08 PX10 PB30

AIMEL 1

32054D-AVR32-10/07 I ©

s A T32AP7002

4. Blockdiagram

Figure 4-1. Blockdiagram

TRST_N———)|
TCR———> JTAG
<o INTERFACE @ PIXEL COPROCESSOR
B — AP CPU
T™S » NEXUS
<7 [——
l M';Ig;(s?o] Oggg 8 i@ MEMORY MANAGEMENT UNIT @E:
€¢—MSEO[1.0] ——— VSYNC,
EVTI_N INSTR DATA HSYNC,
¢———EVION————— CACHE CACHE LCD Ppg.iv
CONTRO | poot)
< D+ > UsB @ LLER DVAL,
<« D > INTERFACE | 2 cc,
DATA[22..0],
DMA ’a M DMA GPL[7..0]
E:TSAY[:\II(.:.O]; IMAGE M RAS,
SENSOR cAs,
[VSYNC» | TERFACE HIGH SPEED SDWE,
[POtk BUS MATRIX NANDOE,
INTRAMO N/gl\l:l)DcV'zlE,
INTRAML N SDOKE, R
8Z [wwes »
0~ NWEL,
L % 8 NWEQ,
rom NRD,
E = | NCs[BL0],
L e Z0qy ADDR[22..0]
B HSB-HSB BRIDGE || o 1 | DATALL5.0))
BRIDGE BglsgéPEBA PERIPHERAL D5 (€ WAT—
B PB DMA IYE | Neskad
pe y
CONTROLLER E2Z2 1 Gree >
0 wyQ
o < E%O CFCE2,
3 o X B ADDR[23..25]
£ DMA CONTROLLER ue
% i« DATA[31..16] -p»|
a | S USARTO «—Rr0——— @
3] —
PB £ [«—DATRO %) USART1 TXD———» = PA
4%} 3 |[€—DaTaL AUDIO BITSTREAM ®E USART2 DI . Sl - P
o7 | = le—oatan DAC z USART3 * g 4PD>
S |«—DATAIN = PE
= <«———Sck———» B
T [O o SERIAL «———MISO, MoSI——» 3
S «——CcvD—» MULTIMEDIA CARD 8 PERIPHERAL s 8
3 [DATAT.0]— INTERFACE INTERFACE 0/1 [NPCS[3.1] ', 2
SCLK——p| SYNCHRONOUS | € TX_CLOCK, TX_FRAME_SYNC)» %
o AC97 CONTROLLER £ =g pebviay A 5
o ' RX_CLOCK, RX_FRAME_SYNCp>
SDO - - -
« > CONTROLLER 0/1/2 e
MZON\X(EER @ TWO-WIRE “«——scL———>
XIN32 32 KHz <):‘,> INTERFACE < SDA >
<«—XouTe2—— 0SC cLOCK
VN GENERATOR
g ”l 0SCo <#> «¢— CLOCK[1..0] ——p»|
«—xouTo CLOCK (=) PS2INTERFACE
XiNL—— |y CONTROLLER < DATALL.0] >
‘ osc1 K=
«<—X0OUT1
‘ —— SLEEP
<m0 PLLO =) | cONTROLLER N\ REAL TIME
<«—PLLI— PLLL (= COUNTER
€ GCLKE3.0—— oL WATCHDOG
| oscenn R CONTROLLER
—RESET_N———— | TIMER
l€——AI2.0]— INTERRUPT
«——B12.0—» TIMER/COUNTER 0/1 CONTROLLER
CLK[2..0] —|
f—————PWMO———— P
EXTERNAL PULSE WIDTH L ey
EXTINT7.0] MODULATION
< KPS[7.0]—— INTERRUPT CONTROLLER | e
NMI_N——3 CONTROLLER PWM3—————]

AIMEL 12

32054D-AVR32-10/07 I ©

s A T32AP7002

4.0.1 AVR32AP CPU

* 32-bit load/store AVR32B RISC architecture.
Up to 15 general-purpose 32-bit registers.
32-bit Stack Pointer, Program Counter and Link Register reside in register file.
Fully orthogonal instruction set.
Privileged and unprivileged modes enabling efficient and secure Operating Systems.
Innovative instruction set together with variable instruction length ensuring industry leading
code density.
DSP extention with saturating arithmetic, and a wide variety of multiply instructions.
— SIMD extention for media applications.
* 7 stage pipeline allows one instruction per clock cycle for most instructions.
— Java Hardware Acceleration.
— Byte, half-word, word and double word memory access.
Unaligned memory access.
— Shadowed interrupt context for INT3 and multiple interrupt priority levels.
— Dynamic branch prediction and return address stack for fast change-of-flow.
— Coprocessor interface.
e Full MMU allows for operating systems with memory protection.
* 16Kbyte Instruction and 16Kbyte data caches.
— Virtually indexed, physically tagged.
— 4-way associative.
— Write-through or write-back.
* Nexus Class 3 On-Chip Debug system.
— Low-cost NanoTrace supported.

4.0.2 Pixel Coprocessor (PICO)

* Coprocessor coupled to the AVR32 CPU Core through the TCB Bus.
— Coprocessor number one on the TCB bus.
e Three parallel Vector Multiplication Units (VMU) where each unit can:
— Multiply three pixel components with three coefficients.
— Add the products from the multiplications together.
— Accumulate the result or add an offset to the sum of the products.
* Can be used for accelerating:
— Image Color Space Conversion.
» Configurable Conversion Coefficients.
« Supports packed and planar input and output formats.
» Supports subsampled input color spaces (i.e 4:2:2, 4:2:0).
— Image filtering/scaling.
» Configurable Filter Coefficients.
« Throughput of one sample per cycle for a 9-tap FIR filter.
e Can use the built-in accumulator to extend the FIR filter to more than 9-taps.
» Can be used for bilinear/bicubic interpolations.
— MPEG-4/H.264 Quarter Pixel Motion Compensation.
* Flexible input Pixel Selector.
— Can operate on numerous different image storage formats.
* Flexible Output Pixel Inserter.
— Scales and saturates the results back to 8-bit pixel values.
— Supports packed and planar output formats.

AIMEL 13

32054D-AVR32-10/07 I ©

s A T32AP7002

4.0.3

4.0.4

4.0.5

4.0.6

Configurable coefficients with flexible fixed-point representation.

Debug and Test system

DMA Controller

IEEE1149.1 compliant JTAG and boundary scan

Direct memory access and programming capabilities through JTAG interface

Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 3
Auxiliary port for high-speed trace information

Hardware support for 6 Program and 2 data breakpoints

Unlimited number of software breakpoints supported

Advanced Program, Data, Ownership, and Watchpoint trace supported

2 HSB Master Interfaces
3 Channels
Software and Hardware Handshaking Interfaces
— 11 Hardware Handshaking Interfaces
Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
Single-block DMA Transfer
Multi-block DMA Transfer
— Linked Lists
— Auto-Reloading
— Contiguous Blocks
DMA Controller is Always the Flow Controller
Additional Features
— Scatter and Gather Operations
— Channel Locking
- Bus Locking
- FIFO Mode
— Pseudo Fly-by Operation

Peripheral DMA Controller

Bus system

32054D-AVR32-10/07

Transfers from/to peripheral to/from any memory space without intervention of the processor.
Next Pointer Support, forbids strong real-time constraints on buffer management.
Eighteen channels

— Two for each USART

— Two for each Serial Synchronous Controller

— Two for each Serial Peripheral Interface

HSB bus matrix with 10 Masters and 8 Slaves handled
— Handles Requests from the CPU Icache, CPU Dcache, HSB bridge, HISI, USB 2.0 Controller,
LCD Controller, DMA Controller 0, DMA Controller 1, and to internal SRAM 0, internal SRAM 1,
PB A, PB B, EBI and, USB.

AIMEL 14

L ________________(0G]

s A T32AP7002

32054D-AVR32-10/07

— Round-Robin Arbitration (three modes supported: no default master, last accessed default
master, fixed default master)
— Burst Breaking with Slot Cycle Limit
— One Address Decoder Provided per Master
* 2 Peripheral buses allowing each bus to run on different bus speeds.
— PB A intended to run on low clock speeds, with peripherals connected to the PDC.
— PB B intended to run on higher clock speeds, with peripherals connected to the DMACA.
* HSB-HSB Bridge providing a low-speed HSB bus running at the same speed as PBA
— Allows PDC transfers between a low-speed PB bus and a bus matrix of higher clock speeds

An overview of the bus system is given in Figure 4-1 on page 13. All modules connected to the
same bus use the same clock, but the clock to each module can be individually shut off by the
Power Manager. The figure identifies the number of master and slave interfaces of each module
connected to the HSB bus, and which DMA controller is connected to which peripheral.

AIMEL 15

L ________________(0G]

s A T32AP7002

5. 1/0 Line Considerations

5.1 JTAG pins

5.2 WAKE_N pin

5.3 RESET_N pin

54 EVTIL_N pin

55 TWIpins

5.6 PIO pins

32054D-AVR32-10/07

The TMS, TDI and TCK pins have pull-up resistors. TDO is an output, driven at up to VDDIO,
and have no pull-up resistor. The TRST_N pin is used to initialize the embedded JTAG TAP
Controller when asserted at a low level. It is a schmitt input and integrates permanent pull-up
resistor to VDDIO, so that it can be left unconnected for normal operations.

The WAKE_N pin is a schmitt trigger input integrating a permanent pull-up resistor to VDDIO.

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.

The EVTI_N pin is a schmitt input and integrates a non-programmable pull-up resistor to VDDIO.

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the
pins have the same characteristics as PIO pins.

All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is
performed independently for each I/O line through the PIO Controllers. After reset, 1/O lines
default as inputs with pull-up resistors enabled, except when indicated otherwise in the column
“Reset State” of the PIO Controller multiplexing tables.

AIMEL 16

L ________________(0G]

s A T32AP7002

6. AVR32 AP CPU

Rev.: 1.0.0.0

This chapter gives an overview of the AVR32 AP CPU. AVR32 AP is an implementation of the
AVR32 architecture. A summary of the programming model, instruction set, caches and MMU is
presented. For further details, see the AVR32 Architecture Manual and the AVR32 AP Technical
Reference Manual.

6.1 AVR32 Architecture

AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for cost-
sensitive embedded applications, with particular emphasis on low power consumption and high
code density. In addition, the instruction set architecture has been tuned to allow a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid- or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and half-word data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, half-word, word and double word data
with automatic sign- or zero extension of half-word and byte data.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

6.2 The AVR32 AP CPU
AVR32 AP targets high-performance applications, and provides an advanced OCD system, effi-
cient data and instruction caches, and a full MMU. Figure 6-1 on page 18 displays the contents
of AVR32 AP.

AIMEL 17

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 6-1. Overview of the AVR32 AP CPU
PN

Reset interface

OCD interface

JTAG interface

OCD JTAG Reset
system control control

Interrupt controller interface

Tightly Coupled Bus . . . BTB RAM interface
I AVR32 CPU pipeline with Java accelerator]

A A

Dcache Icache
Cache RAM interface | controller |« =E 9 3 - »| controller [Cache RAM interface

[I =
> a >

HSB > £ (> HSB
+— c +—

master c|l o [¢ master
YA
| m (<

{ High Speed Bus
(High Speed Bus

6.2.1 Pipeline Overview
AVR32 AP is a pipelined processor with seven pipeline stages. The pipeline has three subpipes,
namely the Multiply pipe, the Execute pipe and the Data pipe. These pipelines may execute dif-
ferent instructions in parallel. Instructions are issued in order, but may complete out of order
(O00) since the subpipes may be stalled individually, and certain operations may use a subpipe
for several clock cycles.

Figure 6-2 on page 19 shows an overview of the AVR32 AP pipeline stages.

AIMEL 18

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 6-2. The AVR32 AP Pipeline

- M1 > M2 > Multiply pipe
IF1 IF2 ID IS - Al - A2 p WB ALU pipe
Prefetch unit Decode unit
> Load-store
L DA L D - pipe

.The follwing abbreviations are used in the figure:

 IF1, IF2 - Instruction Fetch stage 1 and 2
« ID - Instruction Decode
* IS - Instruction Issue
* Al, A2 - ALU stage 1 and 2
* M1, M2 - Multiply stage 1 and 2
« DA - Data Address calculation stage
» D - Data cache access
* WB - Writeback
6.2.2 AVR32B Microarchitecture Compliance

AVR32 AP implements an AVR32B microarchitecture. The AVR32B microarchitecture is tar-
geted at applications where interrupt latency is important. The AVR32B therefore implements
dedicated registers to hold the status register and return address for interrupts, exceptions and
supervisor calls. This information does not need to be written to the stack, and latency is there-
fore reduced. Additionally, AVR32B allows hardware shadowing of the registers in the register
file.

The scall, rete and rets instructions use the dedicated return status registers and return address
registers in their operation. No stack accesses are performed by these instructions.

6.2.3 Java Support

AVR32 AP provides Java hardware acceleration in the form of a Java Virtual Machine hardware
implementation. Refer to the AVR32 Java Technical Reference Manual for details.

6.2.4 Memory management
AVR32 AP implements a full MMU as specified by the AVR32 architecture. The page sizes pro-
vided are 1K, 4K, 64K and 1M. A 32-entry fully-associative common TLB is implemented, as well
as a 4-entry micro-ITLB and 8-entry micro-DTLB. Instruction and data accesses perform lookups
in the micro-TLBs. If the access misses in the micro-TLBs, an access in the common TLB is per-
formed. If this access misses, a page miss exception is issued.

AIMEL 19

32054D-AVR32-10/07 I ©

s A T32AP7002

6.2.5 Caches and write buffer

AVR32 AP implements 16K data and 16K instruction caches. The caches are 4-way set asso-
ciative. Each cache has a 32-bit System Bus master interface connecting it to the bus. The
instruction cache has a 32-bit interface to the fetch pipeline stage, and the data cache has a 64-
bit interface to the load-store pipeline. The caches use a least recently used allocate-on-read-
miss replacement policy. The caches are virtually tagged, physically indexed, avoiding the need
to flush them on task switch.

The caches provide locking on a per-line basis, allowing code and data to be permanently
locked in the caches for timing-critical code. The data cache also allows prefetching of data
using the pref instruction.

Accesses to the instruction and data caches are tagged as cacheable or uncacheable on a per-
page basis by the MMU. Data cache writes are tagged as write-through or writeback on a per-
page basis by the MMU.

The data cache has a 32-byte combining write buffer, to avoid stalling the CPU when writing to
external memory. Writes are tagged as bufferable or unbufferable on a per-page basis by the
MMU. Bufferable writes to sequential addresses are placed in the buffer, allowing for example a
sequence of byte writes from the CPU to be combined into word transfers on the bus. A sync
instruction is provided to explicitly flush the write buffer.

6.2.6 Unaligned reference handling

32054D-AVR32-10/07

AVR32 AP has hardware support for performing unaligned memory accesses. This will reduce
the memory footprint needed by some applications, as well as speed up other applications oper-
ating on unaligned data.

AVR32 AP is able to perform certain word-sized load and store instructions of any alignment,
and word-aligned st.d and Id.d. Any other unaligned memory access will cause an MMU address
exception. All coprocessor memory access instructions require word-aligned pointers. Double-
word-sized accesses with word-aligned pointers will automatically be performed as two word-
sized accesses.

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses. Accessing an unaligned address may require several
clock cycles, refer to the AVR32 AP Technical Reference Manual for details.

Table 6-1. Instructions with unaligned reference support
Instruction Supported alignment
ld.w Any
st.w Any
lddsp Any
lddpc Any
stdsp Any
Id.d Word
st.d Word
All coprocessor memory access instruction | Word

AIMEL 20

L ________________(0G]

s A T32AP7002

6.2.7 Unimplemented instructions

The following instructions are unimplemented in AVR32 AP, and will cause an Unimplemented
Instruction Exception if executed:

* mems

* memc

* memt

6.2.8 Exceptions and Interrupts

32054D-AVR32-10/07

AVR32 AP incorporates a powerful exception handling scheme. The different exception
sources, like lllegal Op-code and external interrupt requests, have different priority levels, ensur-
ing a well-defined behavior when multiple exceptions are received simultaneously. Additionally,
pending exceptions of a higher priority class may preempt handling of ongoing exceptions of a
lower priority class. Each priority class has dedicated registers to keep the return address and
status register thereby removing the need to perform time-consuming memory operations to
save this information.

There are four levels of external interrupt requests, all executing in their own context. The INT3
context provides dedicated shadow registers ensuring low latency for these interrupts. An inter-
rupt controller does the priority handling of the external interrupts and provides the autovector
offset to the CPU.

The addresses and priority of simultaneous events are shown in Table 6-2 on page 22.

AIMEL 21

L ________________(0G]

s A T32AP7002

Table 6-2. Priority and handler addresses for events
Priority | Handler Address Name Event source Stored Return Address
1 0xA000_0000 Reset External input Undefined
2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction
3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction
4 EVBA+0x04 TLB multiple hit Internal signal PC of offending instruction
5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction
6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction
7 EVBA+0x10 NMI External input First non-completed instruction
8 Autovectored Interrupt 3 request External input First non-completed instruction
9 Autovectored Interrupt 2 request External input First non-completed instruction
10 Autovectored Interrupt 1 request External input First non-completed instruction
11 Autovectored Interrupt O request External input First non-completed instruction
12 EVBA+0x14 Instruction Address ITLB PC of offending instruction
13 EVBA+0x50 ITLB Miss ITLB PC of offending instruction
14 EVBA+0x18 ITLB Protection ITLB PC of offending instruction
15 EVBA+0x1C Breakpoint OCD system First non-completed instruction
16 EVBA+0x20 lllegal Opcode Instruction PC of offending instruction
17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction
18 EVBA+0x28 Privilege violation Instruction PC of offending instruction
19 EVBA+0x2C Floating-point FP Hardware PC of offending instruction
20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction
21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2
22 EVBA+0x34 Data Address (Read) DTLB PC of offending instruction
23 EVBA+0x38 Data Address (Write) DTLB PC of offending instruction
24 EVBA+0x60 DTLB Miss (Read) DTLB PC of offending instruction
25 EVBA+0x70 DTLB Miss (Write) DTLB PC of offending instruction
26 EVBA+0x3C DTLB Protection (Read) DTLB PC of offending instruction
27 EVBA+0x40 DTLB Protection (Write) DTLB PC of offending instruction
28 EVBA+0x44 DTLB Modified DTLB PC of offending instruction

32054D-AVR32-10/07

ATMEL

L ________________(0G]

22

s A T32AP7002

6.3 Programming Model

6.3.1 Register file configuration
The AVR32B architecture specifies that the exception contexts may have a different number of
shadowed registers in different implementations. Figure 6-3 on page 23 shows the model used
in AVR32 AP.

Figure 6-3. The AVR32 AP Register File

Application Supervisor INTO INT1 INT2 INT3 Exception NMI
Bit31 Bit0 Bit 31 Bit0 Bit 31 Bit0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit0 Bit 31 Bit0 Bit 31 Bit0

PC PC PC PC PC PC PC ‘ PC

LR LR LR LR LR LR_INT3 LR LR
SP_APP SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS

R12 R12 R12 R12 R12 R12_INT3 R12 R12

R11 R11 R11 R11 R11 R11_INT3 R11 R11

R10 R10 R10 R10 R10 R10_INT3 R10 R10

R9 R9 R9 R9 R9 R9_INT3 R9 R9

R8 R8 R8 R8 R8 R8_INT3 R8 R8

R7 R7 R7 R7 R7 R7 R7 R7

R6 R6 R6 R6 R6 R6 R6 R6

R5 R5 R5 R5 R5 R5 R5 R5

R4 R4 R4 R4 R4 R4 R4 R4

R3 R3 R3 R3 R3 R3 R3 R3

R2 R2 R2 R2 R2 R2 R2 R2

R1 R1 R1 R1 R1 R1 R1 R1

RO RO RO RO RO RO RO RO

SR | SR | SR SR SR SR SR SR
‘ RSR_SUP ‘ RSR_INTO RSR_INT1 RSR_INT2 RSR_INT3 RSR_EX RSR_NMI
‘ RAR_SUP ‘ RAR_INTO RAR_INT1 RAR_INT2 RAR_INT3 RAR_EX RAR_NMI

6.3.2 Status register configuration

The Status Register (SR) is splitted into two halfwords, one upper and one lower, see Figure 6-4
on page 23 and Figure 6-5 on page 24. The lower word contains the C, Z, N, V and Q condition
code flags and the R, T and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 6-4. The Status Register High Halfword

Bit 31 Bit 16

- - H J DM D - M2 | M1 | MO | EM | I3M | I2M | IIM | IOM | GM | Bit name

ojo0ojo0o;jo0of0|0,0]0]0]|1 1700] 0| 0| 1 |Initialvalue

|—> Global Interrupt Mask

—— Interrupt Level 0 Mask
Interrupt Level 1 Mask
Interrupt Level 2 Mask
Interrupt Level 3 Mask
Exception Mask

Mode Bit 0

Mode Bit 1

Mode Bit 2

Reserved

Debug State

Debug State Mask
Java State

Java Handle
Reserved

Reserved

AIMEL 23

32054D-AVR32-10/07 I ©

YYYYYYYYYYYYYY

AT32AP7002

Figure 6-5. The Status Register Low Halfword

Bit 15 Bit 0

R|T |-} - -|-]-]-]-]-]L|Q|V|N|]Z]|C | Btname

ojo0o|jo0o|0j]0O0|O0O|O]O|O]O|O|0]|]O0)| 0] 0] O |Initalvalue

|—> Carry

L—» Zero

Sign

Overflow

Saturation

Lock

Reserved

Scratch

Register Remap Enable

YyYyvyy V{

6.3.3 Processor States

6.3.3.1 Normal RISC State
The AVR32 processor supports several different execution contexts as shown in Table 6-3 on
page 24.

Table 6-3. Overview of execution modes, their priorities and privilege levels.

Priority Mode Security Description

1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode
2 Exception Privileged Execute exceptions

3 Interrupt 3 Privileged General purpose interrupt mode

4 Interrupt 2 Privileged General purpose interrupt mode

5 Interrupt 1 Privileged General purpose interrupt mode

6 Interrupt O Privileged General purpose interrupt mode

N/A Supervisor Privileged Runs supervisor calls

N/A Application Unprivileged Normal program execution mode

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

6.3.3.2 Debug State
The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

AIMEL 24

32054D-AVR32-10/07 I ©

s A T32AP7002

6.3.3.3 Java State

32054D-AVR32-10/07

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32 AP Technical Reference Manual.

Debug state is exited by the retd instruction.

AVR32 AP implements a Java Extension Module (JEM). The processor can be set in a Java
State where normal RISC operations are suspended. Refer to the AVR32 Java Technical Refer-
ence Manual for details.

AIMEL 25

L ________________(0G]

s A T32AP7002

7. Pixel Coprocessor (PICO)

Rev.: 1.0.0.0
7.1 Features

* Coprocessor coupled to the AVR32 CPU Core through the TCB Bus.
* Three parallel Vector Multiplication Units (VMU) where each unit can:
— Multiply three pixel components with three coefficients.
— Add the products from the multiplications together.

— Accumulate the result or add an offset to the sum of the products.

e Can be used for accelerating:
— Image Color Space Conversion.
» Configurable Conversion Coefficients.
» Supports packed and planar input and output formats.
» Supports subsampled input color spaces (i.e 4:2:2, 4:2:0).
— Image filtering/scaling.
« Configurable Filter Coefficients.
« Throughput of one sample per cycle for a 9-tap FIR filter.

e Can use the built-in accumulator to extend the FIR filter to more than 9-taps.

« Can be used for bilinear/bicubic interpolations.
— MPEG-4/H.264 Quarter Pixel Motion Compensation.
* Flexible input Pixel Selector.
— Can operate on numerous different image storage formats.
* Flexible Output Pixel Inserter.
— Scales and saturates the results back to 8-bit pixel values.
— Supports packed and planar output formats.
* Configurable coefficients with flexible fixed-point representation.

7.2 Description

The Pixel Coprocessor (PICO) is a coprocessor coupled to the AVR32 CPU through the TCB
(Tightly Coupled Bus) interface. The PICO consists of three Vector Multiplication Units (VMUO,
VMU1, VMUZ2), an Input Pixel Selector and an Output Pixel Inserter. Each VMU can perform a
vector multiplication of a 1x3 12-bit coefficient vector with a 3x1 8-bit pixel vector. In addition a

12-bit offset can be added to the result of this vector multiplication.

The PICO can be used for transforming the pixel components in a given color space (i.e. RGB,
YCrCh, YUV) to any other color space as long as the transformation is linear. The flexibility of
the Input Pixel Selector and Output Pixel Insertion logic makes it easy to efficiently support dif-
ferent pixel storage formats with regards to issues such as byte ordering of the color
components, if the color components constituting an image are packed/interleaved or stored as

separate images or if any of the color components are subsampled.

The three Vector Multiplication Units can also be connected together to form one large vector
multiplier which can perform a vector multiplication of a 1x9 12-bit coefficient vector with a 9x1 8-
bit pixel vector. This can be used to implement FIR filters, bilinear interpolations filters for
smoothing/scaling images etc. By allowing the outputs from the Vector Multiplication units to

accumulate it is also possible to extend the order of the filter to more than 9-taps.

The results from the VMUs are scaled and saturated back to unsigned 8-bit pixel values in the

Output Pixel Inserter.

ATMEL

32054D-AVR32-10/07 I ©

26

s A T32AP7002

The PICO is divided into three pipeline stages with a throughput of one operation per cpu clock
cycle.

7.3 Block Diagram

Figure 7-1. Pixel Coprocessor Block Diagram

; INPIXO \ INPIXL \ INPIX2 ;

Pipeline Stage 1

Input Pixel Selector

Y Y Y Y A Y Y Y A

é VMUO_INO ‘ VMUO_INL ‘ VMUO_IN2 M VMUL_INO ‘ VMUL_INL ‘ VMUL_IN2 M VMU2_INO ‘ VMU2_INL ‘ VMU2_IN2 #

NE I Wl e

COEFFO_0 > COEFF1_0 » COEFF2_0 >
COEFFO_1 > COEFF1_1 » COEFF2_1 >

VMUO VMU1 VMU2
COEFFO_2 > COEFF1_2 > COEFF2_2 >

[A A

Pipeline Stage 2

Output Pixel Inserter

L1

; OUTPIX0 \ OUTPIXL \ ouTPIX2 |
L ‘

r' v Yy

Pipeline Stage 3

AIMEL 27

32054D-AVR32-10/07 I ©

s A T32AP7002

7.4 Vector Multiplication Unit (VMU)

Each VMU consists of three multipliers used for multiplying unsigned 8-bit pixel components with
signed 12-bit coefficients.The result from each multiplication is a 20-bit signed number that is
input to a 22-bit vector adder along with an offset as shown in Figure 7-2 on page 28. The oper-
ation is equal to the offsetted vector multiplication given in the following equation:

vmu_inO
vmu_out = [coeff0 coeffl coeff2] |vmu_in1| + Offset
vmu_in2
Figure 7-2. Inside VMUn (n € {0,1,2})
coeffn_0 vmun_in0 coeffn_1 vmun_inl coeffn_2 vmun_in2
Multiply Multiply Multiply
offsetn * L i
Vector Adder
VMUn
\J

vmun_out

7.5 Input Pixel Selector

The Input Pixel Selector uses the ISM (Input Selection Mode) field in the CONFIG register and
the three input pixel source addresses given in the PICO operation instructions to decide which
pixels to select for inputs to the VMUSs.

75.1 Transformation Mode
When the Input Selection Mode is set to Transformation Mode the input pixel source addresses
INX, INy and INz directly maps to three pixels in the INPIXn registers. These three pixels are
then input to each of the VMUSs. The following expression then represents what is computed by
the VMUs in Transformation Mode:

VMUO_OUT| |COEFF0_0 COEFFO_1 COEFFO_2||INx| |OFFSETO or VMUO_OUT
VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| * |OFFSET1 or VMU1_OUT
VMU2_OUT| |COEFF2_0 COEFF2_1 COEFF2_2||INz| |OFFSET2 or VMU2_OUT

7.5.2 Horizontal Filter Mode
In Horizontal Filter Mode the input pixel source addresses INX, INy and INz represents the base
pixel address of a pixel triplet. The pixel triplet {IN(x), IN(x+1), IN(x+2)} is input to VMUO, the
pixel triplet {IN(y), IN(y+1), IN(y+2)} is input to VMUL1 and the pixel triplet {IN(z), IN(z+1), IN(z+2)}

AIMEL 28

32054D-AVR32-10/07 I ©

s A T32AP7002

is input to VMUZ2. Figure 7-3 on page 29 shows how the pixel triplet is found by taking the pixel
addressed by the base address and following the arrow to find the next two pixels which makes
up the triplet.

Figure 7-3. Horizontal Filter Mode Pixel Addressing

INPIXO ING H HNZ /'{‘;B’

/

INPIX1 N NG iy
//

INPIX2 INS=———O HNEO NP

The following expression represents what is computed by the VMUs in Horizontal Filter Mode:

[IN(x+0))
VMUO_OUT = [COEFFO_0 COEFFO_1 COEFFO_2]|IN(x+1)| + (OFFSETO or VMUO_OUT)
LIN(x+2)]

[IN(y+0)
VMUL_OUT = [COEFF1_0 COEFF1_1 COEFF1_2||IN(y+1)| + (OFFSETL or VMU1_OUT)
IN(y+2)]

IN(z+0)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2] |IN(z+1)| + (OFFSET2 or VMU2_OUT)
ING+2)

753 Vertical Filter Mode
In Vertical Filter Mode the input pixel source addresses INx, INy and INz represent the base of a
pixel triplet found by following the vertical arrow shown in Figure 7-4 on page 29. The pixel triplet
{IN(X), IN((x+4)%11), IN((x+8)%11)} is input to VMUQO, the pixel triplet {IN(y), IN((y+4)%11),
IN((y+8)%11)} is input to VMU1 and the pixel triplet {IN(z), IN((z+4)%11), IN((z+8)%11)} is input
to VMUZ2.

Figure 7-4. Vertical Filter Mode Pixel Addressing

INPIXO0 INO %1 y” IN3

/ INI5 /IN(l /IN'

INPIX1 ING / / Y,

INPIX2 IN'(INK INl(IN]!

AIMEL 29

32054D-AVR32-10/07 I ©

s A T32AP7002

The following expression represents what is computed by the VMUs in Vertical Filter Mode:

[IN((x+0)%11)]
[COEFFO_O COEFF0_1 COEFFo_z] IN((x+4)%11)| +* (OFFSETO or VMUO_OUT)
[IN((x+8)%11)]

VMUO_OUT

[IN((y+0)%11)]
[COEFFl_O COEFF1_1 COEFFl_z] IN((y+4)%11)| + (OFFSET1 or VMU1_OUT)
[IN((y+8)%11)]

VMU1_OUT

[IN((z+0)%11)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2||IN((z+4)%11)| + (OFFSET2 or VMU2_OUT)
[IN((z+8)%11)]

7.6 Output Pixel Inserter

The Output Pixel Inserter uses the OIM (Output Insertion Mode) field in the CONFIG register and
the destination pixel address given in the PICO operation instructions to decide which three of
the twelve possible OUTn pixels to write back the scaled and saturated results from the VMUs
to. The 22-bit results from each VMU is first scaled by performing an arithmetical right shift by
COEFF_FRAC_BITS in order to remove the fractional part of the results and obtain the integer
part. The integer part is then saturated to an unsigned 8-bit number in the range 0 to 255.

7.6.1 Planar Insertion Mode

32054D-AVR32-10/07

In Planar Insertion Mode the destination pixel address OUTd specifies which pixel in each of the
registers OUTPIX0, OUTPIX1 and OUTPIX2 will be updated. VMUn writes to OUTPIXn. This
can be seen in Figure 7-5 on page 30 and Table 7-2 on page 48. This mode is useful when
transforming from one color space to another where the resulting color components should be
stored in separate images.

Figure 7-5. Planar Pixel Insertion

QOUTPIX0 OUTO OuT1 ouT2 OuUT3
OUTPIX1 ouT4 OuUT5 ouT6 ouT7
OUTPIX2 OuUT8 ouT9 OuT10 OuUT11
D e e T 2
dz0 d=1 d=2 d=3

ATMEL s

s A T32AP7002

7.6.2 Packed Insertion Mode

In Packed Insertion Mode the three output registers OUTPIX0, OUTPIX1 and OUTPIX2 are
divided into four pixel triplets as seen in Figure 7-6 on page 31 and Table 7-2 on page 48. The
destination pixel address is then the address of the pixel triplet. VMUn writes to pixel n of the
pixel triplet. This mode is useful when transforming from one color space to another where the
resulting color components should be packed together.

Figure 7-6. Packed Pixel Insertion.

OUTPIXO OUTPIX1 OUTPIX2
A A A
4 - -
OUTO | OUTL | OUT2 | OUT3 | OUT4 | OUTS | OUT6 | OUT7 | OUT8 | OUT9 | OUTI0 | OUTI1
- - - -
Y Y Y g
d=0 d=1 d=2 d=3

32054D-AVR32-10/07

AIMEL 31

L ________________(0G]

s A T32AP7002

7.7 User Interface

The PICO uses the TCB interface to communicate with the CPU and the user can read from or
write to the PICO Register File by using the PICO load/store/move instructions which maps to

generic coprocessor instructions.

7.7.1 Register File
The PICO register file can be accessed from the CPU by using the picomv.x, picold.x, picost.x,
picoldm and picostm instructions.
Table 7-1. PICO Register File

Cp Reg # Register Name Access

cr0 Input Pixel Register 2 INPIX2 Read/Write
crl Input Pixel Register 1 INPIX1 Read/Write
cr2 Input Pixel Register 0 INPIX0 Read/Write
cr3 Output Pixel Register 2 OUTPIX2 Read Only
cr4 Output Pixel Register 1 OUTPIX1 Read Only
cr5 Output Pixel Register 0 OUTPIX0 Read Only
cré Coefficient Register A for VMUO COEFFO_A Read/Write
cr7 Coefficient Register B for VMUO COEFF0O_B Read/Write
cr8 Coefficient Register A for VMU1 COEFF1_A Read/Write
cr9 Coefficient Register B for VMU1 COEFF1_B Read/Write
crl0 Coefficient Register A for VMU2 COEFF2_A Read/Write
crll Coefficient Register B for VMU2 COEFF2_B Read/Write
crl2 Output from VMUO VMUO_OUT Read/Write
crl3 Output from VMU1 VMU1_OUT Read/Write
crla Output from VMU2 VMU2_OUT Read/Write
crl5 PICO Configuration Register CONFIG Read/Write

32054D-AVR32-10/07

ATMEL

L ________________(0G]

32

s A T32AP7002

7.7.1.1 Input Pixel Register 0
Register Name: INPIX0

Access Type: Read/Write

31 30 29 28 27 26 25 24

| INO |
23 22 21 20 19 18 17 16

| IN1 |
15 14 13 12 11 10 9 8

| IN2 |
7 6 5 4 3 2 1 0

| IN3 |

* INO: Input Pixel 0
Input Pixel number 0 to the Input Pixel Selector Unit.

e IN1: Input Pixel 1
Input Pixel number 1 to the Input Pixel Selector Unit.

* IN2: Input Pixel 2
Input Pixel number 2 to the Input Pixel Selector Unit.

* INS3: Input Pixel 3
Input Pixel number 3 to the Input Pixel Selector Unit.

AIMEL 33

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.2 Input Pixel Register 1
Register Name: INPIX1

Access Type: Read/Write

31 30 29 28 27 26 25 24

| IN4 |
23 22 21 20 19 18 17 16

| IN5 |
15 14 13 12 11 10 9 8

| ING |
7 6 5 4 3 2 1 0

| IN7 |

* INO: Input Pixel 4
Input Pixel number 4 to the Input Pixel Selector Unit.

e IN1: Input Pixel 5
Input Pixel number 5 to the Input Pixel Selector Unit.

* IN2: Input Pixel 6
Input Pixel number 6 to the Input Pixel Selector Unit.

e IN3: Input Pixel 7
Input Pixel number 7 to the Input Pixel Selector Unit.

AIMEL 34

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.3 Input Pixel Register 2
Register Name: INPIX2

Access Type: Read/Write

31 30 29 28 27 26 25 24

| IN8 |
23 22 21 20 19 18 17 16

| IN9 |
15 14 13 12 11 10 9 8

| IN10 |
7 6 5 4 3 2 1 0

| IN11 |

* INO: Input Pixel 8
Input Pixel number 8 to the Input Pixel Selector Unit.

e IN1: Input Pixel 9
Input Pixel number 9 to the Input Pixel Selector Unit.

* IN2: Input Pixel 10
Input Pixel number 10 to the Input Pixel Selector Unit.

e IN3: Input Pixel 11
Input Pixel number 11 to the Input Pixel Selector Unit.

AIMEL 35

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.4 Output Pixel Register 0
Register Name: OUTPIX0

Access Type: Read

31 30 29 28 27 26 25 24

| OouTo |
23 22 21 20 19 18 17 16

| OouT1 |
15 14 13 12 11 10 9 8

| ouT2 |
7 6 5 4 3 2 1 0

| OouT3 |

» OUTO: Output Pixel 0
Output Pixel number 0 from the Output Pixel Inserter Unit.

e OUTL1: Output Pixel 1
Output Pixel number 1 from the Output Pixel Inserter Unit.

» OUT2: Output Pixel 2
Output Pixel number 2 from the Output Pixel Inserter Unit.

e OUTS3: Output Pixel 3
Output Pixel number 3 from the Output Pixel Inserter Unit.

AIMEL 36

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.5 Output Pixel Register 1
Register Name: OUTPIX1

Access Type: Read

31 30 29 28 27 26 25 24

| ouT4 |
23 22 21 20 19 18 17 16

| OouT5 |
15 14 13 12 11 10 9 8

| OouT6 |
7 6 5 4 3 2 1 0

| ouT7 |

» OUT4: Output Pixel 4
Output Pixel number 4 from the Output Pixel Inserter Unit.

e OUTS5: Output Pixel 5
Output Pixel number 5 from the Output Pixel Inserter Unit.

» OUT®6: Output Pixel 6
Output Pixel number 6 from the Output Pixel Inserter Unit.

e OUTY: Output Pixel 7
Output Pixel number 7 from the Output Pixel Inserter Unit.

AIMEL 37

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.6 Output Pixel Register 2
Register Name: OUTPIX2

Access Type: Read

31 30 29 28 27 26 25 24

| ouT8 |
23 22 21 20 19 18 17 16

| ouT9 |
15 14 13 12 11 10 9 8

| OuT10 |
7 6 5 4 3 2 1 0

| OouT11 |

» OUTS8: Output Pixel 8
Output Pixel number 8 from the Output Pixel Inserter Unit.

e OUT9: Output Pixel 9
Output Pixel number 9 from the Output Pixel Inserter Unit.

* OUT10: Output Pixel 10
Output Pixel number 10 from the Output Pixel Inserter Unit.

e OUTL11: Output Pixel 11
Output Pixel number 11 from the Output Pixel Inserter Unit.

AIMEL 38

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.7 Coefficient Register A for VMUO
Register Name: COEFF0O_A

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - [- [- - COEFFO0_0 |
23 22 21 20 19 18 17 16
| COEFFO0_0 |
15 14 13 12 11 10 9 8
| - . - - COEFFO_1 |
7 6 5 4 3 2 1 0
| COEFFO0_1 |

» COEFFO0_0: Coefficient 0 for VMUO

Coefficient 0 input to VMUO. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFFO_O/ZCOEFF—FRAC—B'TS,
where the COEFFO0_0 value is interpreted as a 2’s complement integer. When reading this register, COEFFO0_0 is sign-

extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

» COEFFO0_1: Coefficient 1 for VMUO

Coefficient 1 input to VMUO. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFFO_l/ZCOEFF—FRAC—B'TS,
where the COEFFO0_1 value is interpreted as a 2’s complement integer. When reading this register, COEFFO0_1 is sign-

extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

AIMEL 39

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.8 Coefficient Register B for VMUO
Register Name: COEFF0O_B

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - [- [N - COEFFO0_2 |
23 22 21 20 19 18 17 16
| COEFF0_2 |
15 14 13 12 11 10 9 8
| N - - - OFFSETO |
7 6 5 4 3 2 1 0
| OFFSETO |

» COEFFO0_2: Coefficient 2 for VMUO

Coefficient 2 input to VMUO. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF0_2/ZCOEFF—FRAC—B'TS,
where the COEFFO0_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF0_2 is sign-

extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

* OFFSETO: Offset for VMUO

Offset input to VMUO in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to
OFFSET0/ 20 FSET_FRACBITS '\yhere the OFFSETO value is interpreted as a 2's complement integer. When reading this reg-
ister, OFFSETO is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

AIMEL 40

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.9 Coefficient Register A for VMU1
Register Name: COEFF1_A

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - [N [- - COEFF1_0 |
23 22 21 20 19 18 17 16
| COEFFL 0 |
15 14 13 12 11 10 9 8
| - R - - COEFF1_1 |
7 6 5 4 3 2 1 0
| COEFFL_1 |

» COEFF1_0: Coefficient 0 for VMU1

Coefficient 0 input to VMUL. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFFl_O/ZCOEFF—FRAC—B'TS,
where the COEFF1_0 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_0 is sign-

extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

 COEFF1_1: Coefficient 1 for VMU1

Coefficient 1 input to VMUO. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF1_1/ZCOEFF—FRAC—B'TS,
where the COEFF1_1 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_1 is sign-

extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

AIMEL 4

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.10 Coefficient Register B for VMU1
Register Name: COEFF1_B

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - [- [N - COEFF1_2 |
23 22 21 20 19 18 17 16
| COEFF1 2 |
15 14 13 12 11 10 9 8
| - . N - OFFSET1 |
7 6 5 4 3 2 1 0
| OFFSET1 |

 COEFF1_2: Coefficient 2 for VMU1

Coefficient 2 input to VMUL. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF1_2/ZCOEFF—FRAC—B'TS,
where the COEFF1_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF1_2 is sign-

extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

» OFFSET1: Offset for VMU1

Offset input to VMUL1 in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to
OFFSET1/ 20 FSET_FRACBITS '\yhere the OFFSET1 value is interpreted as a 2's complement integer. When reading this reg-
ister, OFFSET1 is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

AIMEL 42

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.11 Coefficient Register A for VMU2
Register Name: COEFF2_A

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - [N [- - COEFF2_0 |
23 22 21 20 19 18 17 16
| COEFF2 0 |
15 14 13 12 11 10 9 8
| - R - - COEFF2_1 |
7 6 5 4 3 2 1 0
| COEFF2_1 |

» COEFF2_0: Coefficient 0 for VMU2

Coefficient 0 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF2_0/ZCOEFF—FRAC—B'TS,
where the COEFF2_0 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_0 is sign-

extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

» COEFF2_1: Coefficient 1 for VMU2

Coefficient 1 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF2_1/ZCOEFF—FRAC—B'TS,
where the COEFF2_1 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_1 is sign-

extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

AIMEL 43

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.12 Coefficient Register B for VMU2
Register Name: COEFF2_B

Access Type: Read/Write

31 30 29 28 27 26 25 24
| - [- [N - COEFF2_2 |
23 22 21 20 19 18 17 16
| COEFF2_2 |
15 14 13 12 11 10 9 8
| - . N - OFFSET2 |
7 6 5 4 3 2 1 0
| OFFSET2 |

» COEFF2_2: Coefficient 2 for VMU2

Coefficient 2 input to VMU2. A signed 12-bit fixed-point number where the number of fractional bits is given by the
COEFF_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to COEFF2_2/ZCOEFF—FRAC—B'TS,
where the COEFF2_2 value is interpreted as a 2’s complement integer. When reading this register, COEFF2_2 is sign-

extended to 16-bits in order to fill in the unused bits in the upper halfword of this register.

» OFFSET2: Offset for VMU2

Offset input to VMU2 in case of non-accumulating operations. A signed 12-bit fixed-point number where the number of frac-
tional bits is given by the OFFSET_FRAC_BITS field in the CONFIG register. The actual fractional number is equal to
OFFSET2/ 20 FSET_FRACBITS '\yhere the OFFSET2 value is interpreted as a 2's complement integer. When reading this reg-
ister, OFFSET?2 is sign-extended to 16-bits in order to fill in the unused bits in the lower halfword of this register.

AIMEL 44

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.13 VMUO Output Register
Register Name: VMUO_OUT

Access Type: Read/Write

31 30 29 28 27 26 25 24
I R - - ; -]
23 22 21 20 19 18 17 16
| - | - | VMUO_OUT |
15 14 13 12 11 10 9 8
| VMUO_OUT |
7 6 5 4 3 2 1 0
| VMUO_OUT |

* VMUO_OUT: Output from VMUO

This register is used for directly accessing the output from VMUO or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMUO is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

AIMEL 4

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.14 VMU1 Output Register
Register Name: VMU1_OUT

Access Type: Read/Write

31 30 29 28 27 26 25 24
I R - - ; -]
23 22 21 20 19 18 17 16
| - | - | VMU1_OUT |
15 14 13 12 11 10 9 8
| VMUZL_OUT |
7 6 5 4 3 2 1 0
| VMU1_OuUT |

* VMU1_OUT: Output from VMU1

This register is used for directly accessing the output from VMUL or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMUL1 is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

AIMEL 4

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.15 VMU2 Output Register
Register Name: VMU2_OUT

Access Type: Read/Write

31 30 29 28 27 26 25 24
I R - - ; -]
23 22 21 20 19 18 17 16
| - | - | VMU2_OUT |
15 14 13 12 11 10 9 8
| VMU2_OUT |
7 6 5 4 3 2 1 0
| VMU2_OUT |

* VMU2_OUT: Output from VMU2

This register is used for directly accessing the output from VMU2 or for setting the initial value of the accumulator for accu-
mulating operations. The output from VMU2 is a signed 22-bit fixed-point number where the number of fractional bits are
given by the COEFF_FRAC_BITS field in the CONFIG register. When reading this register the signed 22-bit value is sign-
extended to 32-bits.

AIMEL 47

32054D-AVR32-10/07 I ©

s A T32AP7002

7.7.1.16 PICO Configuration Register
Register Name: CONFIG

Access Type: Read/Write

31 30 29 28 27 26 25 24

I : I - : I : I : I - - : |
23 22 21 20 19 18 17 16

I : I - : I : I : I - - : |
15 14 13 12 11 10 9 8

I : I - : I : I : [om | ISM |
7 6 5 4 3 2 1 0

| OFFSET_FRAC_BITS | COEFF_FRAC_BITS |

* OIM: Output Insertion Mode

The OIM bit specifies the semantics of the OUTd output pixel address parameter to the pico(s)v(mul/mac) instructions. The
OIM together with the output pixel address parameter specify which of the 12 output bytes (OUTn) of the OUTPIXn regis-
ters will be updated with the results from the VMUs. Table 7-2 on page 48 describes the different Output Insertion Modes.
See Section 7.6 "Output Pixel Inserter” on page 30 for a description of the Output Pixel Inserter.

Table 7-2. Output Insertion Modes

OIM Mode Description

{OUTPIX0, OUTPIX1, OUTPIX2} is treated as one large register containing 4 sequential 24-
bit pixel triplets. The DST_ADR field specifies which of the sequential triplets will be updated.

0 Packed Insertion Mode OUT(d*3 + 0) « Scaled and saturated output from VMUO
OUT(d*3 + 1) « Scaled and saturated output from VMU1
OUT(d*3 + 2) « Scaled and saturated output from VMU2
Each of the OUTPIXn registers will get one of the resulting pixels. The triplet address
specifies what byte in each of the OUTPIXn registers the results will be written to.
1 Planar Insertion Mode

OUT(d + 0) « Scaled and saturated output from VMUO
OUT(d+ 4) « Scaled and saturated output from VMU1
OUT(d + 8) « Scaled and saturated output from VMU2

e ISM: Input Selection Mode

The ISM field specifies the semantics of the input pixel address parameters INx, INy and INz to the
pico(s)v(mul/mac) instructions. Together with the three input pixel addresses the ISM field specifies to the Input Pixel
Selector which of the input pixels (INn) that should be selected as inputs to the VMUs.Table 7-3 on page 49 describes the

AIMEL 4

32054D-AVR32-10/07 I ©

s A T32AP7002

different Input Selection Modes. See Section 7.5 "Input Pixel Selector” on page 28 for a description of the Input Pixel

Table 7-3. Input Selection Modes
ISM Mode
0 0 Transformation Mode VMUOQ, VMU1 and VMU2 get the same pixel inputs. These three pixels can be
freely selected from the INPIXn registers.
0 1 Horizontal Filter Mode P|x¢_al trlplets_ are §elected for input to each c_Jf the VMUs by addressing
horizontal pixel triplets from the INPIXn registers.
1 0 Vertical Filter Mode P_lxel tr_lplets are selected for |npqt to each of the VMUs by addressing vertical
pixel triplets from the INPIXn registers.
1 1 Reserved N.A
Selector.

» OFFSET_FRAC_BITS: Offset Fractional Bits

Specifies the number of fractional bits in the fixed-point offsets input to each VMU. Must be in the range from 0 to
COEFF_FRAC_BITS. Other values gives undefined results.This value is used for scaling the OFFSETn values before
being input to VMUn so that the offset will have the same fixed-point format as the outputs from the multiplication stages
before performing the vector addition in the VMU.

» COEFF_FRAC_BITS: Coefficient Fractional Bits

Specifies the number of fractional bits in the fixed-point coefficients input to each VMU. Must be in the range from 0 to 11,
since at least one bit of the coefficient must be used for the sign. Other values gives undefined results.
COEFF_FRAC _BITS is used in the Output Pixel Inserter to scale the fixed-point results from the VMUs back to unsigned 8-
bit integers.

AIMEL 4

32054D-AVR32-10/07 I ©

s A T32AP7002

[i]
[i:]]

7.8 PICO Instructions
7.8.1 PICO Instructions Nomenclature
7.8.1.1 Registers and Operands
R{d, s, ...} The uppercase ‘R’ denotes a 32-bit (word) register.
Rd The lowercase ‘d’ denotes the destination register number.
Rs The lowercase ‘s’ denotes the source register number.
Rb The lowercase ‘b’ denotes the base register number for indexed addressing modes.
Ri The lowercase ‘i’ denotes the index register number for indexed addressing modes.
Rp The lowercase ‘p’ denotes the pointer register number.
IN{x, vy, z} The uppercase ‘IN’ denotes a pixel in the INPIXn registers.
INX The lowercase ‘X’ denotes the first input pixel number for the PICO operation instructions.
INy The lowercase 'y’ denotes the second input pixel number for the PICO operation instructions.
INz The lowercase ‘2’ denotes the third input pixel number for the PICO operation instructions.
OouTd The uppercase ‘OUT’ denotes a pixel in the OUTPIXn registers.
OouTd The lowercase ‘d’ denotes the destination pixel number for the PICO operation instructions.
Pr PICO register. See Section 7.7.1 "Register File” on page 32 for a complete list of registers.
PrHi:PrLo PICO register pair. Only register pairs corresponding to valid coprocessor double registers are valid.
E.g. INPIX1:INPIX2 (crl:crO). The low part must correspond to an even coprocessor register number
n and the high part must then correspond to coprocessor register n+1. See Table 7-1 on page 32
for a mapping between PICO register names and coprocessor register numbers.
PC Program Counter, equal to R15
LR Link Register, equal to R14
SP Stack Pointer, equal to R13
PICORegList Register List used in the picoldm and picostm instructions. See instruction description for which
register combinations are allowed in the register list.
disp Displacement
sa Shift amount

Denotes bit i in a immediate value. Example: imm6[4] denotes bit 4 in an 6-bit immediate value.

Denotes bit i to j in an immediate value.

Some instructions access or use doubleword operands. These operands must be placed in two consecutive register
addresses where the first register must be an even register. The even register contains the least significant part and
the odd register contains the most significant part. This ordering is reversed in comparison with how data is
organized in memory (where the most significant part would receive the lowest address) and is intentional.

32054D-AVR32-10/07

AIMEL 50

L ________________(0G]

s A T32AP7002

The programmer is responsible for placing these operands in properly aligned register pairs. This is also specified in
the "Operands" section in the detailed description of each instruction. Failure to do so will result in an undefined

behavior.
7.8.1.2 Operations
ASR(x, n) SE(X, Bits(x) + n) >>n

SATSU(x, n) Signed to Unsigned Saturation (x is treated as a signed value):

If (x > (2"-1)) then (2"1-1); elseif (x < 0) then 0; else x;

SE(x, n) Sign Extend x to an n-bit value
7.8.1.3 Data Type Extensions

d Double (64-bit) operation.

W Word (32-bit) operation.

AIMEL 51

32054D-AVR32-10/07 I ©

s A T32AP7002

7.8.2 PICO Instruction Summary
Table 7-4. PICO instruction summary
Mnemonics Operands / Syntax Description Operation
picosvmac E | OUTd, INX, INy, INz :(I:(él?msuigggnv.ector multiplication and See PICO instruction set reference
picosvmul E | OUTd, INX, INy, INz PICO single vector multiplication See PICO instruction set reference
picovmac E | OUTd, INX, INy, INz Zé(sl?m\;elzgnr:.uItiplications and See PICO instruction set reference
picovmul E OuUTd, INXx, INy, INz PICO vector multiplications. See PICO instruction set reference
PrHi:PrLo, Rp[disp] Load PICO register pair PrHi:PrLo « *(Rp+ZE(disp8<<2))

picold.d PrHi:PrLo, --Rp Load PICO register pair with pre-decrement PrHi:PrLo « *(--Rp)

E zrbl-[|llqu°<rl<_§a] ;gz?ezi(r:](; register pair with indexed PrHI:PrLo < *(Rb+(Ri << sa2))

E | Pr, Rp[disp] Load PICO register Pr « *(Rp+ZE(disp8<<2))
picold.w E | Pr,--Rp Load PICO register with pre-decrement Pr « *(--Rp)

E | Pr, Rb[Ri<<sa] Load PICO register with indexed addressing Pr « *(Rb+(Ri << sa2))
picoldm E | Rp{++}, PICORegList | Load multiple PICO registers See PICO instruction set reference

E Rd, PrHi-PrLo L\)/I;i);/e from PICO register pair to CPU register Rd+1:Rd < PrHi-PrLo
picomv.d : : :

E | PrHi:PrLo, Rd Fl\)/l{;)i;/e from CPU register pair to PICO register PrHi-PrLo < Rd+1:Rd

) E | Rd, Pr Move from PICO register to CPU register Rd « Pr

picomy:-w E | Pr,Rd Move from CPU register to PICO register Pr <« Rd

E | Rpl[disp], PrHi:PrLo Store PICO register pair *(Rp+ZE(disp8<<2)) « PrHi:PrLo
picost.d E | Rp++, PrHi:PrLo Store PICO register pair with post-increment *(Rp--) « PrHi:PrLo

E IIjrt)|_[|I§;:><rl<_soa], aS;%r;SSI;:;) register pair with indexed *Rb+(Ri << sa2)) « PrHi:PrLo

E | Rp[disp], Pr Store PICO register *(Rp+ZE(disp8<<2)) « Pr
picost.w E | Rpt+, Pr Store PICO register with post-increment *(Rp--) < Pr

E | Rb[Ri<<sa], Pr Store PICO register with indexed addressing *(Rb+(Ri << sa2)) « Pr
picostm E | {--}Rp, PICORegList Store multiple PICO registers See PICO instruction set reference

32054D-AVR32-10/07

ATMEL

L ________________(0G]

52

s A T32AP7002

PICOSVMAC - PICO Single Vector Multiplication and Accumulation

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The values in the VMUn_OUT registers are then accumulated
with the new results from the vector multiplications. The results from each Vector Multiplication Unit (VMU) are then added
together for one of the outputs to the Output Pixels Inserter to form the result of a single vector multiplication of two 9-ele-
ment vectors. The results from the VMUs are then scaled and saturated to unsigned 8-bit values before being inserted into
the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend upon the Output Insertion Mode and the
output pixel address given in the instruction.

Operation:
l. if (Input Selection Mode == Horizontal Filter Mode) then

[IN(x+0)]
VMUO_OUT = [COEFF0_0 COEFFO_1 COEFFO_2]|IN(x+1)| + YMUO_OUT
LIN(x+2)]

IN(yY+0)
[COEFF1_0 COEFF1_1 COEFF1_2]|IN(y+1)| + VMU1_OUT
[IN(y+2)|

VMU1_OUT

[IN(z+0)]
[COEFFz_o COEFF2_1 COEFF2_2:| IN(z+1)| * YMUZ_OUT
[IN(z+2)]

VMU2_OUT

else if (Input Selection Mode == Vertical Filter Mode) then

[IN((x+0)%11)]
VMUO_OUT = [COEFF0_0 COEFFO_1 COEFFO_2] |IN((x+4)%11)| + VMUO_OUT
[IN((x+8)%11)

[IN((y+0)%11)]
VMU1_OUT = [COEFFl_O COEFF1_1 COEFFl_Z} IN((y+4)%11)| + VMU1_OUT
[IN((y+8)%11)]

[IN(z+0)%11)]
VMU2_OUT = [COEFFZ_O COEFF2_1 COEFFz_z} IN((z+4)%11)| + VMU2_OUT
[IN((z+8)%11)]

else if (Input Selection Mode == Transformation Mode) then

VMUO_OUT| |COEFF0_0 COEFFO_1 COEFFO0_2||INx| |VMUO_OUT

VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy|*|VMU1l_OUT
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2||INz VMU2_OUT

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT + VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT+ VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) « SATSU(ASR(VMUZ2_OUT, COEFF_FRAC_BITS), 8);

AIMEL 53

32054D-AVR32-10/07 I ©

s A T32AP7002

Syntax:
l. picosvmac OUTd, INX, INy, INz
Operands:
l. de{0,1,2,3}
xy,ze{0,1,..,11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ouT
PICO CP# d[o] INX INy INz
Example:
/*
Inner loop of a 16-tap symmetric FIR filter with coefficients {c0, c1, ¢2, ¢3, c4, ¢5, ¢6, c7, c7, ..., c0} set to filter the
pixels pointed to by r12 storing the result to the memory pointed to by rl11. The coefficients in the PICO are already
set to the following values: COEFFO_0 = c0, COEFF0_1 =cl1, COEFF0_2 =c2, COEFF1_0=c3, COEFF1 1 =c4,
COEFF1_2 =c5, COEFF2_0 =c6, COEFF2_1 = ¢c7, COEFF2_2 =0, OFFSETO = 0.5 (For rounding the result),
OFFSET1 =0, OFFSET2 = 0.
The Input Selection Mode is set to Horizontal Filter Mode while the Output Insertion Mode is set to Planar Insertion
Mode.
The input image pointer might be unaligned, hence the use of Id.w instead of picold.w.
*/
ld.w rl, r12[0] /*rl =*((int *)src) */
ld.w ro, r12[4] /*r0 =*(((int *)src) + 1) */
ld.w r2, r12[8] 1*r2 =*(((int *)src) + 2) */
ld.w r3, r12[12] /*r3 =*(((int *)src) + 3) */
picomv.d INPIX1:INPIX2, r0 /* INPIX1={src[0],src[1],src[2],src[3]}, INPIX2={src[4],src[5],src[6],src[7]}*/
swap.b r2 /* r2 = {src[11],src[10],src[9],src[8]}*/
swap.b r3 /* r3 = {src[15],src[14],src[13],src[12]}*/
picosvmul OUTS3, IN4, IN7,IN10 /* VMUQ_OUT = c0*src[0]+cl*src[1]+c2*src[2] + 0.5
VMUL _OUT = ¢3*src[3]+cd*src[4]+c5*src[5]
VMU2_OUT = c6*src[6]+c7*src[7] */
picomv.d INPIX1:INPIX2, r2 I* INPIX1={src[15],src[14],src[13],src[12]},
INPIX2 ={src[11],src[10],src[9],src[8]} */
picosvmac OUTS3, IN4, IN7,IN10 /* VMUQ_OUT += c0*src[15]+c1*src[14]+c2*src[13]
VMUL OUT += ¢3*src[12]+c4*src[11]+c5*src[10]
VMU2_OUT += c6*src[9]+c7*src[8]
OUT3 = satscaled(VMUO_OUT+VMUL1_OUT+VMU2_OUT)*/
sub riz, -1 [* src++ */
picomv.w r4, OUTPIXO0 /*r4 ={ OUTO, OUTL, OUT2, OUT3 }
st.b ril++, r4 /* *dst = QUT3 */

AIMEL 54

32054D-AVR32-10/07 I ©

s A T32AP7002

PICOSVMUL - PICO Single Vector Multiplication

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The results from each Vector Multiplication Unit (VMU) are then
added together for one of the outputs to the Output Pixels Inserter to form the result of a single vector multiplication of two
9-element vectors. The results from the VMUSs are then scaled and saturated to unsigned 8-bit values before being inserted
into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend upon the Output Insertion Mode and
the output pixel address given in the instruction.

Operation:
l. OFFSET_SCALE = COEFF_FRAC_BITS - OFFSET_FRAC_BITS
if (Input Selection Mode == Horizontal Filter Mode) then

[IN(x+0)]
VMUO_OUT = [COEFFO_O COEFFO0_1 COEFFO_Z} IN(x+1)| + OFFSETO << OFFSET_SCALE
IN(x+2)
[IN(y+0)|
VMU1_OUT = [COEFFl_O COEFF1_1 COEFFl_ZJ IN(y+1)| + OFFSET1 << OFFSET_SCALE
IN(y+2)]
IN(z+0)]
VMU2_OUT = [COEFFZ_O COEFF2_1 COEFFZ_ZJ IN(z+1)| + OFFSET2 << OFFSET_SCALE
LIN(z+2)]

else if (Input Selection Mode == Vertical Filter Mode) then

[IN((x+0)%11)]
VMUO_OUT = [COEFF0_0 COEFFO_1 COEFFO_2| |IN((x+4)%11)| + OFFSET0 << OFFSET_SCALE
[IN((x+8)%11)

[IN((y+0)%11)]
VMUL_OUT = [COEFF1_0 COEFF1_1 COEFF1_2| |IN((y+4)%11)| + OFFSET1 << OFFSET_SCALE
LIN((y+8)%11)]

[IN((z+0)%11)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2| |IN((z+4)%11)| + OFFSET2 << OFFSET_SCALE
[IN((z+8)%11)]

else if (Input Selection Mode == Transformation Mode) then

VMUO_OUT COEFFO0_0 COEFFO0_1 COEFFO_2||INx OFFSETO0 << OFFSET_SCALE

VMUL_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| * |OFFSET1 << OFFSET_SCALE
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2||INz OFFSE20 << OFFSET_SCALE

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT + VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) « SATSU(ASR(VMUO_OUT + VMU1_OUT+ VMU2_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) «~ SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

AIMEL 55

32054D-AVR32-10/07 I ©

s A T32AP7002

Syntax:
l. picosvmul OUTd, INX, INy, INz
Operands:
l. de{0,1,2,3}
x,yze{0,1,..,11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ouT
PICO CP# d[o] INX INy INz
Example:
/~k
Excerpt from inner loop of bilinear interpolation filter operating on image component stored in an array pointed to by
r12. The width of the image is stored in r11 while the resulting filtered image is pointed to by r10. The coefficients of
the filter: A, B, C, D are already set before this code is executed. COEFFO_0 = A, COEFF0_1 = B, COEFF0_2 =0,
COEFF1_0=C, COEFF1_1=D, COEFF1_2 =0, COEFF2_0=0, COEFF2_1=0, COEFF2_2 =0, OFFSET0=0.5
(For rounding the result), OFFSET1 = 0, OFFSET2 = 0.
The Input Selection Mode is set to Horizontal Filter Mode while the Output Insertion Mode is set to Planar Insertion
Mode.
The input image pointer might be unaligned, hence the use of Id.w instead of picold.w, while the output image pointer
is word aligned.
Four output pixels are computed in this example which show an example of a bilinear interpolation filter found in
the Motion Compensation used in the H.264 Video Standard.
*
/
ld.w r1, r12[0] /*rl =*((int *)src) */
ld.w r0, ri2[r11] * 10 =*((int *)(src + width)) */
sub ri2, -2 [* src+=2 */
ld.w r3, r12[0] /*r3 =*((int *)src) */
ld.w r2, ri2[rii] [* r2 =*((int *)(src + width)) */
picomv.d INPIX1:INPIX2, rO /* INPIX1 =r1, INPIX2 =10 */
picosvmul OUTO, IN4, IN8, INO /* OUTO = A*src[j][i+0] + B*src[j][i+1] C*src[j+1][i] + D*src[j+1][i+1] */
picosvmul OUTL, IN5, IN9, INO /* OUT1 = A*src[j][i+1] + B*src[j][i+2] C*src[j+1][i+1] + D*src[j+1][i+2] */
picomv.d INPIXL:INPIX2, r2 /* INPIX1 =r3, INPIX2 =r2 */
picosvmul OUT2, IN4, IN8, INO /* OUT2 = A*src[j][i+2] + B*src[j][i+3] C*src[j+1][i+2] + D*src[j+1][i+3] */
picosvmul OUTS3, IN5, IN9, INO /* OUT3 = A*src[j][i+3] + B*src[j][i+4] C*src[j+1][i+3] + D*src[j+1][i+4] */
sub ri2, -2 [* src+=2 */
picost.w r10++, OUTPIXO0 /* *((int *)src) = { OUTO, OUT1, OUT2, OUT3 } */

32054D-AVR32-10/07

AIMEL 56

L ________________(0G]

s A T32AP7002

PICOVMAC - PICO Vector Multiplication and Accumulation

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The values in the VMUn_OUT registers are then accumulated
with the new results from the vector multiplications. The results from the VMUs are then scaled and saturated to unsigned
8-bit values before being inserted into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers depend
upon the Output Insertion Mode and the output pixel address given in the instruction.

Operation:
l. if (Input Selection Mode == Horizontal Filter Mode) then

VMUO_OUT = [COEFF0_0 COEFFO_1 COEFFO_2]

VMU1_OUT

[COEFF1_0 COEFF1_1 COEFF1_2]

VMU2_OUT [COEFFz_o COEFF2_1 COEFF2_2:|

else if (Input Selection Mode == Vertical Filter Mode) then

VMUO_OUT = [COEFFO_0 COEFFO_1 COEFF0_2)

VMUL_OUT = [COEFF1_0 COEFF1_1 COEFF1_2)

VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2)

[IN(x+0)]
LIN(x+2)]
IN(y+0)]
[IN(y+2)]

[IN(z+0)]

IN(z+2)]

[IN((x+0)%11)]
IN((x+4)%11)
[IN((x+8)%11)

[IN((y+0)%11)]
IN((y+4)%11)
[IN((y+8)%11)]

[IN(z+0)%11)]
IN((z+4)%11)
[IN((z+8)%11)]

else if (Input Selection Mode == Transformation Mode) then

IN(x+1)| * VMUO_OUT

IN(y+1)| * VMU1_OUT

IN(z+1)| + YMU2_OUT

+VMUO_OUT

+VMUL_OUT

+VMU2_OUT

VMUO_OUT| |COEFF0_0 COEFFO_1 COEFFO0_2||INx| |VMUO_OUT

VMU1_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy|*|VMU1l_OUT
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2||INz VMU2_OUT

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);
else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) «~ SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) «~ SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

ATMEL

32054D-AVR32-10/07 I ©

57

s A T32AP7002

Syntax:
l. picovmac OUTd, INX, INy, INz
Operands:
l. de{0,1,2,3}
x,yze{0,1,..,11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ouT
PICO CP# d[o] INX INy INz
Example:
/~k
Inner loop of a 6-tap symmetric FIR filter with coefficients {c0, c1, c2, c2, c1, c0 } set to filter in the vertical direction
of the image pointed to by r12 with the width of the image stored in r11 and the destination image stored in r10. The
coefficients in the PICO are already set to the following values: COEFFQ_0 = c0, COEFF0_1 =c1, COEFFO0_2 =2,
COEFF1_0 =c0, COEFF1_1 =cl, COEFF1_2 =c2, COEFF2_0 = c0, COEFF2_1 = c1, COEFF2_2 =2,
OFFSETO0 = OFFSET1 = OFFSET2 = 0.5 (For rounding the result).
The Input Selection Mode is set to Vertical Filter Mode while the Output Insertion Mode is set to Packed Insertion
Mode.
The input image is assumed to be word aligned.
*/
picold.w INPIXO, r12[0] /* INP1X0 = {src[0][0], src[0][1], src[O][2], src[O][3] }*/
picold.w INPIX1, r12[r11] /* INPIX1 = {src[1][0], src[1][1], src[1][2], src[1][3] }*/
picold.w INPIX2, r12[r11 << 1] /* INPIX2 = {src[2][0], src[2][1], src[2][2], src[2][3] }*/
add ro, ri2, ril /* 19 = src + width */
picovmul OUTO, INO, IN1, IN2 I* VMUOQ_OUT = c0*src[0][0]+c1*src[1][0]+c2*src[2][0] + 0.5
VMU1 OUT = cO0*src[0][1]+c1*src[1][1]+c2*src[2][1] + 0.5
VMU2_OUT = c0*src[0][2]+c1*src[1][2]+c2*src[2][2] + 0.5*/
picold.w INPIX2, r9[r1l << 1] I* INP1X2 = {src[3][0], src[3][1], src[3][2], src[3][3] }*/
picold.w INPIXZ1, r12[r11 << 2] /* INPIX1 = {src[4][0], src[4][1], src[4][2], src[4][3] }*/
picold.w INPIXO, r9[r1l << 2] /* INPIXO0 = {src[5][0], src[5][1], src[5][2], src[5]1[3] }*/
picovmac OUTO, INO, IN1, IN2 I* VMUO_OUT += c0*src[5][0]+c1*src[4][0]+c2*src[3][0]

32054D-AVR32-10/07

VMU1L OUT += cO0*src[5][1]+cl*src[4][1]+c2*src[3][1]
VMU2_OUT += cO0*src[5][2]+c1*src[4][2]+c2*src[3][2]

OUTO = satscale(VMUO_OUT), OUT1 = satscale(VMU1_OUT),
OUT2 = satscale(VMU2_OUT) */

AIMEL 58

L ________________(0G]

s A T32AP7002

PICOVMUL - PICO Vector Multiplication

Description

Performs three vector multiplications where the input pixels taken from the INPIXn registers depends on the Input Selection
Mode and the input pixel addresses given in the instruction. The results from the VMUs are then scaled and saturated to
unsigned 8-bit values before being inserted into the OUTPIXn registers. Which pixels to update in the OUTPIXn registers
depend upon the Output Insertion Mode and the output pixel address given in the instruction.

Operation:
l. OFFSET_SCALE = COEFF_FRAC_BITS - OFFSET_FRAC_BITS
if (Input Selection Mode == Horizontal Filter Mode) then

[IN(x+0)]
VMUO_OUT = [COEFFO_O COEFFO0_1 COEFFO_Z} IN(x+1)| + OFFSETO << OFFSET_SCALE
IN(x+2)
[IN(y+0)
VMU1_OUT = [COEFFl_O COEFF1_1 COEFFl_ZJ IN(y+1)| + OFFSET1 << OFFSET_SCALE
IN(y+2)]
IN(z+0)]
VMU2_OUT = [COEFFZ_O COEFF2_1 COEFFZ_ZJ IN(z+1)| + OFFSET2 << OFFSET_SCALE
[IN(z+2)]

else if (Input Selection Mode == Vertical Filter Mode) then

[IN((x+0)%11)]
VMUO_OUT = [COEFF0_0 COEFFO_1 COEFFO_2| |IN((x+4)%11)| + OFFSETO << OFFSET_SCALE
[IN((x+8)%11)

[IN((y+0)%11)]
VMUL_OUT = [COEFF1_0 COEFF1_1 COEFF1_2| |IN((y+4)%11)| + OFFSET1 << OFFSET_SCALE
LIN((y+8)%11)]

[IN((z+0)%11)]
VMU2_OUT = [COEFF2_0 COEFF2_1 COEFF2_2| |IN((z+4)%11)| + OFFSET2 << OFFSET_SCALE
[IN((z+8)%11)]

else if (Input Selection Mode == Transformation Mode) then

VMUO_OUT COEFFO0_0 COEFFO0_1 COEFFO_2||INx OFFSETO << OFFSET_SCALE

VMUL_OUT| = |COEFF1_0 COEFF1_1 COEFF1_2||INy| * |OFFSET1 << OFFSET_SCALE
VMU2_OUT COEFF2_0 COEFF2_1 COEFF2_2||INz OFFSE20 << OFFSET_SCALE

if (Output Insertion Mode == Packed Insertion Mode) then
OUT(d*3 + 0) « SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 1) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d*3 + 2) « SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);
else if (Output Insertion Mode == Planar Insertion Mode) then
OUT(d + 0) «~ SATSU(ASR(VMUO_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 4) « SATSU(ASR(VMU1_OUT, COEFF_FRAC_BITS), 8);
OUT(d + 8) «~ SATSU(ASR(VMU2_OUT, COEFF_FRAC_BITS), 8);

AIMEL 59

32054D-AVR32-10/07 I ©

s A T32AP7002

Syntax:
l. picovmul OUTd, INX, INy, INz
Operands:
l. de{0,1,2,3}
x,yze{0,1,..,11}
Opcode:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ouT
1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 d[1]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ouT
PICO CP# d[o] INX INy INz
Example:
/~k

Excerpt from inner loop of YCrCb 4:2:2 planar format to RGB packed format image color conversion. The
coefficients of the transform is already set before this code is executed. In transforms like this, the inputs Y, Cr and
Cb are often offsetted with a given amount. This offset can be factored out and included in the offsets like this:
1.164*(Y - 16) = 1.164*Y - 18.625.

The pointer to the Y component is in r12, the pointer to the Cr component in r11 and the pointer to the Cb component
in r10. The pointer to the RGB output image is in r9.

The Input Selection Mode is set to Transform Mode while the Output Insertion Mode is set to Packed Insertion
Mode.

It is assumed that all the input and output pointers are word aligned.

Four RGB triplets are computed in this example. */

picold.w INPIXO, r12++ /= INPIX0={ Y[0], Y[1], Y[21. Y[3] }*/
picold.w INPIXZ, rll++ /* INPIX1= { Cr[0], Cr[1], Cr[2], Cr[3] }*/
picold.w INPIX2, r10++ I* INPIX2= { Cb[0], Cb[1], Cb[2], Cb[3] }*/
picovmul OUTO, INO, IN4, IN8 /* OUTO =r[0], OUT1 = g[0], OUT2 = b[0] */
picovmul OUT1, IN1, IN4, IN8 [* OUT3 =r[1], OUT4 = g[1], OUT5 = b[1] */
picovmul OUT2, IN2, IN5, IN9 [* OUT6 =r[2], OUT7 = g[2], OUT8 = b[2] */
picovmul OUT3, IN3, IN5, IN9 /* OUT9 =r[3], OUT10 = g[3], OUT11 = b[3] */

picostm r9, OUTPIX2, OUTPIX1, OUTPIX0/* RGB = {r[0],9[0],b[0],r[1],9[1],b[1],r[2],9[2],b[2],r[3],9[3],b[3]} */

AIMEL 60

32054D-AVR32-10/07 I ©

s A T32AP7002

PICOLD.{D,W} — Load PICO Register(s)

Description
Reads the memory location specified into the given coprocessor register(s).

Operation:
l. PrHi:PrLo « *(Rp + (ZE(disp8) << 2));
Il. Rp <« Rp-8;
PrHi:PrLo < *(Rp);
Il PrHi:PrLo < *(Rb + (Ri << sa2));
IV. Pr < *(Rp + (ZE(disp8) << 2));

V. Rp < Rp-4;
Pr « *(Rp);
VI. Pr <« *(Rb + (Ri << sa2));
Syntax:
l. picold.d PrHi:PrLo, Rp[disp]
I picold.d PrHi:PrLo, --Rp
Il picold.d PrHi:PrLo, Rb[Ri<<s3]
IV. picold.w Pr, Rp[disp]
V. picold.w Pr, --Rp
VI. picold.w Pr, Rb[Ri<<sa]
Operands:

I-111. PrHi:PrLo € { INPIX1:INPIX2, COEFFO_B:COEFFO_A, COEFF1 B:COEFF1_A, COEFF2_B:COEFF2_A,
VMU1_OUT:VMUO_OUT, CONFIG:VMU2_OUT}

IV-VI. Pre{ INPIXO, INPIX1, INPIX2, COEFFO_A, COEFF0_B, COEFF1_A, COEFF1 B, COEFF2_A,
COEFF2_B, VMUO_OUT, VMU1_OUT, VMU2_OUT, CONFIG}

I-Il, IV-V.p € {0, 1, ..., 15}

I, IV. disp € {0, 4, ..., 1020}

, vI. {b,i} {0,1, ..., 15}

I, vl. sae{0,1,2,3}

Opcode
.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

‘ 1 1 1 ‘ 0 1 0 0 \ 1 1 0 1 0 Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 1 ‘ PrLo[3:1] | 0 ‘ disp8 ‘

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ PrLo[3:1] ‘ 0 ‘ 0 1 0 1 ‘ 0 0 0 0

AIMEL 61

32054D-AVR32-10/07 I ©

s A T32AP7002

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 1 ‘ PrLo[3:1] ‘ 0 ‘ 0 1 Shamt ‘ Ri ‘
V.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

‘ 1 1 1 ‘ 0 1 0 0 ‘ 1 1 0 1 0 Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ PICO CP# ‘ 0 ‘ Pr ‘ disp8 ‘

V.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

‘ PICO CP# ‘ 0 ‘ Pr ‘ 0 1 0 0 ‘ 0 0 0 0 ‘

VI.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 1 ‘ Pr ‘ 0 0 Shamt ‘ Ri ‘
Example:
picold.d COEFF0_B:COEFF0_A, r12[4]

ATMEL o

32054D-AVR32-10/07

s A T32AP7002

PICOLDM - Load Multiple PICO Registers

Description
Reads the memory locations specified into the given PICO registers. The pointer register can optionally be updated after
the operation.

Operation:
[. 1. 1ll. Loadaddress <«Rp;

if (PICORegList contains CONFIG)
CONFIG « *(Loadaddress++);

if (PICORegList contains VMU2_OUT)
VMU2_OUT « *(Loadaddress++);

if (PICORegList contains VMU1_OUT)
VMU1_OUT « *(Loadaddress++);

if (PICORegList contains VMUO_OUT)
VMUO_OUT « *(Loadaddress++);

if (PICORegList contains COEFF2_B)
COEFF2_B <« *(Loadaddress++);

if (PICORegList contains COEFF2_A)
COEFF2_A « *(Loadaddress++);

if (PICORegList contains COEFF1_B)
COEFF1_B <« *(Loadaddress++);

if (PICORegList contains COEFF1_A)
COEFF1_A « *(Loadaddress++);

if (PICORegList contains COEFF0_B)
COEFF0_B <« *(Loadaddress++);

if (PICORegList contains COEFFQ0_A)
COEFFO0_A « *(Loadaddress++);

if (PICORegList contains OUTPIXO0)
Loadaddress++;

if (PICORegList contains OUTPIX1)
Loadaddress++;

if (PICORegList contains OUTPIX2)
Loadaddress++;

if (PICORegList contains INPIXO0)
INPIX0 « *(Loadaddress++);

if (PICORegList contains INPIX1)
INPIX1 « *(Loadaddress++);

if (PICORegList contains INPIX2)
INPIX2 « *(Loadaddress++);

if Opcode[++] == 1 then
Rp <« Loadaddress;

Syntax:

l. picoldm Rp{++}, PICORegList
Il. picoldm Rp{++}, PICORegList
Il. picoldm Rp{++}, PICORegList
Operands:

. PICORegList { {INPIX1, INPIX2}, {OUTPIX2, INPIX0}, {OUTPIX0, OUTPIX1}, {COEFFO_B, COEFFO_A},
{COEFF1_B, COEFF1_A}, {COEFF2_B, COEFF2_A}, {VMU1_OUT, VMUO_OUT},

AIMEL 63

32054D-AVR32-10/07 I ©

s A T32AP7002

{CONFIG, VMU2_OUT} }

Il PICORegList € { INPIXO0, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFFO_A, COEFFO_B}
[I. PICORegList € { COEFF1_A, COEFF1_B, COEFF2_A,COEFF2_B, VMUO_OUT,VMU1_OUT,

VMUZ2_OUT, CONFIG, }

pef{o1, .., 15

Opcode
.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
1 1 1 0 1 1 0 1 1 0 1 0 Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CONFIG VMU1_OUT | COEFF2_B | COEFF1_B | COEFFO_B OUTPIXO OUTPIX2 INPIX1
PICO CP# W 0 1 0 0 VMU2_OUT | VMUO_OUT | COEFF2_A | COEFF1 A | COEFFO_A OUTPIX1 INPIXO INPIX2
Il
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘ Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# | W | 0 ‘ 0 ‘ 0 ‘ 0 ‘ COEFF0_B ‘ COEFFO_A ‘ OUTPIX0 ‘ OUTPIX1 ‘ OUTPIX2 ‘ INPIXO | INPIX1 | INPIX2
1.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘ Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# | W | 0 ‘ 0 ‘ 0 ‘ 1 ‘ CONFIG ‘ VMU2_OUT ‘ VMU1_OUT ‘ VMUO_OUT ‘ COEFF2_B ‘ COEFF2_A | COEFF1_B | COEFF1_A ‘
Example:
l. picoldm r7++, COEFFO_A, COEFF0_B, COEFF1_A, COEFF1_B, COEFF2_A, COEFF2_B
1. picoldm r0, INPIXO, INPIX1, INPIX2
Il. picoldm ri2, VMUQ_OUT, VMU1_OUT, VMU2_OUT

32054D-AVR32-10/07

ATMEL

L ________________(0G]

64

s A T32AP7002

PICOMV.{D,W} — Move between PICO Register(s) and Register File

Description
Move the specified PICO register(s) to register(s) in the Register File or move register(s) in the Register File to PICO regis-
ter(s).

Operation:

l. PrHi:PrLo « (Rs+1:Rs);

I. Pr < Rs;

II. (Rd+1:Rd) « PrHi:PrLo;

IV. Rd « Pr;

Syntax:

I picomv.d PrHi:PrLo, Rs
I picomv.w Pr, Rs

Il. picomv.d Rd, PrHi:PrLo
IV. picomv.w Rd, Pr
Operands:

1. PrHi:PrLo e { INPIXL:INPIX2, OUTPIX2:INPIX0, OUTPIX0:0UTPIX1, COEFFO_B:COEFFO_A,
COEFF1_B:COEFF1_A, COEFF2_B:COEFF2_A, VMU1_OUT:VMUO_OUT,
CONFIG:VMU2_OUT }

II,IV. Pre{ INPIXO, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFFO_A, COEFF0O_B, COEFF1_A,

COEFF1_B, COEFF2_A, COEFF2_B, VMUO_OUT, VMU1_OUT, VMU2_OUT, CONFIG}

. se{0,2 4, .., 14}

. de{0, 24, .., 14}

Il se{0,1, ..., 15}

V. de{0,1, .., 15}

Opcode
.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rs | 0 ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ PrLo[3:1] | 0 ‘ 0 0 1 1 0 0 0 0 ‘

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rs
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ Pr ‘ 0 0 1 0 0 0 0 0

AIMEL 65

32054D-AVR32-10/07 I ©

s A T32AP7002

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rd ‘ 0 ‘
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ PrLo[3:1] ‘ 0 ‘ 0 0 0 1 0 0 0 0 ‘

IV.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 Rd
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ Pr ‘ 0 0 0 0 0 0 0 0 ‘
Example:
picomv.d r2, OUTPIX0:OUTPIX1
picomv.w CONFIG, Ir
66

32054D-AVR32-10/07

ATMEL

s A T32AP7002

PICOST.{D,W} — Store PICO Register(s)

Description
Stores the PICO register value(s) to the memory location specified by the addressing mode.

Operation:
I *(Rp + (ZE(disp8) << 2)) « PrHi:PrLo;
I. *(Rp) « PrHi:PrLo;
Rp <« Rp+8;
Il. *(Rb + (Ri << sa2)) « PrHi:PrLo;
IV. *(Rp + (ZE(disp8) << 2)) «— Pr;

V. *(Rp) « Pr;

Rp < Rp-4;
VI. *(Rb + (Ri << sa2)) « Pr;
Syntax:
I picost.d Rp[disp], PrHi:PrLo
I. picost.d Rp++, PrHi:PrLo
Il picost.d Rb[Ri<<sa], PrHi:PrLo
IV. picost.w Rp[disp], Pr
V. picost.w Rp++, Pr
VI. picost.w Rb[Ri<<sa], Pr
Operands:

I-111. PrHi:PrLo € { INPIX1:INPIX2, OUTPIX2:INPIX0, OUTPIX0:OUTPIX1, COEFFO_B:COEFFO0_A,
COEFF1_B:COEFF1_A, COEFF2_B:COEFF2_A, VMU1_OUT:YMUO_OUT,
CONFIG:VMU2_OUT }

IV-VI. Pr e { INPIXO, INPIX1, INPIX2, OUTPIXO0, OUTPIX1, OUTPIX2, COEFFO_A, COEFF0_B, COEFF1_A,

COEFF1_B, COEFF2_A, COEFF2_B, VMUO_OUT, VMU1_OUT, VMU2_OUT, CONFIG}

-1l IV-V.p € {0, 1, ..., 15}

I, IV. disp € {0, 4, ..., 1020}

n, vI. {b,i}{0,1, ..., 15}

I, vl. sae{0,1,2,3}

Opcode
I

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

‘ 1 1 1 ‘ 0 1 0 1 \ 1 1 0 1 0 Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 1 ‘ PrLo[3:1] | 0 ‘ disp8 ‘

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ PrLo[3:1] ‘ 0 ‘ 0 1 1 1 ‘ 0 0 0 0

AIMEL 67

32054D-AVR32-10/07 I ©

s A T32AP7002

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 1 ‘ PrLo[3:1] ‘ 0 ‘ 1 1 Shamt ‘ Ri
IV.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 0 1 ‘ 1 1 0 1 0 Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ Pr ‘ disp8
V.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 0 ‘ Pr ‘ 0 0 ‘ 0 0 0
VI.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 1 ‘ 1 1 0 1 0 ‘ Rp

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# ‘ 1 ‘ Pr ‘ 1 0 Shamt ‘ Ri
Example:

picost.w rl0++, OUTPIXO0

AIMEL 68

32054D-AVR32-10/07 I ©

s A T32AP7002

PICOSTM — Store Multiple PICO Registers

Description
Writes the PICO registers specified in the register list into the specified memory locations.

Operation:
1.1 1L
if Opcode[--] == 1 then
Rp <« Rp - 4*RegistersinList;
Storeaddress «Rp;

if (PICORegList contains CONFIG)
*(Storeaddress++) < CONFIG;

if (PICORegList contains VMU2_OUT)
*(Storeaddress++) « VMU2_OUT;

if (PICORegList contains VMU1_OUT)
*(Storeaddress++) < VMU1_OUT;

if (PICORegList contains VMUO_OUT)
*(Storeaddress++) « VMUO_OUT;

if (PICORegList contains COEFF2_B)
*(Storeaddress++) < COEFF2_B;

if (PICORegList contains COEFF2_A)
*(Storeaddress++) < COEFF2_A;

if (PICORegList contains COEFF1_B)
*(Storeaddress++) < COEFF1_B;

if (PICORegList contains COEFF1_A)
*(Storeaddress++) < COEFF1_A;

if (PICORegList contains COEFFO_B)
*(Storeaddress++) < COEFFO_B;

if (PICORegList contains COEFF0_A)
*(Storeaddress++) < COEFFO_A;

if (PICORegList contains OUTPIXO0)
*(Storeaddress++) < OUTPIXO;

if (PICORegList contains OUTPIX1)
*(Storeaddress++) < OUTPIX1;

if (PICORegList contains OUTPIX2)
*(Storeaddress++) < OUTPIX2;

if (PICORegList contains INPIXO0)
*(Storeaddress++) «<—INPIXO0 ;

if (PICORegList contains INPIX1)
*(Storeaddress++) «<—INPIX1 ;

if (PICORegList contains INPIX2)
*(Storeaddress++) «<—INPIX2 ;

Syntax:

l. picostm {--}Rp, PICORegList
Il. picostm {--}Rp, PICORegList
Il. picostm {--}Rp, PICORegList
Operands:

. PICORegList { {INPIX1, INPIX2}, {OUTPIX2, INPIX0}, {OUTPIX0, OUTPIX1}, {COEFFO_B, COEFFO_A},
{COEFF1_B, COEFF1_A}, {COEFF2_B, COEFF2_A}, {VMU1_OUT, VMUO_OUT},

AIMEL 69

32054D-AVR32-10/07 I ©

s A T32AP7002

{CONFIG, VMU2_OUT} }

Il PICORegList € { INPIXO0, INPIX1, INPIX2, OUTPIX0, OUTPIX1, OUTPIX2, COEFFO_A, COEFFO_B}
[I. PICORegList € { COEFF1_A, COEFF1_B, COEFF2_A,COEFF2_B, VMUO_OUT,VMU1_OUT,

VMUZ2_OUT, CONFIG, }

pef{o1, .., 15

Opcode
.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
1 1 1 0 1 1 0 1 1 0 1 0 Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CONFIG VMU1_OUT | COEFF2_B | COEFF1_B | COEFFO_B OUTPIXO OUTPIX2 INPIX1
PICO CP# W 0 1 0 1 VMU2_OUT | VMUO_OUT | COEFF2_A | COEFF1 A | COEFFO_A OUTPIX1 INPIXO INPIX2
Il
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘ Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# | W | 0 ‘ 0 ‘ 1 ‘ 0 ‘ COEFF0_B ‘ COEFFO_A ‘ OUTPIX0 ‘ OUTPIX1 ‘ OUTPIX2 ‘ INPIXO | INPIX1 | INPIX2
1.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
‘ 1 1 1 ‘ 0 1 1 0 ‘ 1 1 0 1 0 ‘ Rp
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ PICO CP# | W | 0 ‘ 0 ‘ 1 ‘ 1 ‘ CONFIG ‘ VMU2_OUT ‘ VMU1_OUT ‘ VMUO_OUT ‘ COEFF2_B ‘ COEFF2_A | COEFF1_B | COEFF1_A ‘
Example:
l. picostm --r7, COEFFO_A, COEFFO0_B, COEFF1_A, COEFF1_B, COEFF2_A, COEFF2_B
. picostm r2, OUTPIX0, OUTPIX1, OUTPIX2
1l. picostm rll, VMUO_OUT, VMU1 OUT, VMU2_OUT

32054D-AVR32-10/07

ATMEL

L ________________(0G]

70

s A T32AP7002

7.9 Data Hazards

32054D-AVR32-10/07

Data hazards are caused by data dependencies between instructions which are in different
stages of the pipeline and reads/writes registers which are common to several pipeline stages.
Because of the 3-stage pipeline employed in the PICO data hazards might exist between
instructions. Data hazards are handled by hardware interlocks which can stall a new read com-
mand from or write command to the PICO register file.

Table 7-5. Data Hazards
Next Stall
Instruction Instruction Condition Cycles
Write-After-Read (WAR) or Write-After-Write (WAW)
_ Hazard will occur if writing COEFFn_A/B, VMUn_OUT 1
picomv.x Pr,... or CONFIG since these are accessed when the PICO
picovmul p!00|d-x command is in Pipeline Stage 2 and Pipeline Stage 3.
picovmac picoldm : .)
. Writes to INPIXn registers produces no hazard since
picosvmul LT 0
. they are only accessed in Pipeline Stage 1.
picosvmac
picomv.x Rd,... Read-After-Write Hazard (RAW) will occur if reading
picost.x the PICO register file while a command is in the 2
picostm pipeline.

ATMEL

L ________________(0G]

71

s A T32AP7002

8. Memories

8.1 Embedded Memories

e 32 Kbyte SRAM
— Implemented as two 16Kbyte blocks
— Single cycle access at full bus speed

8.2 Physical Memory Map

The system bus is implemented as an HSB bus matrix. All system bus addresses are fixed, and
they are never remapped in any way, not even in boot. Note that AT32AP7002 by default uses
segment translation, as described in the AVR32 Architecture Manual. The 32 bit physical
address space is mapped as follows:

Table 8-1. AT32AP7002 Physical Memory Map

Start Address Size Device

0x0000_0000 64 Mbyte EBI SRAM CS0O
0x0400_0000 64 Mbyte EBI SRAM CS4
0x0800_0000 64 Mbyte EBI SRAM CS2
0x0C00_0000 64 Mbyte EBI SRAM CS3
0x1000_0000 256 Mbyte EBI SRAM/SDRAM CS1
0x2000_0000 64 Mbyte EBI SRAM CS5
0x2400_0000 16 Kbyte Internal SRAM 0
0x2400_4000 16 Kbyte Internal SRAM1
0xFF00_0000 4 Kbyte LCDC configuration
0xFF20_0000 1 KByte DMACA configuration
O0xFF30_0000 1 MByte USBA Data
OxFFEO_0000 1 MByte PBA

OXFFFO_0000 1 MByte PBB

Accesses to unused areas returns an error result to the master requesting such an access.

The bus matrix has the several masters and slaves. Each master has its own bus and its own
decoder, thus allowing a different memory mapping per master. The master number in the table
below can be used to index the HMATRIX control registers. For example, MCFG2 is associated
with the HSB-HSB bridge.

AIMEL 72

32054D-AVR32-10/07 I ©

s A T32AP7002

Table 8-2. HSB masters

Master O CPU Dcache

Master 1 CPU Icache

Master 2 HSB-HSB Bridge

Master 3 ISI DMA

Master 4 USBA DMA

Master 5 LCD Controller DMA
Master 8 DMAC Master Interface 0
Master 9 DMAC Master Interface 1

Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number
in the table below can be used to index the HMATRIX control registers. For example, SCFG3 is
associated with PBB.

Table 8-3. HSB slaves

Slave 0 Internal SRAM 0
Slave 1 Internal SRAM1
Slave 2 PBA

Slave 3 PBB

Slave 4 EBI

Slave 5 USBA data

Slave 6 LCDC configuration
Slave 7 DMACA configuration

AIMEL 73

32054D-AVR32-10/07 I ©

s A T32AP7002

9. Peripherals

9.1 Peripheral address map

Table 9-1. Peripheral Address Mapping

Address Peripheral Name Bus
0xFF000000
LCDC LCD Controller Slave Interface - LCDC HSB
0xFF200000
DMACA DMA Controller Slave Interface- DMACA HSB
O0xFF300000
USBA USB Slave Interface - USBA HSB
0xFFE00000 _ _
SPIO Serial Peripheral Interface - SPIO PB A
0xFFE00400 _ _
SPI1 Serial Peripheral Interface - SPI1 PB A
0xFFE00800)
TWI Two-wire Interface - TWI PB A
OxFFE0O0CO0 Universal Synchronous Asynchronous Receiver
USARTO Transmitter - USARTO PBA
OxFFE01000 Universal Synchronous Asynchronous Receiver
USARTL Transmitter - USART1 PBA
OxFFE01400 Universal Synchronous Asynchronous Receiver
USART2 Transmitter - USART2 PBA
OxFFE01800 Universal Synchronous Asynchronous Receiver
USARTS3 Transmitter - USART3 PBA
OxFFE01CO00 .
SSCO Synchronous Serial Controller - SSCO PB A
OxFFE02000 .
SSC1 Synchronous Serial Controller - SSC1 PB A
OxFFE02400 .
SSC2 Synchronous Serial Controller - SSC2 PB A
OxFFE02800
PIOA Parallel Input/Output 2 - PIOA PB A
OxFFE02C00
P1OB Parallel Input/Output 2 - PIOB PB A
OxFFEO03000
PIOC Parallel Input/Output 2 - PIOC PB A
OxFFE03400
PIOD Parallel Input/Output 2 - PIOD PB A

AIMEL 4

32054D-AVR32-10/07 I ©

s A T32AP7002

Table 9-1.

32054D-AVR32-10/07

Address

OxFFE03800

OxFFEO3C00

0xFFFO0000

OxFFF00080

OxFFFO000BO

0xFFF00100

0xFFF00400

OxFFF00800

O0xFFFO0CO00

OxFFF01000

OxFFF01400

OxFFF02000

OxFFF02400

0xFFF02800

O0xFFF02C00

0xFFF03000

0xFFF03400

OxFFF03800

OxFFFO3CO00

Peripheral Address Mapping (Continued)

PIOE

PSIF

PM

RTC

wWDT

EIC

INTC

HMATRIX

TCO

TC1

PWM

ABDAC

MCI

AC97C

1SI

USBA

SMC

SDRAMC

ECC

Peripheral Name

Parallel Input/Output 2 - PIOE

PS2 Interface - PSIF

Power Manager - PM

Real Time Counter- RTC

WatchDog Timer- WDT

External Interrupt Controller - EIC

Interrupt Controller - INTC

HSB Matrix - HMATRIX

Timer/Counter - TCO

Timer/Counter - TC1

Pulse Width Modulation Controller - PWM

Audio Bitstream DAC - ABDAC

MultiMedia Card Interface - MCI

AC97 Controller - AC97C

Image Sensor Interface - ISI

USB Configuration Interface - USBA

Static Memory Controller - SMC

SDRAM Controller - SDRAMC

Error Correcting Code Controller - ECC

ATMEL

L ________________(0G]

Bus

PB A

PB A

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PB B

PBB

PB B

PB B

PB B

PB B

75

s A T32AP7002

9.2 Interrupt Request Signal Map

32054D-AVR32-10/07

The various modules may output interrupt request signals. These signals are routed to the Inter-
rupt Controller (INTC). The Interrupt Controller supports up to 64 groups of interrupt requests.
Each group can have up to 32 interrupt request signals. All interrupt signals in the same group
share the same autovector address and priority level. Refer to the documentation for the individ-
ual submodules for a description of the semantic of the different interrupt requests.

The interrupt request signals in AT32AP7002 are connected to the INTC as follows:

Table 9-2. Interrupt Request Signal Map

Group Line Signal

0 0 COUNT-COMPARE match
1 Performance Counter Overflow

1 0 LCDC EOF
1 LCDC LN
2 LCDC LSTLN
3 LCDC MER
4 LCDC OWR
5 LCDC UFLW

2 0 DMACA BLOCK
1 DMACA DSTT
2 DMACA ERR
3 DMACA SRCT
4 DMACA TFR

3 0 SPIO

4 0 SPI1

5 0 TWI

6 0 USARTO

7 0 USART1

8 0 USART2

9 0 USART3

10 0 SSCO

11 0 SSC1

12 0 SSC2

13 0 PIOA

14 0 PIOB

15 0 PIOC

16 0 PIOD

17 0 PIOE

18 0 PSIF

AIMEL 76

L ________________(0G]

s A T32AP7002

Table 9-2. Interrupt Request Signal Map

Group Line Signal
19 0 EICO

1 EIC1

2 EIC2

3 EIC3
20 0 PM
21 0 RTC
22 0 TCOO0

1 TCO1

2 TC02
23 0 TC10

1 TC11

2 TC12
24 0 PWM
27 0 ABDAC
28 0 MCI
29 0 AC97C
30 0 ISI
31 0 USBA
32 0 EBI

9.3 DMACA Handshake Interface Map

The following table details the hardware handshake map between the DMACA and the peripher-
als attached to it: :

Table 9-3. Hardware Handshaking Connection

Request Hardware Handshaking Interface
MCI RX 0

MCI TX
ABDAC TX

AC97C CHANNEL A RX

AC97C CHANNEL A TX

AC97C CHANNEL B RX

AC97C CHANNEL B TX

EXTERNAL DMA REQUEST 0
EXTERNAL DMA REQUEST 1
EXTERNAL DMA REQUEST 2

© | 00| N[O |0 |~ W[N |

EXTERNAL DMA REQUEST 3

AIMEL 7

32054D-AVR32-10/07 I ©

=
o

s A T32AP7002

9.4 Clock Connections

9.4.1 Timer/Counters

Each Timer/Counter channel can independently select an internal or external clock source for its

counter:
Table 9-4. Timer/Counter clock connections
Timer/Counter Source Name Connection
0 Internal TIMER_CLOCK1 clk_osc32
TIMER_CLOCK2 clk_pbb /4
TIMER_CLOCK3 clk_pbb /8
TIMER_CLOCK4 clk_pbb /16
TIMER_CLOCK5 clk_pbb / 32
External XCO0 See Section 9.7
XC1
XC2
1 Internal TIMER_CLOCK1 clk_osc32
TIMER_CLOCK2 clk_pbb / 4
TIMER_CLOCK3 clk_pbb /8
TIMER_CLOCK4 clk_pbb /16
TIMER_CLOCK5 clk_pbb /32
External XCO See Section 9.7
XC1
XC2

9.4.2 USARTSs

Each USART can be connected to an internally divided clock:

Table 9-5. USART clock connections
USART Source Name Connection
0 Internal CLK_DIV clk_pba/8
1
2
3

AIMEL 78

32054D-AVR32-10/07 I ©

s A T32AP7002

9.4.3 SPIs

Each SPI can be connected to an internally divided clock:

Table 9-6. SPI clock connections
SPI Source Name Connection
0 Internal CLK_DIV clk_pba /32
1

9.4.4 USBA

OSCl1 is connected to the USB HS Phy and must be 12 MHz when using the USBA.
9.5 External Interrupt Pin Mapping

External interrupt requests are connected to the following pins::

Table 9-7. External Interrupt Pin Mapping

Source Connection
NMI_N PB24
EXTINTO PB25
EXTINT1 PB26
EXTINT2 PB27
EXTINT3 PB28

9.6 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spectively of the PIO configuration. Two different OCD trace pin mappings are possible,
depending on the configuration of the OCD AXS register. For details, see the AVR32 AP Techni-
cal Reference Manual.

Table 9-8. Nexus OCD AUX port connections

Pin AXS=0 AXS=1
EVTIN EVTIN EVTIN
MDOI5] PB09 PC18
MDOJ4] PBO8 PC14
MDOI[3] PBO7 PC12
MDOJ[2] PB06 PC11
MDO[1] PBO5 PC06
MDOI0] PB04 PCO5
EVTO_N PBO3 PB28
MCKO PB02 PCO2
MSEO[1] PBO1 PCO1
MSEOI[0] PB0O PCO0

AIMEL 79

32054D-AVR32-10/07 I ©

s A T32AP7002

9.7 Peripheral Multiplexing on IO lines

The AT32AP7002 features five PIO controllers, PIOA to PIOE, that multiplex the 1/O lines of the
peripheral set. Each PIO Controller controls up to thirty-two lines.

Each line can be assigned to one of two peripheral functions, A or B. The tables in the following
pages define how the I/O lines of the peripherals A and B are multiplexed on the PIO

Controllers.

Note that some output only peripheral functions might be duplicated within the tables.

9.7.1 P10 Controller A Multiplexing

Table 9-9. P10 Controller A Multiplexing
CTBGA196 I/O Line Peripheral A Peripheral B
J3 PAOO SPIO - MISO SSC1 - RX_FRAME_SYNC
J1 PAO1 SPIO - MOSI SSC1 - TX_FRAME_SYNC
G6 PAO2 SPI0 - SCK SSC1 - TX_CLOCK
J2 PAO3 SPIO - NPCSJ0] SSC1 - RX_CLOCK
G5 PAO4 SPIO - NPCSJ1] SSC1 - TX_DATA
K1 PAO5 SPI0 - NPCS[2] SSC1 - RX_DATA
C9 PAOG6 TWI - SDA USARTO - RTS
E9 PAO7 TWI - SCL USARTO - CTS
G7 PAO8 PSIF - CLOCK USARTO - RXD
J6 PAO9 PSIF - DATA USARTO - TXD
H6 PA10 MCI - CLK USARTO - CLK
K2 PA11 MCI - CMD TCO - CLKO
K3 PA12 MCI - DATA[O] TCO - A0
M1 PA13 MCI - DATA[1] TCO-Al
H7 PAl4 MCI - DATA[2] TCO - A2
N1 PA15 MCI - DATA[3] TCO - BO
K4 PA16 USART1 - CLK TCO-B1
P1 PA17 USART1 - RXD TCO - B2
J7 PA18 USART1 - TXD TCO - CLK2
L3 PA19 USART1 - RTS TCO - CLK1
N2 PA20 USART1 - CTS SPIO - NPCS[3]
L2 PA21 SSCO - RX_FRAME_SYNC PWM - PWM][2]
M2 PA22 SSCO - RX_CLOCK PWM - PWMI3]
M3 PA23 SSCO - TX_CLOCK TC1-A0
P2 PA24 SSCO - TX_FRAME_SYNC TC1l-Al
L7 PA25 SSCO - TX_DATA TC1-BO
K7 PA26 SSCO - RX_DATA TC1l-B1
P9 PA27 SPI1 - NPCSJ[3] TC1 - CLKO
H9 PA28 PWM - PWMI[0] TC1-A2
AIMEL
32054D-AVR32-10/07 —

80

s A T32AP7002

9.7.2 P10 Controller B Multiplexing

32054D-AVR32-10/07

Table 9-9. P10 Controller A Multiplexing
L8 PA29 PWM - PWM[1] TC1-B2
M8 PA30 PM - GCLK]0] TC1-CLK1
P10 PA31 PM - GCLKI[1] TC1-CLK2

Table 9-10. PIO Controller B Multiplexing
CTBGA196 I/O Line Peripheral A Peripheral B
E11l PBO0O ISI - DATA[O] SPI1 - MISO
D14 PBO1 ISI - DATA[1] SPI1 - MOSI
Cl4 PBO02 ISI - DATA[2] SPI1 - NPCS[0]
B14 PBO3 ISI - DATA[3] SPI1 - NPCS[1]
Al4 PBO04 ISI - DATA[4] SPI1 - NPCS[2]
A13 PBO5 ISI - DATA[5] SPI1 - SCK
B13 PBO06 IS| - DATA[6] MCI - CMDJ[1]
C13 PBO7 IS| - DATA[7] MCI - DATA[4]
A12 PBO8 ISI - HSYNC MCI - DATA[5]
B12 PBO09 ISI - VSYNC MCI - DATA[6]
C12 PB10 ISI - PCLK MCI - DATA[7]
Al1 PB11 PSIF - CLOCK[1] ISI - DATA[8]
B11 PB12 PSIF - DATA[1] ISI - DATA[9]
D12 PB13 SSC2 - TX_DATA ISI - DATA[10]
Cc11 PB14 SSC2 - RX_DATA ISI - DATA[11]
D11 PB15 SSC2 - TX_CLOCK USART3 - CTS
A10 PB16 SSC2 - TX_FRAME_SYNC USART3 - RTS
B10 PB17 SSC2 - RX_FRAME_SYNC USART3 - TXD
A9 PB18 SSC2 - RX_CLOCK USART3 - RXD
C10 PB19 PM - GCLK][2] USART3 - CLK
D10 PB20 ABDAC - DATA[1] AC97C - SDO
B9 PB21 ABDAC - DATA[0] AC97C - SYNC
A8 PB22 ABDAC - DATAN[1] AC97C - SCLK
B8 PB23 ABDAC - DATANI0] AC97C - SDI
H5 PB24 NMI_N DMACA - DMARQ[0]
L1 PB25 EXTINTO DMACA - DMARQ[1]
N9 PB26 EXTINT1 USART2 - RXD
J9 PB27 EXTINT2 USART2 - TXD
K9 PB28 EXTINT3 USART2 - CLK
N12 PB29 PM - GCLK]3] USART2 - CTS
014 PB30 PM - GCLK[4] USART2 - RTS

ATMEL

L ________________(0G]

81

s A T32AP7002

ATMEL v

32054D-AVR32-10/07

s A T32AP7002

9.7.3 P10 Controller C Multiplexing

Table 9-11. PIO Controller C Multiplexing

CTBGA196 I/O Line Peripheral A Peripheral B
A7 PC20 LCDC - HSYNC

C8 pC21 LCDC - PCLK

B7 PC22 LCDC - VSYNC

A6 PC23 LCDC - DVAL

A5 PC28 LCDC - DATA[2]

Cc7 PC29 LCDC - DATA[3]

D8 PC30 LCDC - DATA[4]

ES PC31 LCDC - DATA[5]

9.7.4 PI1O Controller D Multiplexing

Table 9-12. PIO Controller D Multiplexing

CTBGA196 I/O Line Peripheral A Peripheral B
D2 PDO00O LCDC - DATA[6]
Cc2 PDO1 LCDC - DATA[7]
F4 PDO04 LCDC - DATA[10]
G1 PDO05 LCDC - DATA[11]
G3 PD06 LCDC - DATA[12]
E5 PDO7 LCDC - DATA[13]
G2 PDO08 LCDC - DATA[14]
F5 PD09 LCDC - DATA[15]
N3 PD12 LCDC - DATA[18]
P3 PD13 LCDC - DATA[19]
P4 PD14 LCDC - DATA[20]
N4 PD15 LCDC - DATA[21]
N5 PD16 LCDC - DATA[22]
M4 PD17 LCDC - DATA[23]

AIMEL 63

32054D-AVR32-10/07 I ©

s A T32AP7002

9.7.5 IO Pins Without Multiplexing

Many of the external EBI pins are not controlled by the PIO modules, but directly driven by the
EBI. These pins have programmable pullup resistors. These resistors are controlled by Special
Function Register 4 (SFR4) in the HMATRIX. The pullup on the lines multiplexed with PI1O is
controlled by the appropriate P1O control register.

This SFR can also control CompactFlash, SmartMedia or NandFlash Support, see the EBI chap-
ter for details

9.75.1 HMatrix SFR4 EBI Control Register

Name: HMATRIX_SFR4

Access Type: Read/Write
31 30 29 28 27 26 25 24

L - - - r -+ - r - [- [-]
23 22 21 20 19 18 17 16

[- - - r -+ - r - [- [-]
15 14 13 12 11 10 9 8

| - - | - | - | - | - | - | EBI_DBPUC |
7 6 5 4 3 2 1 0

| - - | EBI_CS5A | EBI_CS4A | EBI_CS3A | - | EBI_CS1A | - |

32054D-AVR32-10/07

¢ CS1A: Chip Select 1 Assignment
0 = Chip Select 1 is assigned to the Static Memory Controller.

1 = Chip Select 1 is assigned to the SDRAM Controller.

e CS3A: Chip Select 3 Assignment

0 = Chip Select 3 is only assigned to the Static Memory Controller and NCS3 behaves as
defined by the SMC.

1 = Chip Select 3 is assigned to the Static Memory Controller and the NAND Flash/SmartMedia
Logic is activated.

e CS4A: Chip Select 4 Assignment

0 = Chip Select 4 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6
behave as defined by the SMC.

1 = Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic is
activated.

e CSb5A: Chip Select 5 Assignment

0 = Chip Select 5 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6
behave as defined by the SMC.

1 = Chip Select 5 is assigned to the Static Memory Controller and the CompactFlash Logic is
activated.

AIMEL B4

L ________________(0G]

s A T32AP7002

32054D-AVR32-10/07

Accessing the address space reserved to NCS5 and NCS6 may lead to an unpredictable

outcome.

- EBI_DBPUC: EBI Data Bus Pull-up Control

0: EBI D[15:0] are internally pulled up to the VDDIO power supply. The pull-up resistors are
enabled after reset.

1: EBI D[15:0] are not internally pulled up.

Table 9-13. 10O Pins without multiplexing
I/0 Line Function
PX00 EBI - DATA[0]
PX01 EBI - DATA[1]
PX02 EBI - DATA[2]
PX03 EBI - DATA[3]
PX04 EBI - DATA[4]
PX05 EBI - DATA[5]
PX06 EBI - DATA[6]
PX07 EBI - DATA[7]
PX08 EBI - DATA[8]
PX09 EBI - DATA[9]
PX10 EBI - DATA[10]
PX11 EBI - DATA[11]
PX12 EBI - DATA[12]
PX13 EBI - DATA[13]
PX14 EBI - DATA[14]
PX15 EBI - DATA[15]
PX16 EBI - ADDRI[0]
PX17 EBI - ADDRI[1]
PX18 EBI - ADDR[2]
PX19 EBI - ADDR([3]
PX20 EBI - ADDR[4]
PX21 EBI - ADDRJ[5]
PX22 EBI - ADDRI[6]
PX23 EBI - ADDR([7]
PX24 EBI - ADDRJ[8]
PX25 EBI - ADDRI[9]
PX26 EBI - ADDR[10]
PX27 EBI - ADDR[11]
PX28 EBI - ADDR[12]
PX29 EBI - ADDR[13]
PX30 EBI - ADDR[14]
PX31 EBI - ADDR[15]

ATMEL

L ________________(0G]

85

s A T32AP7002

32054D-AVR32-10/07

Table 9-13. 10 Pins without multiplexing (Continued)
PX32 EBI - ADDR[16]
PX33 EBI - ADDR[17]
PX34 EBI - ADDR[18]
PX35 EBI - ADDR[19]
PX36 EBI - ADDR[20]
PX37 EBI - ADDR[21]
PX38 EBI - ADDR[22]
PX39 EBI - NCS[0]
PX40 EBI - NCS[1]
PX41 EBI - NCSJ[3]
PX42 EBI - NRD
PX43 EBI - NWEO
PX44 EBI - NWE1
PX45 EBI - NWE3
PX46 EBI - SDCK
PX47 EBI - SDCKE
PX48 EBI - RAS
PX49 EBI - CAS
PX50 EBI - SDWE
PX51 EBI - SDA10
PX52 EBI - NANDOE
PX53 EBI - NANDWE

ATMEL

L ________________(0G]

86

s A T32AP7002

9.8 Peripheral overview
9.8.1 External Bus Interface

* Optimized for Application Memory Space support
* Integrates Three External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
— ECC Controller
 Additional Logic for NAND Flash/SmartMedia™ and CompactFlash™ Support
— SmartMedia support: 8-bit as well as 16-bit devices are supported
— CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are
supported but the signals _IOIS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode)
are not handled.
* Optimized External Bus:
— 16- or 32-bit Data Bus
— Up to 26-bit Address Bus, Up to 64-Mbytes Addressable
— Optimized pin multiplexing to reduce latencies on External Memories
* Up to 6 Chip Selects, Configurable Assignment:
— Static Memory Controller on NCSO
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS2
— Static Memory Controller on NCS3, Optional NAND Flash/SmartMedia™ Support
— Static Memory Controller on NCS4 - NCS5, Optional CompactFlash™ Support
9.8.2 Static Memory Controller

* 6 Chip Selects Available

* 64-Mbyte Address Space per Chip Select

e 8-, 16- or 32-bit Data Bus

* Word, Halfword, Byte Transfers

* Byte Write or Byte Select Lines

* Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select

* Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select

* Programmable Data Float Time per Chip Select

e Compliant with LCD Module

* External Wait Request

¢ Automatic Switch to Slow Clock Mode

* Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes
9.8.3 SDRAM Controller

* Numerous Configurations Supported
— 2K, 4K, 8K Row Address Memory Parts
— SDRAM with Two or Four Internal Banks
— SDRAM with 16- or 32-bit Data Path
* Programming Facilities
— Word, Half-word, Byte Access
— Automatic Page Break When Memory Boundary Has Been Reached
— Multibank Ping-pong Access
— Timing Parameters Specified by Software
— Automatic Refresh Operation, Refresh Rate is Programmable

AIMEL 87

32054D-AVR32-10/07 I ©

s A T32AP7002

* Energy-saving Capabilities
— Self-refresh, Power-down and Deep Power Modes Supported
— Supports Mobile SDRAM Devices

* Error Detection
— Refresh Error Interrupt

* SDRAM Power-up Initialization by Software

e CAS Latency of 1, 2, 3 Supported

* Auto Precharge Command Not Used

9.8.4 Error Corrected Code Controller

e Hardware Error Corrected Code (ECC) Generation
— Detection and Correction by Software
» Supports NAND Flash and SmartMedia™ Devices with 8- or 16-bit Data Path.
* Supports NAND Flash/SmartMedia with Page Sizes of 528, 1056, 2112 and 4224 Bytes, Specified
by Software
9.8.5 Serial Peripheral Interface

* Supports communication with serial external devices
— Four chip selects with external decoder support allow communication with up to 15
peripherals
— Serial memories, such as DataFlash™ and 3-wire EEPROMs
— Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
— External co-processors
* Master or slave serial peripheral bus interface
— 8- to 16-bit programmable data length per chip select
— Programmable phase and polarity per chip select
— Programmable transfer delays between consecutive transfers and between clock and data
per chip select
— Programmable delay between consecutive transfers
— Selectable mode fault detection
* Very fast transfers supported
— Transfers with baud rates up to MCK
— The chip select line may be left active to speed up transfers on the same device
9.8.6 Two-wire Interface

* Compatibility with standard two-wire serial memory
* One, two or three bytes for slave address
* Sequential read/write operations

AIMEL 88

32054D-AVR32-10/07 I ©

s A T32AP7002

9.8.7 USART

* Programmable Baud Rate Generator
* 5-10 9-bit full-duplex synchronous or asynchronous serial communications
— 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
— Parity generation and error detection
— Framing error detection, overrun error detection
— MSB- or LSB-first
Optional break generation and detection
By 8 or by-16 over-sampling receiver frequency
Hardware handshaking RTS-CTS
Receiver time-out and transmitter timeguard
Optional Multi-drop Mode with address generation and detection
— Optional Manchester Encoding
* RS485 with driver control signal
* |SO7816, T=0or T =1 Protocols for interfacing with smart cards
— NACK handling, error counter with repetition and iteration limit
* IrDA modulation and demodulation
— Communication at up to 115.2 Kbps
* Test Modes 46
— Remote Loopback, Local Loopback, Automatic Echo
9.8.8 Serial Synchronous Controller

* Provides serial synchronous communication links used in audio and telecom applications (with
CODECs in Master or Slave Modes, 12S, TDM Buses, Magnetic Card Reader, etc.)

e Contains an independent receiver and transmitter and a common clock divider

* Offers a configurable frame sync and data length

* Receiver and transmitter can be programmed to start automatically or on detection of different
event on the frame sync signal

* Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

9.8.9 AC97 Controller

Compatible with AC97 Component Specification V2.2
Capable to Interface with a Single Analog Front end
Three independent RX Channels and three independent TX Channels
— One RX and one TX channel dedicated to the AC97 Analog Front end control
— One RX and one TX channel for data transfers, connected to the DMACA
— One RX and one TX channel for data transfers, connected to the DMACA
Time Slot Assigner allowing to assign up to 12 time slots to a channel
Channels support mono or stereo up to 20 bit sample length - Variable sampling rate AC97 Codec
Interface (48KHz and below)

AIMEL 89

32054D-AVR32-10/07 I ©

s A T32AP7002

9.8.10 Audio Bitstream DAC

* Digital Stereo DAC
* Oversampled D/A conversion architecture
— Oversampling ratio fixed 128x
— FIR equalization filter
— Digital interpolation filter: Comb4
— 3rd Order Sigma-Delta D/A converters
* Digital bitstream outputs
* Parallel interface
* Connected to DMA Controller for background transfer without CPU intervention
9.8.11 Timer Counter

* Three 16-bit Timer Counter Channels
* Wide range of functions including:
Frequency Measurement
Event Counting
Interval Measurement
Pulse Generation
Delay Timing
Pulse Width Modulation
— Up/down Capabilities
e Each channel is user-configurable and contains:
— Three external clock inputs
— Five internal clock inputs
— Two multi-purpose input/output signals
* Two global registers that act on all three TC Channels
9.8.12 Pulse Width Modulation Controller

* 4 channels, one 16-bit counter per channel
e Common clock generator, providing Thirteen Different Clocks

— A Modulo n counter providing eleven clocks

— Two independent Linear Dividers working on modulo n counter outputs
* Independent channel programming

— Independent Enable Disable Commands
Independent Clock
Independent Period and Duty Cycle, with Double Bufferization
Programmable selection of the output waveform polarity
Programmable center or left aligned output waveform

AIMEL %

32054D-AVR32-10/07 I ©

s A T32AP7002

9.8.13 MultiMedia Card Interface

e 2 double-channel MultiMedia Card Interface, allowing concurrent transfers with 2 cards
* Compatibility with MultiMedia Card Specification Version 2.2
e Compatibility with SD Memory Card Specification Version 1.0
e Compatibility with SDIO Specification Version V1.0.
* Cards clock rate up to Master Clock divided by 2
* Embedded power management to slow down clock rate when not used
¢ Each MCI has two slot, each supporting
— One slot for one MultiMediaCard bus (up to 30 cards) or
— One SD Memory Card
e Support for stream, block and multi-block data read and write
9.8.14 PS/2 Interface

e Peripheral Bus slave
* PS/2 Host
* Receive and transmit capability
* Parity generation and error detection
e QOverrun error detection
9.8.15 USB Interface

e Supports Hi (480Mbps) and Full (12Mbps) speed communication
* Compatible with the USB 2.0 specification
e UTMI Compliant
e 7 Endpoints
* Embedded Dual-port RAM for Endpoints
e Suspend/Resume Logic (Command of UTMI)
* Up to Three Memory Banks for Endpoints (Not for Control Endpoint)
* 4 KBytes of DPRAM
9.8.16 LCD Controller

* Single and Dual scan color and monochrome passive STN LCD panels supported
* Single scan active TFT LCD panels supported
* 4-bit single scan, 8-bit single or dual scan, 16-bit dual scan STN interfaces supported
* Up to 24-bit single scan TFT interfaces supported
* Up to 16 gray levels for mono STN and up to 4096 colors for color STN displays
* 1, 2 bits per pixel (palletized), 4 bits per pixel (non-palletized) for mono STN
* 1,2, 4, 8hits per pixel (palletized), 16 bits per pixel (non-palletized) for color STN
e 1,2, 4, 8bits per pixel (palletized), 16, 24 bits per pixel (non-palletized) for TFT
¢ Single clock domain architecture
* Resolution supported up to 2048x2048
* 2D-DMA Controller for management of virtual Frame Buffer
— Allows management of frame buffer larger than the screen size and moving the view over this
virtual frame buffer
* Automatic resynchronization of the frame buffer pointer to prevent flickering
* Configurable coefficients with flexible fixed-point representation.

AIMEL 9L

32054D-AVR32-10/07 I ©

s A T32AP7002

9.8.17 Image Sensor Interface

* ITU-R BT. 601/656 8-bit mode external interface support

e Support for ITU-R BT.656-4 SAV and EAV synchronization

* Vertical and horizontal resolutions up to 2048 x 2048

* Preview Path up to 640*480

e Support for packed data formatting for YCbCr 4:2:2 formats
* Preview scaler to generate smaller size image 50

* Programmable frame capture rate

AIMEL 92

32054D-AVR32-10/07 I ©

s A T32AP7002

10. Power Manager (PM)

Rev: 1.0.2.7
10.1 Features

e Controls oscillators and PLLs

* Generates clocks and resets for digital logic

e Supports 2 high-speed crystal oscillators

* Supports 2 PLLs

e Supports 32KHz ultra-low power oscillator

* On-the fly frequency change of CPU, HSB, and PB frequency
* Sleep modes allow simple disabling of logic clocks, PLL's and oscillators
* Module-level clock gating through maskable peripheral clocks
* Wake-up from interrupts or external pin

* Generic clocks with wide frequency range provided

* Automatic identification of reset sources

10.2 Description

The Power Manager (PM) controls the oscillators, PLL’s, and generates the clocks and resets in
the device. The PM controls two fast crystal oscillators, as well as two PLL’s, which can multiply
the clock from either oscillator to provide higher frequencies. Additionally, a low-power 32KHz
oscillator is used to generate a slow clock for real-time counters.

The provided clocks are divided into synchronous and generic clocks. The synchronous clocks
are used to clock the main digital logic in the device, namely the CPU, and the modules and
peripherals connected to the HSB, PBA, and PBB buses. The generic clocks are asynchronous
clocks, which can be tuned precisely within a wide frequency range, which makes them suitable
for peripherals that require specific frequencies, such as timers and communication modules.

The PM also contains advanced power-saving features, allowing the user to optimize the power
consumption for an application. The synchronous clocks are divided into four clock domains, for
the CPU, and modules on the HSB, PBA, and PBB buses. The four clocks can run at different
speeds, so the user can save power by running peripherals at a relatively low clock, while main-
taining a high CPU performance. Additionally, the clocks can be independently changed on-the
fly, without halting any peripherals. This enables the user to adjust the speed of the CPU and
memories to the dynamic load of the application, without disturbing or re-configuring active
peripherals.

Each module also has a separate clock, enabling the user to switch off the clock for inactive
modules, to save further power. Additionally, clocks and oscillators can be automatically swith-
ced off during idle periods by using the sleep instruction on the CPU. The system will return to
normal on occurence of interrupts or an event on the WAKE_N pin.

The Power Manager also cointains a Reset Controller, which collects all possible reset sources,
generates hard and soft resets, and allows the reset source to be identifed by software.

AIMEL 93

32054D-AVR32-10/07 I ©

s A T32AP7002

10.3 Block Diagram

32054D-AVR32-10/07

Synchronous | synchronous
Clock Generator clocks
—
Oscillator O =
»| PLLO
Oscillator 1 »| PLL1
- _
Generic Clock)
—Generic clocks»
> Generator
32 KHz
OSC/PLL Oscillator
Control signals
Slow clock——»
Y
E ﬂ Oscillator and Startup
OSCEN_N PLL Control Counter
A
Sleep
WAKE_N &—» Sleep Controller re—, o & .
A
RESET_N &—»
Power-On » Reset Controll ts—p»
Detector » Reset Controller resets
Soft reset
sources

ATMEL

L ________________(0G]

94

s A T32AP7002

10.4 Product Dependencies
10.4.1 I/O Lines

The PM provides a number of generic clock outputs, which can be connected to output pins,
multiplexed with PIO lines. The programmer must first program the P1O controller to assign
these pins to their peripheral function. If the 1/O pins of the PM are not used by the application,
they can be used for other purposes by the PIO controller.

The PM also has a dedicated WAKE_N pin, as well as a number of pins for oscillators and
PLL’s, which do not require the PIO controller to be programmed.

10.4.2 Interrupt

The PM interrupt line is connected to one of the internal sources of the interrupt controller. Using
the PM interrupt requires the interrupt controller to be programmed first.

10.5 Functional Description
10.5.1 Oscillator 0 and 1 operation

The two main oscillators are designed to be used with an external high frequency crystal, as
shown in Figure 10-1. See Electrical Characteristics for the allowed frequency range. The main
oscillators are enabled by default after reset, and are only switched off in sleep modes, as
described in Section 10.5.6 on page 101. After a power-on reset, or when waking up from a
sleep mode that disabled the main oscillators, the oscillators need 128 slow clock cycles to sta-
bilize on the correct frequency. The PM masks the main oscillator outputs during this start-up
period, to ensure that no unstable clocks propagate to the digital logic.

The oscillators can be bypassed by pulling the OSCEN_N pin high. This disables the oscillators,
and an external clock must be applied on XIN. No start-up time applies to this clock.

Figure 10-1. Oscillator connections

XOUT & |||

XIN & |||

C,

Typ. values: C, = C, = 22 pF
10.5.2 32 KHz oscillator operation

The 32 KHz oscillator operates similarly to Oscillator 0 and 1 described above, and is used to
generate the slow clock in the device. A 32768 Hz crystal must be connected between XIN32
and XOUT32 as shown in Figure 10-1. The 32 KHz oscillator is is an ultra-low power design, and
remains enabled in all sleep modes except static mode, as described in Section 10.5.6 on page

1.When waking up from Stop mode using external interrupts, the startup time is 32768 slow clock cy-

AIMEL 95

32054D-AVR32-10/07 I ©

s A T32AP7002

10.5.3 PLL operation

32054D-AVR32-10/07

101. The oscillator has a rather long start-up time of 32768 clock cycles, and no clocks will be
generated in the device during this start-up time.

Note that in static sleep mode the startup counter will start at the negedge of reset and not at the
posedge.

Pulling OSCEN_N high will also disable the 32 KHz oscillator, and a 32 KHz clock must be
applied on the XIN32 pin. No start-up time applies to this clock.

The device contains two PLL’'s, PLLO and PLL1. These are disabled by default, but can be
enabled to provide high frequency source clocks for synchronous or generic clocks. The PLL’s
can take either Oscillator 0 or 1 as clock source. Each PLL has an input divider, which divides
the source clock, creating the reference clock for the PLL. The PLL output is divided by a user-
defined factor, and the PLL compares the resulting clock to the reference clock. The PLL will
adjust its output frequency until the two compared clocks are equal, thus locking the output fre-
quency to a multiple of the reference clock frequency.

When the PLL is switched on, or when changing the clock source or multiplication or division
factor for the PLL, the PLL is unlocked and the output frequency is undefined. The PLL clock for
the digital logic is automatically masked when the PLL is unlocked, to prevent connected digital
logic from receiving a too high frequency and thus become unstable.

AIMEL 9%

L ________________(0G]

s A T32AP7002

Figure 10-2. PLL with control logic and filters

PLLMUL
O_UFpUt '¢——»] Mask |—PLL clock—»
Divider
A
PLIlDIV | 1OCK—p
>
—0sc0 clock Input PLL L Lock '
o > Suppression
Divider
——0sc1 clock *
PLLEN PLLCOUNT
PLLOSC PLLOPT |

10.5.3.1 Enabling the PLL

PLLn is enabled by writing the PLLEN bit in the PLLn register. PLLOSC selects Oscillator O or 1
as clock source. The PLLDIV and PLLMUL bitfields must be written with the division and multipli-
cation factor, respectively, creating the PLL frequency:

forL = (PLLMUL+1) / (PLLDIV+1) * fosc

The LOCKn flag in ISR is set when PLLn becomes locked. The bit will stay high until cleared by
writing 1 to ICR:LOCKn. The Power Manager interrupt can be triggered by writing IER:LOCKn to
1.

Note that the input frequency for the PLL must be within the range inidicated in the Electrical
Characteristics chapter. The input frequency for the PLL relates to the oscillator frequency and
PLLDIV setting as follows:

foLun = 2 * fosc / (PLLDIV+1)e

AIMEL o7

32054D-AVR32-10/07 I ©

s A T32AP7002

10.5.3.2 Lock suppression

When using high division or multiplication factors, there is a possibility that the PLL can give
false lock indications while sweeping to the correct frequency. To prevent false lock indications
from setting the LOCKn flag, the lock indication can be suppressed for a number of slow clock
cycles indicated in the PLLn:COUNT field. Typical start-up times can be found using the Atmel
filter caluclator (see below).

10.5.3.3 Operating range selection

To use PLLn, a passive RC filter should be connected to the LFTn pin, as shown in Figure 10-2.
Filter values depend on the PLL reference and output frequency range. Atmel provides a tool
named “Atmel PLL LFT Filter Calculator AT91”. The PLL for AT32AP7002 can be selected in
this tool by selecting “AT91RM9200 (58A07F)” and leave “Icp = ‘1" (default).

10.5.4 Synchronous clocks

——0Osc0 clock

——PLLO clock

32054D-AVR32-10/07

Oscillator 0 (default) or PLLO provides the source for the main clocks, which is the common root
for the synchronous clocks for the CPU, and HSB, PBA, and PBB modules. The main clock is
divided by an 8-bit prescaler, and each of these four synchronous clocks can run from any tap-
ping of this prescaler, or the undivided main clock, as long as fepy 2 fysg = fpga . The
synchronous clock source can be changed on-the fly, responding to varying load in the applica-
tion. The clock domains can be shut down in sleep mode, as described in "Sleep modes” on
page 101. Additionally, the clocks for each module in the four domains can be individually
masked, to avoid power consumption in inactive modules.

Figure 10-3. Synchronous clock generation

Sleep
instruction
Sleep
Controller
I |
} >0]
| Main c|0;=:D'_> Mask _T_]_l—CPU clocks™
] 1 | —

B » Prescaler i I pHsB clocks—»>
T CPUDIV CPUMASK | |PBAcIocks >
| | | [PBB clocks ™

PLLSEL | CPUSEL |
| |
| |

ATMEL o

s A T32AP7002

10.5.4.1 Selecting PLL or oscillator for the main clock

The common main clock can be connected to Oscillator O or PLLO. By default, the main clock will
be connected to the Oscillator 0 output. The user can connect the main clock to the PLLO output
by writing the PLLSEL bit in the Main Clock Control Register (MCCTRL) to 1. This must only be
done after PLLO has been enabled, otherwise a deadlock will occur. Care should also be taken
that the new frequency of the synchronous clocks does not exceed the maximum frequency for
each clock domain.

10.5.4.2 Selecting synchronous clock division ratio

The main clock feeds an 8-bit prescaler, which can be used to generate the synchronous clocks.
By default, the synchronous clocks run on the undivided main clock. The user can select a pres-
caler division for the CPU clock by writing CKSEL:CPUDIV to 1 and CPUSEL to the prescaling
value, resulting in a CPU clock frequency:

fCPU - fmain / 2(CPUSEL+1)

Similarly, the clock for HSB, PBA, and PBB can be divided by writing their respective bitfields.
To ensure correct operation, frequencies must be selected so that fop > fiysg > fpga - AlsO, fre-
guencies must never exceed the specified maximum frequency for each clock domain.

CKSEL can be written without halting or disabling peripheral modules. Writing CKSEL allows a
new clock setting to be written to all synchronous clocks at the same time. It is possible to keep
one or more clocks unchanged by writing the same value a before to the xxxDIV and xxxSEL bit-
fields. This way, it is possible to e.g. scale CPU and HSB speed according to the required
performance, while keeping the PBA and PBB frequency constant.

10.5.4.3 Clock Ready flag

There is a slight delay from CKSEL is written and the new clock setting becomes effective. Dur-
ing this interval, the Clock Ready (CKRDY) flag in ISR will read as 0. If IER:CKRDY is written to
1, the Power Manager interrupt can be triggered when the new clock setting is effective. CKSEL
must not be re-written while CKRDY is 0, or the system may become unstable or hang.

10.5.5 Peripheral clock masking

By default, the clock for all modules are enabled, regardless of which modules are actually being
used. It is possible to disable the clock for a module in the CPU, HSB, PBA, or PBB clock
domain by writing the corresponding bit in the Clock Mask register (CPU/HSB/PBA/PBB) to 0.
When a module is not clocked, it will cease operation, and its registers cannot be read or written.
The module can be re-enabled later by writing the corresponding mask bit to 1.

A module may be connected to several clock domains, in which case it will have several mask
bits.

Table 10-1 contains a list of implemented maskable clocks.

10.5.5.1 Cautionary note

Note that clocks should only be switched off if it is certain that the module will not be used.
Switching off the clock for the internal RAM will cause a problem if the stack is mapped there.
Switching off the clock to the Power Manager (PM), which contains the mask registers, or the
corresponding PB bridge, will make it impossible to write the mask registers again. In this case,
they can only be re-enabled by a system reset.

AIMEL 9

32054D-AVR32-10/07 I ©

s A T32AP7002

10.5.5.2 Mask Ready flag

Due to synchronization in the clock generator, there is a slight delay from a mask register is writ-
ten until the new mask setting goes into effect. When clearing mask bits, this delay can usually
be ignored. However, when setting mask bits, the registers in the corresponding module must
not be written until the clock has actually be re-enabled. The status flag MSKRDY in ISR pro-
vides the required mask status information. When writing either mask register with any value,
this bit is cleared. The bit is set when the clocks have been enabled and disabled according to
the new mask setting. Optionally, the Power Manager interrupt can be enabled by writing the
MSKRDY bit in IER.

Alm L 100

32054D-AVR32-10/07 I ©

s A T32AP7002

Table 10-1. Maskable module clocks in AT32AP7002.

Bit CPUMASK HSBMASK PBAMASK PBBMASK
0 PICO EBI SPIO PM/EIC/RTC/WDT
1 - PBA SPI1 INTC
2 - PBB TWI HMATRIX
3 - HRAMC USARTO TCO
4 - HSB-HSB Bridge USART1 TC1
5 - ISI USART2 PWM
6 - USB USART3
7 - LCDC SSCO
8 - SSC1 DAC
9 - SSC2 MCI
10 - DMA PIOA AC97C
11 - - P1OB ISI
12 - - P1IOC USB
13 - - P1OD SMC
14 - - PIOE SDRAMC
15 - - PSIF ECC
16 - - PDC -

31:17 - - - -

10.5.6 Sleep modes

10.5.6.1

In normal operation, all clock domains are active, allowing software execution and peripheral
operation. When the CPU is idle, it is possible to switch off the CPU clock and optionally other
clock domains to save power. This is activated by the sleep instruction, which takes the sleep
mode index number as argument.

Entering and exiting sleep modes

32054D-AVR32-10/07

The sleep instruction will halt the CPU and all modules belonging to the stopped clock domains.
The modules will be halted regardless of the bit settings of the mask registers.

Oscillators and PLL’s can also be switched off to save power. These modules have a relatively
long start-up time, and are only switched off when very low power consumption is required.

The CPU and affected modules are restarted when the sleep mode is exited. This occurs when
an interrupt triggers, or the WAKE_N pin is asserted. Note that even though an interrupt is
enabled in sleep mode, it may not trigger if the source module is not clocked.

AIMEL 101

L ________________(0G]

s A T32AP7002

10.5.6.2 Supported sleep modes

The following sleep modes are supported. These are detailed in Table 10-2.

eldle: The CPU is stopped, the rest of the chip is operating. Wake-up sources are any interrupt,
or WAKE_N pin.

*Frozen: The CPU and HSB modules are stopped, peripherals are operating. Wake-up sources
are any interrupt from PB modules, or WAKE_N pin.

«Standby: All synchronous clocks are stopped, but oscillators and PLL’s are running, allowing
quick wake-up to normal mode. Wake-up sources are RTC or external interrupt, or WAKE_N

pin.

«Stop: As Standby, but Oscillator 0 and 1, and the PLL’s are stopped. 32 KHz oscillator and
RTC/WDT still operates. Wake-up sources are RTC or external interrupt, or WAKE_N pin.

«Static: All oscillators and clocks are stopped. Wake-up sources are external interrupt or

WAKE_N pin.e
Table 10-2. Sleep modes
PBAB + Osc0,1 + Osc32 +
Index Sleep Mode | CPU HSB GCLK PLLO,1 RTC/WDT
0 Idle Off On On On On
1 Frozen Off Off On On On
2 Standby Off Off Off On On
3 Stop Off Off Off off On
5 Static Off Off Off Off Off

10.5.6.3 Precautions when entering sleep mode

Modules communicating with external circuits should normally be disabled before entering a
sleep mode that will stop the module operation. This prevents erratic behavior when entering or
exiting sleep mode. Please refer to the relevant module documentation for recommended
actions.

Communication between the synchronous clock domains is disturbed when entering and exiting
sleep modes. This means that bus transactions are not allowed between clock domains affected
by the sleep mode. The system may hang if the bus clocks are stopped in the middle of a bus
transaction.

The CPU and caches are automatically stopped in a safe state to ensure that all CPU bus oper-
ations are complete when the sleep mode goes into effect. Thus, when entering Idle mode, no
further action is necessary.

When entering a deeper sleep mode than Idle mode, all other HSB masters must be stopped
before entering the sleep mode. Also, if there is a chance that any PB write operations are
incomplete, the CPU should perform a read operation from any register on the PB bus before
executing the sleep instruction. This will stall the CPU while waiting for any pending PB opera-
tions to complete.

The Power manager will normally turn of all debug related clocks in the system in the static sleep
mode, making it impossible for a debugger to communicate with the system. If a

Alm L 102

32054D-AVR32-10/07 I ©

s A T32AP7002

NEXUS_ACCESS or a MEMORY_ACCESS JTAG command is loaded into the instruction regis-
ter before entering sleep mode some clocks are left running to enable debugging of the system.
This will increase the power consumption of the device. If the part entered static mode without a
NEXUS_ACCESS ot MEMORY_ACCESS instruction loaded into the JTAG instruction register
an external reset is the only way for the debugger to get the part out of the sleep mode.

When not debugging a program and using sleep modes the JTAG should always have the
IDCODE instruction loaded into the JTAG instruction register and the OCD system should be
disabled. Otherwise some clocks may be left running, increasing the power consumption.

10.5.7 Generic clocks

Timers, communication modules, and other modules connected to external circuitry may require
specific clock frequencies to operate correctly. The Power Manager contains an implementation
defined number of generic clocks, that can provide a wide range of accurate clock frequencies.

Each generic clock module runs from either Oscillator O or 1, or PLLO or 1. The selected source
can optionally be divided by any even integer up to 512. Each clock can be independently
enabled and disabled, and is also automatically disabled along with peripheral clocks by the
Sleep Controller.

Sleep
Controller
——0sc0 clock Mask |—Generic Clock—
——0Oscl1 clock ; .
——PLLO clock Divider
—PLL1 clock ?
? DIVEN CEN
PLLSEL
OSCSEL DIV |

Figure 10-4. Generic clock generation

10.5.7.1 Enabling a generic clock

A generic clock is enabled by writing the CEN bit in GCCTRL to 1. Each generic clock can use
either Oscillator 0 or 1 or PLLO or 1 as source, as selected by the PLLSEL and OSCSEL bits.
The source clock can optionally be divided by writing DIVEN to 1 and the division factor to DIV,
resulting in the output frequency:

fock = fsre / (2*(DIV+1))

Alm L 103

32054D-AVR32-10/07 I ©

s A T32AP7002

10.5.7.2

10.5.7.3

10.5.7.4

10.5.8

10.5.9

32054D-AVR32-10/07

Disabling a generic clock

The generic clock can be disabled by writing CEN to 0 or entering a sleep mode that disables
the PB clocks. In either case, the generic clock will be switched off on the first falling edge after
the disabling event, to ensure that no glitches occur. If CEN is written to 0, the bit will still read as
1 until the next falling edge occurs, and the clock is actually switched off. When writing CEN to 0,
the other bits in GCCTRL should not be changed until CEN reads as 0, to avoid glitches on the
generic clock.

When the clock is disabled, both the prescaler and output are reset.

Changing clock frequency

When changing generic clock frequency by writing GCCTRL, the clock should be switched off by
the procedure above, before being re-enabled with the new clock source or division setting. This
prevents glitches during the transition.

Generic clock implementation

In AT32AP7002, there are 8 generic clocks. These are allocated to different functions as shown
in Table 10-3.

Table 10-3. Generic clock allocation

Clock number Function

0 GCLKO pin

GCLK1 pin
GCLK2 pin

GCLK3 pin

GCLK4 pin

Reserved for internal use

DAC

N o | gl WwWIN|EP

LCD Controller

Divided PB clocks

The clock generator in the Power Manager provides divided PBA and PBB clocks for use by
peripherals that require a prescaled PB clock. This is described in the documentation for the rel-
evant modules.

The divided clocks are not directly maskable, but are stopped in sleep modes where the PB
clocks are stopped.

Debug operation

During a debug session, the user may need to halt the system to inspect memory and CPU reg-
isters. The clocks normally keep running during this debug operation, but some peripherals may
require the clocks to be stopped, e.g. to prevent timer overflow, which would cause the program
to fail. For this reason, peripherals on the PBA and PBB buses may use “debug qualified” PB
clocks. This is described in the documentation for the relevant modules. The divided PB clocks
are always debug qualified clocks.

Alm L 104

L ________________(0G]

s A T32AP7002

Debug qualified PB clocks are stopped during debug operation. The debug system can option-
ally keep these clocks running during the debug operation. This is described in the
documentation for the On-Chip Debug system.

A|III L 105

32054D-AVR32-10/07 I ©

s A T32AP7002

10.5.10 Reset Controller

The Reset Controller collects the various reset sources in the system and generates hard and
soft resets for the digital logic.

The device contains a Power-On Detector, which keeps the system reset until power is stable.
This eliminates the need for external reset circuitry to guarantee stable operation when powering
up the device.

It is also possible to reset the device by asserting the RESET_N pin. This pin has an internal pul-
lup, and does not need to be driven externally when negated.

Table 10-4 lists these and other reset sources supported by the Reset Controller.

i

RC_RCAUSE
RESET N &—»
CPU, HSB,
Power-On —SoftReset™® bpA PBB
Detector Reset
Controller
OCD, RTC/WDT,
NTAE P ——Hard Reset—#»
Clock Generator
DBR———————
Watchdog Reset————»

Figure 10-5. Reset Controller block diagram

Reset sources are divided into hard and soft resets. Hard resets imply that the system could
have become unstable, and virtually all logic will be reset. The clock generator, which also con-
trols the oscillators, will also be reset. If the device is reset due to a power-on reset, or reset
occurred when the device was in a sleep mode that disabled the oscillators, the normal oscillator
startup time will apply.

A soft reset will reset most digital logic in the device, such as CPU, HSB, and PB modules, but
not the OCD system, clock generator, Watchdog Timer and RTC, allowing some functions,
including the oscillators, to remain active during the reset. The startup time from a soft reset is
thus negligible. Note that all PB registers are reset, except those in the RTC/WDT. The
MCCTRL and CKSEL registers are reset, and the device will restart using Oscillator 0 as clock
source for all synchronous clocks.

In addition to the listed reset types, the JTAG can keep parts of the device statically reset
through the JTAG Reset Register. See JTAG documentation for details.

Alm L 106

32054D-AVR32-10/07 I ©

s A T32AP7002

32054D-AVR32-10/07

The cause of the last reset can be read from the RC_RCAUSE register. This register contains
one bit for each reset source, and can be identified during the boot sequence of an application to
determine the proper action to be taken.

Table 10-4. Reset types

Reset source Description Type
Power-on Reset Supply voltage below the power-on reset detector threshold Hard
voltage

External RESET_N pin asserted Hard
NanoTrace Access See On-Chip Debug documentation. Soft
Error

Watchdog Timer See watchdog timer documentation. Soft
OCD See On-Chip Debug documentation Soft

ATMEL

L ________________(0G]

107

s A T32AP7002

10.6 User Interface

Offset Register Register Name Access Reset
0x00 Main Clock Control MCCTRL Read/Write 0x0
0x04 Clock Select CKSEL Read/Write 0x0
0x08 CPU Clock Mask CPUMASK Read/Write Impl. defined
0x0C HSB Clock Mask HSBMASK Read/Write Impl. defined
0x10 PBA Clock Mask PBAMASK Read/Write Impl. defined
0x14 PBB Clock Mask PBBMASK Read/Write Impl. defined
0x20 PLLO Control PLLO Read/Write 0x0
0x24 PLL1 Control PLL1 Read/Write 0x0
0x40 Interrupt Enable IER Write-only 0x0
0x44 Interrupt Disable IDR Write-only 0x0
0x48 Interrupt Mask IMR Read-only 0x0
0x4C Interrupt Status ISR Read-only 0x0
0x50 Interrupt Clear ICR Write-only 0x0
0x60 Generic Clock Control 0 GCCTRLO Read/Write 0x0
0x64 Generic Clock Control 1 GCCTRL1 Read/Write 0x0
0x68 Generic Clock Control 2 GCCTRL2 Read/Write 0x0
0x6C Generic Clock Control 3 GCCTRL3 Read/Write 0x0
0x70 Generic Clock Control 4 GCCTRL4 Read/Write 0x0
0x74 Generic Clock Control 5 GCCTRL5 Read/Write 0x0
0x78 Generic Clock Control 6 GCCTRL6 Read/Write 0x0
0x7C Generic Clock Control 7 GCCTRLY Read/Write 0x0

0x80 - 0xBC Reserved
0xCO Reset Cause RCAUSE Read

10.6.1 Main Clock Control

Name: MCCTRL
Access Type: Read/Write
31 30 29 28 27 26 25 24
. - ! - r - r -+ - ;r - & - [- |
23 22 21 20 19 18 17 16

AIMEL 108

32054D-AVR32-10/07 I ©

s A T32AP7002

15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
N e e e e T

e PLLSEL: PLL Select
0: Oscillator 0 is source for the main clock
1: PLLO is source for the main clock
10.6.2 Clock Select

Name: CKSEL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ PBBDIV ‘ - ‘ - ‘ - ‘ - ‘ PBBSEL ‘
23 22 21 20 19 18 17 16

‘ PBADIV ‘ - ‘ - ‘ - ‘ - ‘ PBASEL ‘
15 14 13 12 11 10 9 8

‘ HSBDIV ‘ - ‘ - ‘ - ‘ - ‘ HSBSEL ‘
7 6 5 4 3 2 1 0

‘ CPUDIV ‘ - ‘ - ‘ - ‘ - ‘ CPUSEL ‘

PBBDIV, PBBSEL: PBB Division and Clock Select

PBBDIV = 0: PBB clock equals main clock.

PBBDIV = 1: PBB clock equals main clock divided by 2(PBBSEL*D),
PBADIV, PBASEL: PBA Division and Clock Select

PBADIV = 0: PBA clock equals main clock.

PBADIV = 1: PBA clock equals main clock divided by 2(PBASEL*D),
HSBDIV, HSBSEL: HSB Division and Clock Select

HSBDIV = 0: HSB clock equals main clock.

HSBDIV = 1: HSB clock equals main clock divided by 2HSBSEL+1),
CPUDIV, CPUSEL: CPU Division and Clock Select

CPUDIV = 0: CPU clock equals main clock.

CPUDIV = 1: CPUclock equals main clock divided by 2(CPYSEL+D),

Note that if xxxDIV is written to 0, xxxSEL should also be written to 0 to ensure correct operation.

Also note that writing this register clears ISR:CKRDY. The register must not be re-written until CKRDY goes high.

AIMEL 109

32054D-AVR32-10/07 I ©

s A T32AP7002

10.6.3 Clock Mask

Name: CPU/HSB/PBA/PBBMASK

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ MASK[31:24] ‘
23 22 21 20 19 18 17 16

‘ MASK[23:16] ‘
15 14 13 12 11 10 9 8

| MASK[15:8] |
7 6 5 4 3 2 1 0

‘ MASK][7:0] ‘

* MASK: Clock Mask
If bit n is cleared, the clock for module n is stopped. If bit n is set, the clock for module n is enabled according to the current
power mode. The number of implemented bits in each mask register, as well as which module clock is controlled by each bit, is
implementation dependent.

AIMEL 110

32054D-AVR32-10/07 I ©

s A T32AP7002

10.6.4 PLL Control

Name: PLLO,1

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ PLLTEST - PLLCOUNT ‘
23 22 21 20 19 18 17 16

‘ PLLMUL ‘
15 14 13 12 11 10 9 8

‘ PLLDIV ‘
7 6 5 4 3 2 1 0

‘ - - - PLLOPT PLLOSC PLLEN ‘

* PLLTEST: PLL Test
Reserved for internal use. Always write to O.
* PLLCOUNT: PLL Count
Specifies the number of slow clock cycles before ISR:LOCKn will be set after PLLn has been written, or after PLLn has been
automatically re-enabled after exiting a sleep mode.
e PLLMUL: PLL Multiply Factor
e PLLDIV: PLL Division Factor
These bitfields determine the ratio of the PLL output frequency to the source oscillator frequency:
forL = (PLLMUL+1)/(PLLDIV+1) * fogc
e PLLOPT: PLL Option
This field should be written to 100.
Other values are reserved.
* PLLOSC: PLL Oscillator Select
0: Oscillator 0 is the source for the PLL.
1: Oscillator 1 is the source for the PLL.
e PLLEN: PLL Enable
0: PLL is disabled.
1: PLL is enabled.

AIMEL 111

32054D-AVR32-10/07 I ©

s A T32AP7002

10.6.5 Interrupt Enable/Disable/Mask/Status/Clear
Name: IER/IDR/IMR/ISR/ICR
Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

31 30 29 28 27 26 25 24
- r - r - r - r - ;- [- [- |
23 22 21 20 19 18 17 16
- - r-r - r - ;- [- [- |
15 14 13 12 11 10 9 8
- r - r - r - +r - - [- 7 - |
7 6 5 4 3 2 1 0
‘ - ‘MSKRDY‘ CKRDY ‘ VMRDY‘ VOK ‘ WAKE ‘ LOCK1 ‘ LOCKO ‘

* MSKRDY: Mask Ready
0: Either xxxMASK register has been written, and clocks are not yet enabled or disabled according to the new mask value.
1: Clocks are enabled and disabled as indicated in the xxxMASK registers.
Note: Writing ICR:MSKRDY to 1 has no effect.
* CKRDY: Clock Ready
0: The CKSEL register has been written, and the new clock setting is not yet effective.
1: The synchronous clocks have frequencies as indicated in the CKSEL register.
Note: Writing ICR:CKRDY to 1 has no effect.
* VMRDY, VOK
These bits are for internal use only. In ISR, the value of these bits is undefined. In IER, these bits should be written to O.
* WAKE: Wake Pin Asserted
0: The WAKE_N pin is not asserted, or has been asserted for less than one PB clock period.
1: The WAKE_N pin is asserted for longer than one PB clock period.
* LOCK1: PLL1 locked
* LOCKO: PLLO locked
0: The PLL is unlocked, and cannot be used as clock source.
1: The PLL is locked, and can be used as clock source.

The effect of writing or reading the bits listed above depends on which register is being accessed:

* IER (Write-only)

0: No effect

1: Enable Interrupt
* IDR (Write-only)

0: No effect

1: Disable Interrupt

AIMEL 112

32054D-AVR32-10/07 I ©

s A T32AP7002

* IMR (Read-only)

0: Interrupt is disabled

1: Interrupt is enabled
* ISR (Read-only)

0: An interrupt event has occurred

1: An interrupt even has not occurred
* ICR (Write-only)

0: No effect

1: Clear interrupt event

AImEl 113

32054D-AVR32-10/07 I ©

s A T32AP7002

10.6.6 Generic Clock Control

Name: GCCTRLO... GCCTRL7

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - - r - r - - - [- [- |
23 22 21 20 19 18 17 16

. - - r - r -+ - ;r - ;@ - [- |
15 14 13 12 11 10 9 8

| DIV[7:0] |
7 6 5 4 3 2 1 0

‘ - - - DIVEN - CEN PLLSEL OSCSEL ‘

There is one GCCTRL register per generic clock in the design.

* DIV: Division Factor
* DIVEN: Divide Enable
0: The generic clock equals the undivided source clock.
1: The generic clock equals the source clock divided by 2*(DIV+1).
* CEN: Clock Enable
0: Clock is stopped.
1: Clock is running.
PLLSEL: PLL Select
0: Oscillator is source for the generic clock.
1: PLL is source for the generic clock.
OSCSEL: Oscillator Select
0: Oscillator (or PLL) 0 is source for the generic clock.
1: Oscillator (or PLL) 1is source for the generic clock.

AIMEL 114

32054D-AVR32-10/07 I ©

s A T32AP7002

10.6.7 Reset Cause

Name: RC_RCAUSE

Access Type: Read-only
31 30 29 28 27 26 25 24

. - ! - r - r -+ - ;r - ;@ - [- |
23 22 21 20 19 18 17 16

. - r - -+ -+ - - [- [- |
15 14 13 12 11 10 9 8

. - r - -+ -+ - - [- [- |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ SERP ‘ JTAG ‘ WDT ‘ EXT ‘ - ‘ POR ‘

e SERP: Serious Problem Error

This bit is set if a reset occured due to a serious problem in the CPU, like Nanotrace access error, for instance.
JTAG: JTAG Reset

This bit is set if a reset occurred due to a JTAG reset.
WDT: Watchdog Timer

This bit is set if a reset occurred due to a timeout of the Watchdog Timer.
EXT: External Reset

This bit is set if a reset occurred due to assertion of the RESET_N pin.
POR: Power-On Detector

This bit is set if a reset was caused by the Power-On Detector.

AIMEL 115

32054D-AVR32-10/07 I ©

s A T32AP7002

11. Real Time Counter (RTC)

Rev: 1.0.1.1

11.1 Features

* 32-bit real-time counter with 16-bit prescaler
* Clocked from 32 kHz oscillator
¢ High resolution: Max count frequency 16KHz
* Long delays
— Max timeout 272 years
* Extremely low power consumption
* Available in all sleep modes except Deepdown
e Optional wrap at max value
* Interrupt on wrap

11.2 Description

The Real Time Counter (RTC) enables periodic interrupts at long intervals, or accurate mea-
surement of real-time sequences. The RTC is fed from a 16-bit prescaler, which is clocked from
the 32 kHz oscillator. Any tapping of the prescaler can be selected as clock source for the RTC,
enabling both high resolution and long timeouts. The prescaler cannot be written directly, but
can be cleared by the user.

The RTC can generate an interrupt when the counter wraps around the top value of
OxFFFFFFFF. Optionally, the RTC can wrap at a lower value, producing accurate periodic
interrupts.

11.3 Block Diagram

Figure 11-1. Real Time Counter module block diagram

RTC_TOP

!

——32KHz—»| 16-bit Prescaler ——» 32-bit counter [—»{ TOPI| —IRQ—»

i

RTC_VAL

11.4 Product Dependencies
11.4.1 I/O Lines

None.

Alm L 116

32054D-AVR32-10/07 I ©

s A T32AP7002

11.4.2 Power Management

The RTC is continously clocked, and remains operating in all sleep modes except Static.

11.4.3 Interrupt

The RTC interrupt line is connected to one of the internal sources of the interrupt controller.
Using the RTC interrupt requires the interrupt controller to be programmed first.

11.4.4 Debug Operation

The RTC prescaler and watchdog timer are frozen during debug operation, unless the OCD sys-
tem keeps peripherals running in debug operation.

11.5 Functional Description
1151 RTC operation
11511 Source clock

The RTC is enabled by writing the EN bit in the CTRL register. This also enables the clock for
the prescaler. The PSEL bitfield in the same register selects the prescaler tapping, selecting the
source clock for the RTC:

fare = 27 (PSELD % 30K Hz7

Note that if the RTC is used in stop mode, PSEL must be 2 or higher to ensure no ticks are
missed when entering or leaving sleep mode.

11.5.1.2 Counter operation
The RTC count value can be read from or written to the register VAL. The prescaler cannot be
written directly, but can be reset by writing the strobe PCLR in CTRL.
When enabled, the RTC will then up-count until it reaches OXFFFFFFFF, and then wrap to 0xO.

Writing CTRL:TOPEN to one causes the RTC to wrap at the value written to TOP. The status bit
TOPI in ISR is set when this occurs.

11.5.1.3 RTC Interrupt

Writing the TOPI bit in IER enables the RTC interrupt, while writing the corresponding bit in IDR
disables the RTC interrupt. IMR can be read to see whether or not the interrupt is enabled. If
enabled, an interrupt will be generated if the TOPI flag in ISR is set. The flag can be cleared by
writing TOPI in ICR to one.

Alm L 117

32054D-AVR32-10/07 I ©

s A T32AP7002

11.6 User Interface

Offset Register Register Name Access Reset
0x00 RTC Control CTRL Read/Write 0x0
0x04 RTC Value VAL Read/Write 0x0
0x08 RTC Top TOP Read/Write 0x0
0x10 RTC Interrupt Enable IER Write-only 0x0
0x14 RTC Interrupt Disable IDR Write-only 0x0
0x18 RTC Interrupt Mask IMR Read-only 0x0
0x1C RTC Interrupt Status ISR Read-only 0x0
0x20 RTC Interrupt Clear ICR Write-only 0x0

AIMEL 118

32054D-AVR32-10/07 I ©

s A T32AP7002

11.6.1 RTC Control

Name: CTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

T - T - T - T - T - T - T]
23 22 21 20 19 18 17 16

T - T - T - T - T - T - T]
15 14 13 12 11 10 9 8

‘] ‘] ‘]) PSEL([3:0] ‘
7 6 5 4 3 2 1 0

‘] ‘] ‘]]] TOPEN PCLR EN ‘

TOPEN: Top Enable

PSEL: Prescale Select
Selects prescaler bit PSEL as source clock for the RTC.

0: RTC wraps at OxFFFFFFFF
1: RTC wraps at RTC_TOP

* PCLR: Prescaler Clear
Writing this strobe clears the prescaler. Note that this also resets the watchdog timer.

e EN: Enable

0: RTC is disabled
1: RTC is enabled

32054D-AVR32-10/07

ATMEL

119

s A T32AP7002

11.6.2 RTC Value

Name: VAL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ VAL[31:24] ‘
23 22 21 20 19 18 17 16

‘ VAL[23:16] ‘
15 14 13 12 11 10 9 8

\ VAL[15:8] \
7 6 5 4 3 2 1 0

‘ VAL[7:0] ‘

* VAL: RTC Value
This value is incremented on every rising edge of the source clock.

AIMEL 120

32054D-AVR32-10/07 I ©

s A T32AP7002

11.6.3 RTC Top

Name: TOP

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ TOP[31:24] ‘
23 22 21 20 19 18 17 16

‘ TOP[23:16] ‘
15 14 13 12 11 10 9 8

‘ TOP[15:8] ‘
7 6 5 4 3 2 1 0

‘ TOP[7:0] ‘

e TOP: RTC Top Value
VAL wraps at this value if CTRL:TOPEN is 1.

A “'lEl,® 121

32054D-AVR32-10/07

s A T32AP7002

11.6.4 RTC Interrupt Enable/Disable/Mask/Status/Clear

Name: IER/IDR/IMR/ISR/ICR
Access Type: IER/IDR/ICR: Write-only
IMR/ISR: Read-only

31 30 29 28 27 26 25 24
- r - r - r - r - ;- [- [- |
23 22 21 20 19 18 17 16
- - r-r - r - ;- [- [- |
15 14 13 12 11 10 9 8
- r - r - r - +r - - [- 7 - |
7 6 5 4 3 2 1 0
e R A SO B N -

* TOPI: Top Interrupt
VAL has wrapped at its TOP.

The effect of writing or reading this bit depends on which register is being accessed:

* IER (Write-only)
0: No effect
1: Enable Interrupt
* IDR (Write-only)
0: No effect
1: Disable Interrupt
IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
ISR (Read-only)
0: An interrupt event has not occurred
1: An interrupt event has occurred. Note that this is only set when the RTC is configured to wrap at TOP.
ICR (Write-only)
0: No effect
1: Clear interrupt event

AIMEL 122

32054D-AVR32-10/07 I ©

s A T32AP7002

12. Watchdog Timer (WDT)

Rev: 1.0.1

12.1 Features

* Watchdog timer with 16-bit prescaler
12.2 Description

The Watchdog Timer (WDT) is fed from a 16-bit prescaler, which is clocked from the 32 kHz
oscillator. Any tapping of the prescaler can be selected as clock source for the WDT.The watch-
dog timer must be periodically reset by software within the timeout period, ot herwise, the device
is reset and starts executing from the boot vector. This allows the device to recover from a con-
dition that has caused the system to be unstable.

12.3 Block Diagram

Figure 12-1. Real Time Counter module block diagram

WDT_CLR
. W atchdog W atchdog
- . —
32 KHz—m| 16-bit Prescaler Detector reset ™
WDT_CTRL

12.4 Product Dependencies
1241 I/O Lines

None
12.4.2 Power Management
The WDT is continously clocked, and remains operating in all sleep modes. However, if the

WDT is enabled and the user tries to enter a sleepmode where the 32 KHz oscillator is turned off
the system will enter the STOP sleepmode instead. This is to ensure the WDT is still running.

12.4.3 Debug Operation

The watchdog timer is frozen during debug operation, unless the OCD system keeps peripherals
running in debug operation.

Alm L 123

32054D-AVR32-10/07 I ©

s A T32AP7002

12.5 Functional Description
125.1 Watchdog Timer

The WDT is enabled by writing the EN bit in the CTRL register. This also enables the clock for
the prescaler. The PSEL bitfield in the same register selects the watchdog timeout period:

Twor = 2PSEXD * 30.518us

To avoid accidental disabling of the watchdog, the CTRL register must be written twice, first with
the KEY field set to 0x55, then OXAA without changing the other bitfields. Failure to do so will
cause the write operation to be ignored, and CTRL does not change value.

The CLR register must be written with any value with regular intervals shorter than the watchdog
timeout period. Otherwise, the device will receive a soft reset, and the code will start executing
from the boot vector.

Alm L 124

32054D-AVR32-10/07 I ©

s A T32AP7002

12.6 User Interface

Offset Register Register Name Access Reset
0x30 WDT Control CTRL Read/Write 0x0
0x34 WDT Clear CLR Write-only 0x0

12.6.1 WDT Control

Name: CTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ KEY[7:0] ‘
23 22 21 20 19 18 17 16

I I R R - -]
15 14 13 12 11 10 9 8

‘ : ‘] ‘] ‘] \ PSEL[3:0] ‘
7 6 5 4 3 2 1 0

[S A B - - o

* KEY

This bitfield must be written twice, first with key value 0x55, then OxAA, for a write operation to be effective. This bitfield always
reads as zero.

* PSEL: Prescale Select

Prescaler bit PSEL is used as watchdog timeout period.
* EN: WDT Enable

0: WDT is disabled.

1: WDT is enabled.

AIMEL 125

32054D-AVR32-10/07 I ©

s A T32AP7002

12.6.2 WDT Clear
Name: CLR

Access Type: Write-only

When the watchdog timer is enabled, this register must be periodically written, with any value, within the watchdog timeout
period, to prevent a watchdog reset.

A|III L 126

32054D-AVR32-10/07 I ©

s A T32AP7002

13. Interrupt Controller (INTC)

13.1 Description

Rev: 1.0.1.0

The INTC collects interrupt requests from the peripherals, prioritizes them, and delivers an inter-
rupt request and an autovector to the CPU. The AVR32 architecture supports 4 priority levels for
regular, maskable interrupts, and a Non-Maskable Interrupt (NMI).

The INTC supports up to 64 groups of interrupts. Each group can have up to 32 interrupt request
lines, these lines are connected to the peripherals. Each group has an Interrupt Priority Register
(IPR) and an Interrupt Request Register (IRR). The IPRs are used to assign a priority level and
an autovector to each group, and the IRRs are used to identify the active interrupt request within
each group. If a group has only one interrupt request line, an active interrupt group uniquely
identifies the active interrupt request line, and the corresponding IRR is not needed. The INTC
also provides one Interrupt Cause Register (ICR) per priority level. These registers identify the
group that has a pending interrupt of the corresponding priority level. If several groups have an
pending interrupt of the same level, the group with the highest number takes priority.

13.2 Block Diagram

13.3 Operation

32054D-AVR32-10/07

Figure 13-1 on page 127 gives an overview of the INTC. The grey boxes represent registers that
can be accessed via the Peripheral Bus (PB). The interrupt requests from the peripherals
(IREQn) and the NMI are input on the left side of the figure. Signals to and from the CPU are on
the right side of the figure.

Figure 13-1. Overview of the Interrupt Controller

Interrupt Controller CPU
NMIREQ
_ Masks || SREG
- masks
v I[3-0]M
GM
o ValRegN
GrpReaN >
| > OR
ot
[]| ®Rrn INTLEVEL _
Request - o
IREQ63 > maskin g
OR CIoRedl - ’ R =:>-> %
IREQ34 -)
IREQ33 I > =
IRE§32 T IPR1 AUTOVECTOH
IREQ31 - ValReq0 -
| GroReqn | >
IREQ2 T - OR
IRE§1 TT -
IREQD T IPRO | [INT_level, offset v
IRR registers IPR registers ICR registers

All of the incoming interrupt requests (IREQs) are sampled into the corresponding Interrupt
Request Register (IRR). The IRRs must be accessed to identify which IREQ within a group that
is active. If several IREQs within the same group is active, the interrupt service routine must pri-

Alm L 127

L ________________(0G]

s A T32AP7002

oritize between them. All of the input lines in each group are logically-ORed together to form the
GrpRegN lines, indicating if there is a pending interrupt in the corresponding group.

The Request Masking hardware maps each of the GrpReq lines to a priority level from INTO to
INT3 by associating each group with the INTLEVEL field in the corresponding IPR register. The
GrpReq inputs are then masked by the I0M, 11M, 12M, 13M and GM mask bits from the CPU sta-
tus register. Any interrupt group that has a pending interrupt of a priority level that is not masked
by the CPU status register, gets its corresponding ValReq line asserted.

The Prioritizer hardware uses the ValReq lines and the INTLEVEL field in the IPRs to select the
pending interrupt of the highest priority. If a NMI interrupt is pending, it automatically gets high-
est priority of any pending interrupt. If several interrupt groups of the highest pending interrupt
level have pending interrupts, the interrupt group with the highest number is selected.

Interrupt level (INTLEVEL) and handler autovector offset (AUTOVECTOR) of the selected inter-
rupt are transmitted to the CPU for interrupt handling and context switching. The CPU doesn't
need to know which interrupt is requesting handling, but only the level and the offset of the han-
dler address. The IRR registers contain the interrupt request lines of the groups and can be read
via PB for checking which interrupts of the group are actually active.

Masking of the interrupt requests is done based on five interrupt mask bits of the CPU status
register, namely interrupt level 3 mask (I3M) to interrupt level 0 mask (IOM), and Global interrupt
mask (GM). An interrupt request is masked if either the Global interrupt mask or the correspond-
ing interrupt level mask bit is set.

13.31 Non maskable interrupts
A NMI request has priority over all other interrupt requests. NMI has a dedicated exception vec-
tor address defined by the AVR32 architecture, so AUTOVECTOR is undefined when
INTLEVEL indicates that an NMI is pending.

13.3.2 CPU response

When the CPU receives an interrupt request it checks if any other exceptions are pending. If no
exceptions of higher priority are pending, interrupt handling is initiated. When initiating interrupt
handling, the corresponding interrupt mask bit is set automatically for this and lower levels in sta-
tus register. E.qg, if interrupt on level 3 is approved for handling the interrupt mask bits 13M, 12M,
I1M, and I0OM are set in status register. If interrupt on level 1 is approved the masking bits 11M,
and IOM are set in status register. The handler offset is calculated from AUTOVECTOR and
EVBA and a change-of-flow to this address is performed.

Setting of the interrupt mask bits prevents the interrupts from the same and lower levels to be
passed trough the interrupt controller. Setting of the same level mask bit prevents also multiple
request of the same interrupt to happen.

It is the responsibility of the handler software to clear the interrupt request that caused the inter-
rupt before returning from the interrupt handler. If the conditions that caused the interrupt are not
cleared, the interrupt request remains active.

13.3.3 Clearing an interrupt request
Clearing of the interrupt request is done by writing to registers in the corresponding peripheral
module, which then clears the corresponding NMIREQ/IREQ signal.

The recommended way of clearing an interrupt request is a store operation to the controlling
peripheral register, followed by a dummy load operation from the same register. This causes a

Alm L 128

32054D-AVR32-10/07 I ©

s A T32AP7002

pipeline stall, which prevents the interrupt from accidentally re-triggering in case the handler is
exited and the interrupt mask is cleared before the interrupt request is cleared.

13.4 User Interface
This chapter lists the INTC registers are accessible through the PB bus. The registers are used
to control the behaviour and read the status of the INTC.

13.4.1 Memory Map
The following table shows the address map of the INTC registers, relative to the base address of

the INTC.

Table 13-1. INTC address map
Offset Register Name Access Reset Value
0 Interrupt Priority Register 0 IPRO Read/Write 0x0000_0000
4 Interrupt Priority Register 1 IPR1 Read/Write 0x0000_0000
252 Interrupt Priority Register 63 IPR63 Read/Write 0x0000_0000
256 Interrupt Request Register 0 IRRO Read-only N/A
260 Interrupt Request Register 1 IRR1 Read-only N/A
508 Interrupt Request Register 63 | IRR63 Read-only N/A
512 Interrupt Cause Register 3 ICR3 Read-only N/A
516 Interrupt Cause Register 2 ICR2 Read-only N/A
520 Interrupt Cause Register 1 ICR1 Read-only N/A
524 Interrupt Cause Register 0 ICRO Read-only N/A

13.4.2 Interrupt Request Map
The mapping of interrupt requests from peripherals to INTREQSs is presented in the Peripherals
Section.

AIMEL 129

32054D-AVR32-10/07 I ©

s A T32AP7002

13.4.3 Interrupt Request Registers

Register Name: IRRO...IRR63
Access Type: Read-only
31 30 29 28 27 26 25 24

[TRR(32*x+31) | IRR(32°x+30) | IRR(32°x+29) | IRR(32*x+28) | IRR(32°x+27) | IRR(32°x+26) | IRR(32*x+25) | IRR(32°x+24) |

23 22 21 20 19 18 17 16
[IRR(32x+23) | IRR(32*x+22) | IRR(32*x+21) | IRR(32°x+20) | IRR(32"x+19) | IRR(32°x+18) | IRR(32*x+17) | IRR(32"x+16) |

15 14 13 12 11 10 9 8
[IRR(32°x+15) | IRR(32"x+14) | IRR(32"x+13) | IRR(32*x+12) | IRR(32*x+11) | IRR(32*x+10) | IRR(32'x+9) | IRR(32'x*8) |

7 6 5 4 3 2 1 0
[IRR@2%+7) | IRR(B2x+6) | IRR(32x+5) | IRR(32’x+4) | IRR(32x+3) | IRR(32x+2) | IRR(32'x+1) | IRR(32'x*0) |

* IRR: Interrupt Request line

0 = No interrupt request is pending on this input request input.

1 = An interrupt request is pending on this input request input.

The are 64 IRRs, one for each group. Each IRR has 32 bits, one for each possible interrupt request, for a total of 2048 pos-

sible input lines. The IRRs are read by the software interrupt handler in order to determine which interrupt request is
pending. The IRRs are sampled continuously, and are read-only.

AIMEL 130

32054D-AVR32-10/07 I ©

s A T32AP7002

13.4.4 Interrupt Priority Registers

Register Name: IPRO...IPR63

Access Type: Read/Write
31 30 29 28 27 26 25 24

| INTLEVEL[1:0] - - [- - - - |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| - | - AUTOVECTOR][13:8] |
7 6 5 4 3 2 1 0

AUTOVECTOR[7:0]

* INTLEVEL: Interrupt level associated with this group

Indicates the EVBA-relative offset of the interrupt handler of the corresponding group:

INTLEVEL[1:0]

Priority

INTO

INT1

INT2

k|, |O|O

0
1
0
1

INT3

 AUTOVECTOR: Autovector address for this group
Handler offset is used to give the address of the interrupt handler. The least significant bit should be written to zero to give

halfword alignment

32054D-AVR32-10/07

ATMEL

L ________________(0G]

131

s A T32AP7002

13.45 Interrupt Cause Registers

Register Name: ICRO...ICR3

Access Type: Read-only
31 30 29 28 27 26 25 24

I I - I I I I - I I |
23 22 21 20 19 18 17 16

I I - I I I I - I I |
15 14 13 12 11 10 9 8

I I - I I I I - I I |
7 6 5 4 3 2 1 0

| - | - | CAUSE |

» CAUSE: Interrupt group causing interrupt of priority n

ICRn identifies the group with the highest priority that has a pending interrupt of level n. If no interrupts of level n are pend-
ing, or the priority level is masked, the value of ICRn is UNDEFINED.

A mE|,® 132

32054D-AVR32-10/07

s A T32AP7002

14. External Interrupt Controller (EIC)

Rev: 1.0.0.1
14.1 Features

* Dedicated interrupt requests for each interrupt
¢ Individually maskable interrupts

* Interrupt on rising or falling edge

¢ Interrupt on high or low level

* Maskable NMl interrupt

14.2 Description

The External Interrupt Controller allows 4 pins to be configured as external interrupts. Each pin
has its own interrupt request, and can be individually masked. Each pin can generate an inter-
rupt on rising or falling edge, or high or low level.

The module also masks the NMI_N pin, which generates the NMI interrupt for the CPU.
14.3 Block Diagram

Figure 14-1. External Interrupt Controller block diagram

LEVEL | IER

MO+DE ¢ I[iR

EXTINTN Sync —» Edge/Level — INTn —» Mask [—IRQn»
Detector

NMIC

NMI_N &—» Sync (—»| Mask [—NMI_IRQ-»

14.4 Product Dependencies

14.4.1 I/O Lines

The External Interrupt and NMI pins are multiplexed with PIO lines. To act as external interrupts,
these pins must be configured as inputs pins by the P1O controller. It is also possible to trigger
the interrupt by driving these pins from registers in the PIO controller, or another peripheral out-
put connected to the same pin.

Alm L 133

32054D-AVR32-10/07 I ©

s A T32AP7002

14.4.2 Power Management

Edge triggered interrupts are available in all sleep modes except Deepdown. Level triggered
interrupts and the NMI interrupt are available in all sleep modes.

14.4.3 Interrupt

The EIC interrupt lines are connected to internal sources of the interrupt controller. Using the
External Interrutps requires the interrupt controller to be programmed first.

Using the Non-Maskable Interrupt does not require the interrupt controller to be programmed.

14.5 Functional Description
1451 External Interrupts

Each external interrupt pin EXTINTn can be configured to produce an interrupt on rising or fall-
ing edge, or high or low level. External interrupts are configured by the MODE, EDGE, and
LEVEL registers. Each interrupt n has a bit INTn in each of these registers.

Similarly, each interrupt has a corresponding bit in each of the interrupt control and status regis-
ters. Writing 1 to the INTn strobe in IER enables the external interrupt on pin EXTINTn, while
writing 1 to INTn in IDR disables the external interrupt. IMR can be read to check which inter-
rupts are enabled. When the interrupt triggers, the corresponding bit in ISR will be set. For edge
triggered interrupts, the flag remains set until the corresponding strobe bit in ICR is written to 1.
For level triggered interrupts, the flag remains set for as long as the interrupt condition is present
on the pin.

Writing INTn in MODE to 0 enables edge triggered interrupts, while writing the bit to 1 enables
level triggered interrupts.

If EXTINTN is configured as an edge triggered interrupt, writing INTn in EDGE to 0 will trigger the
interrupt on falling edge, while writing the bit to 1 will trigger the interrupt on rising edge.

If EXTINTN is configured as a level triggered interrupt, writing INTn in LEVEL to 0 will trigger the
interrupt on low level, while writing the bit to 1 will trigger the interrupt on high level.

145.1.1 Synchronization of external interrupts

The pin value of the EXTINTn pins is normally synchronized to the CPU clock, so spikes shorter
than a CPU clock cycle are not guaranteed to produce an interrupt. In Stop mode, spikes shorter
than a 32KHz clock cycle are not guaranteed to produce an interrupt. In Deepdown mode, only
unsynchronized level interrupts remain active, and any short spike on this interrupt will wake up
the device.

145.2 NMI Control

The Non-Maskable Interrupt of the CPU is connected to the NMI_N pin through masking logic in
the External Interrupt Controller. This masking ensures that the NMI will not trigger before the
CPU has been set up to handle interrupts. Writing the EN bit in the NMIC register enables the
NMI interrupt, while writing EN to O disables the NMI interrupt. When enabled, the interrupt trig-
gers whenever the NMI_N pin is negated.

The NMI_N pin is synchronized the same way as external level interrupts.

Alm L 134

32054D-AVR32-10/07 I ©

s A T32AP7002

14.6 User Interface

Offset Register Register Name Access Reset
0x00 EIC Interrupt Enable IER Write-only 0x0
0x04 EIC Interrupt Disable IDR Write-only 0x0
0x08 EIC Interrupt Mask IMR Read-only 0x0
0x0C EIC Interrupt Status ISR Read-only 0x0
0x10 EIC Interrupt Clear ICR Write-only 0x0
0x14 External Interrupt Mode MODE Read/Write 0x0
0x18 External Interrupt Edge EDGE Read/Write 0x0
0x1C External Interrupt Level LEVEL Read/Write 0x0
0x24 External Interrupt NMI Control NMIC Read/Write 0x0

32054D-AVR32-10/07

ATMEL

L ________________(0G]

135

s A T32AP7002

14.6.1 EIC Interrupt Enable/Disable/Mask/Status/Clear

Name: IER/IDR/IMR/ISR/ICR
Access Type: IER/IDR/ICR: Write-only
IMR/ISR: Read-only

31 30 29 28 27 26 25 24
- r - r - r - r - ;- [- [- |
23 22 21 20 19 18 17 16
- r - r - r - r - ;- [- [- |
15 14 13 12 11 10 9 8
- r - r - r - r - ;- [- [- |
7 6 5 4 3 2 1 0
‘ - ‘ - ‘ - ‘ - ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

* INTn: External Interrupt n
0: External Interrupt has not triggered
1: External Interrupt has triggered

The effect of writing or reading the bits listed above depends on which register is being accessed:

* |ER (Write-only)
0: No effect
1: Enable Interrupt
* IDR (Write-only)
0: No effect
1: Disable Interrupt
IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
ISR (Read-only)
0: An interrupt event has occurred
1: An interrupt even has not occurred
ICR (Write-only)
0: No effect
1: Clear interrupt event

AIMEL 136

32054D-AVR32-10/07 I ©

s A T32AP7002

14.6.2 External Interrupt Mode/Edge/Level

Name: MODE/EDGE/LEVEL

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ - ‘ - ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

* INTn: External Interrupt n

The bit interpretation is register specific:

* MODE
0: Interrupt is edge triggered
1: Interrupt is level triggered
* EDGE
0: Interrupt triggers on falling edge
1: Interrupt triggers on rising edge
* LEVEL
0: Interrupt triggers on low level
1: Interrupt triggers on high level

A “'lEl,® 137

32054D-AVR32-10/07

s A T32AP7002

14.6.3 NMI Control

Name: NMIC

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | -] | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

| | | | | | | _ev |

* EN: Enable

0: NMI disabled. Asserting the NMI pin does not generate an NMI request.
1: NMI enabled. Asserting the NMI pin generate an NMI request.

A mE|,® 138

32054D-AVR32-10/07

s A T32AP7002

15. HSB Bus Matrix (HMATRIX)

Rev: 2.2.0.1

15.1 Features
e User Interface on peripheral bus
* Configurable Number of Masters (Up to sixteen)
* Configurable Number of Slaves (Up to sixteen)
* One Decoder for Each Master
* Three Different Memory Mappings for Each Master (Internal and External boot, Remap)
* One Remap Function for Each Master
* Programmable Arbitration for Each Slave
— Round-Robin
— Fixed Priority
* Programmable Default Master for Each Slave
— No Default Master
— Last Accessed Default Master
— Fixed Default Master
* One Cycle Latency for the First Access of a Burst
e Zero Cycle Latency for Default Master
* One Special Function Register for Each Slave (Not dedicated)

15.2 Description

The Bus Matrix implements a multi-layer bus structure, that enables parallel access paths
between multiple High Speed Bus (HSB) masters and slaves in a system, thus increasing the
overall bandwidth. The Bus Matrix interconnects up to 16 HSB Masters to up to 16 HSB Slaves.
The normal latency to connect a master to a slave is one cycle except for the default master of
the accessed slave which is connected directly (zero cycle latency). The Bus Matrix provides 16
Special Function Registers (SFR) that allow the Bus Matrix to support application specific
features.

15.3 Memory Mapping
The Bus Matrix provides one decoder for every HSB Master Interface. The decoder offers each
HSB Master several memory mappings. In fact, depending on the product, each memory area
may be assigned to several slaves. Booting at the same address while using different HSB
slaves (i.e. external RAM, internal ROM or internal Flash, etc.) becomes possible.

The Bus Matrix user interface provides Master Remap Control Register (MRCR) that performs
remap action for every master independently.

15.4 Special Bus Granting Mechanism
The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism reduces latency at first access of a burst or single
transfer. This bus granting mechanism sets a different default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

AIMEL 139

32054D-AVR32-10/07 I ©

s A T32AP7002

15.4.1 No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low-power mode.

15.4.2 Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

15.4.3 Fixed Default Master

At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master does not change unless the user
modifies it by a software action (field FIXED_DEFMSTR of the related SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that set a default master for each slave. The
Slave Configuration Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The
2-bit DEFMSTR_TYPE field selects the default master type (no default, last access master, fixed
default master), whereas the 4-bit FIXED_DEFMSTR field selects a fixed default master pro-
vided that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user
interface description.

15.5 Arbitration

The Bus Matrix provides an arbitration mechanism that reduces latency when conflict cases
occur, i.e. when two or more masters try to access the same slave at the same time. One arbiter
per HSB slave is provided, thus arbitrating each slave differently.

The Bus Matrix provides the user with the possibility of choosing between 2 arbitration types for
each slave:

1. Round-Robin Arbitration (default)
2. Fixed Priority Arbitration
This choice is made via the field ARBT of the Slave Configuration Registers (SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration must be done, specific conditions apply. See Section 15.5.1 "Arbitration
Rules” on page 140.

15.5.1 Arbitration Rules

Each arbiter has the ability to arbitrate between two or more different master requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: When a slave is not connected to any master or is connected to a master
which is not currently accessing it.
2. Single Cycles: When a slave is currently doing a single access.

3. End of Burst Cycles: When the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst. See Section “15.5.1.1” on page 141.

Alm L 140

32054D-AVR32-10/07 I ©

s A T32AP7002

4. Slot Cycle Limit: When the slot cycle counter has reached the limit value indicating that
the current master access is too long and must be broken. See Section “15.5.1.2” on
page 141.

15511 Undefined Length Burst Arbitration

In order to avoid long slave handling during undefined length bursts (INCR), the Bus Matrix pro-
vides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end
of burst is used as a defined length burst transfer and can be selected from among the following
five possibilities:

1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will
never be broken.

2. One beat bursts: Predicted end of burst is generated at each single transfer inside the
INCP transfer.
3. Four beat bursts: Predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.
4. Eight beat bursts: Predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.
5. Sixteen beat bursts: Predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.
This selection can be done through the field ULBT of the Master Configuration Registers
(MCFG).

155.1.2 Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a
very slow slave (e.g., an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (SCFG) and decreased at each clock cycle. When the counter reaches
zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or word
transfer.

15.5.2 Round-Robin Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master requests arise at the same time,
the master with the lowest number is first serviced, then the others are serviced in a round-robin
manner.

There are three round-robin algorithms implemented:

* Round-Robin arbitration without default master

* Round-Robin arbitration with last default master

* Round-Robin arbitration with fixed default master
15521 Round-Robin Arbitration without Default Master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

Alm L 141

32054D-AVR32-10/07 I ©

s A T32AP7002

15.5.2.2 Round-Robin Arbitration with Last Default Master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performed the access. Other non privileged masters still get one latency cycle if
they want to access the same slave. This technique can be used for masters that mainly perform
single accesses.

15.5.2.3 Round-Robin Arbitration with Fixed Default Master

This is another biased round-robin algorithm. It allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

155.3 Fixed Priority Arbitration

32054D-AVR32-10/07

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master requests are
active at the same time, the master with the highest priority number is serviced first. If two or
more master requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (PRAS and PRBS).

AIMEL 142

L ________________(0G]

s A T32AP7002

15.6 User Interface

Table 15-1. Register Mapping
Offset Register Name Access Reset Value
0x0000 Master Configuration Register 0 MCFGO Read/Write 0x00000002
0x0004 Master Configuration Register 1 MCFG1 Read/Write 0x00000002
0x0008 Master Configuration Register 2 MCFG2 Read/Write 0x00000002
0x000C Master Configuration Register 3 MCFG3 Read/Write 0x00000002
0x0010 Master Configuration Register 4 MCFG4 Read/Write 0x00000002
0x0014 Master Configuration Register 5 MCFG5 Read/Write 0x00000002
0x0018 Master Configuration Register 6 MCFG6 Read/Write 0x00000002
0x001C Master Configuration Register 7 MCFG7 Read/Write 0x00000002
0x0020 Master Configuration Register 8 MCFG8 Read/Write 0x00000002
0x0024 Master Configuration Register 9 MCFG9 Read/Write 0x00000002
0x0028 Master Configuration Register 10 MCFG10 Read/Write 0x00000002
0x002C Master Configuration Register 11 MCFG11 Read/Write 0x00000002
0x0030 Master Configuration Register 12 MCFG12 Read/Write 0x00000002
0x0034 Master Configuration Register 13 MCFG13 Read/Write 0x00000002
0x0038 Master Configuration Register 14 MCFG14 Read/Write 0x00000002
0x003C Master Configuration Register 15 MCFG15 Read/Write 0x00000002
0x0040 Slave Configuration Register 0 SCFGO Read/Write 0x00000010
0x0044 Slave Configuration Register 1 SCFG1 Read/Write 0x00000010
0x0048 Slave Configuration Register 2 SCFG2 Read/Write 0x00000010
0x004C Slave Configuration Register 3 SCFG3 Read/Write 0x00000010
0x0050 Slave Configuration Register 4 SCFG4 Read/Write 0x00000010
0x0054 Slave Configuration Register 5 SCFG5 Read/Write 0x00000010
0x0058 Slave Configuration Register 6 SCFG6 Read/Write 0x00000010
0x005C Slave Configuration Register 7 SCFG7 Read/Write 0x00000010
0x0060 Slave Configuration Register 8 SCFG8 Read/Write 0x00000010
0x0064 Slave Configuration Register 9 SCFG9 Read/Write 0x00000010
0x0068 Slave Configuration Register 10 SCFG10 Read/Write 0x00000010
0x006C Slave Configuration Register 11 SCFG11 Read/Write 0x00000010
0x0070 Slave Configuration Register 12 SCFG12 Read/Write 0x00000010
0x0074 Slave Configuration Register 13 SCFG13 Read/Write 0x00000010
0x0078 Slave Configuration Register 14 SCFG14 Read/Write 0x00000010
0x007C Slave Configuration Register 15 SCFG15 Read/Write 0x00000010
0x0080 Priority Register A for Slave 0 PRASO Read/Write 0x00000000
0x0084 Priority Register B for Slave 0 PRBSO Read/Write 0x00000000
0x0088 Priority Register A for Slave 1 PRAS1 Read/Write 0x00000000
AIMEL 143
32054D-AVR32-10/07 O

s A T32AP7002

Table 15-1. Register Mapping (Continued)

Offset Register Name Access Reset Value
0x008C Priority Register B for Slave 1 PRBS1 Read/Write 0x00000000
0x0090 Priority Register A for Slave 2 PRAS2 Read/Write 0x00000000
0x0094 Priority Register B for Slave 2 PRBS2 Read/Write 0x00000000
0x0098 Priority Register A for Slave 3 PRAS3 Read/Write 0x00000000
0x009C Priority Register B for Slave 3 PRBS3 Read/Write 0x00000000
0x00A0 Priority Register A for Slave 4 PRAS4 Read/Write 0x00000000
0x00A4 Priority Register B for Slave 4 PRBS4 Read/Write 0x00000000
0x00A8 Priority Register A for Slave 5 PRAS5 Read/Write 0x00000000
0x00AC Priority Register B for Slave 5 PRBS5 Read/Write 0x00000000
0x00B0O Priority Register A for Slave 6 PRAS6 Read/Write 0x00000000
0x00B4 Priority Register B for Slave 6 PRBS6 Read/Write 0x00000000
0x00B8 Priority Register A for Slave 7 PRAS7 Read/Write 0x00000000
0x00BC Priority Register B for Slave 7 PRBS7 Read/Write 0x00000000
0x00CO0 Priority Register A for Slave 8 PRAS8 Read/Write 0x00000000
0x00C4 Priority Register B for Slave 8 PRBS8 Read/Write 0x00000000
0x00C8 Priority Register A for Slave 9 PRAS9 Read/Write 0x00000000
0x00CC Priority Register B for Slave 9 PRBS9 Read/Write 0x00000000
0x00DO0 Priority Register A for Slave 10 PRAS10 Read/Write 0x00000000
0x00D4 Priority Register B for Slave 10 PRBS10 Read/Write 0x00000000
0x00D8 Priority Register A for Slave 11 PRAS11 Read/Write 0x00000000
0x00DC Priority Register B for Slave 11 PRBS11 Read/Write 0x00000000
0x00EO Priority Register A for Slave 12 PRAS12 Read/Write 0x00000000
O0x00E4 Priority Register B for Slave 12 PRBS12 Read/Write 0x00000000
OxO0E8 Priority Register A for Slave 13 PRAS13 Read/Write 0x00000000
O0x00EC Priority Register B for Slave 13 PRBS13 Read/Write 0x00000000
0x00FO0 Priority Register A for Slave 14 PRAS14 Read/Write 0x00000000
0x00F4 Priority Register B for Slave 14 PRBS14 Read/Write 0x00000000
0x00F8 Priority Register A for Slave 15 PRAS15 Read/Write 0x00000000
0x00FC Priority Register B for Slave 15 PRBS15 Read/Write 0x00000000
0x0100 Master Remap Control Register MRCR Read/Write 0x00000000

0x0104 - 0x010C | Reserved - -
0x0110 Special Function Register O SFRO Read/Write -
0x0114 Special Function Register 1 SFR1 Read/Write -
0x0118 Special Function Register 2 SFR2 Read/Write -
0x011C Special Function Register 3 SFR3 Read/Write -
0x0120 Special Function Register 4 SFR4 Read/Write -

AIMEL 144
32054D-AVR32-10/07 O

s A T32AP7002

Table 15-1. Register Mapping (Continued)

32054D-AVR32-10/07

L ________________(0G]

Offset Register Name Access Reset Value
0x0124 Special Function Register 5 SFR5 Read/Write -
0x0128 Special Function Register 6 SFR6 Read/Write -
0x012C Special Function Register 7 SFR7 Read/Write -
0x0130 Special Function Register 8 SFR8 Read/Write -
0x0134 Special Function Register 9 SFR9 Read/Write -
0x0138 Special Function Register 10 SFR10 Read/Write -
0x013C Special Function Register 11 SFR11 Read/Write -
0x0140 Special Function Register 12 SFR12 Read/Write -
0x0144 Special Function Register 13 SFR13 Read/Write -
0x0148 Special Function Register 14 SFR14 Read/Write -
0x014C Special Function Register 15 SFR15 Read/Write -
0x0150 - 0x01F8 | Reserved - -
ATMEL 145

s A T32AP7002

15.6.1 Bus Matrix Master Configuration Registers

Register Name: MCFGO...MCFG15

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I . I - I - I . I . I - I - |
15 14 13 12 11 10 9 8

I - I . I - I - I . I . I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I ULBT |

» ULBT: Undefined Length Burst Type
0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access

The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR
burst.

2: Four Beat Burst

The undefined length burst is split into a four-beat burst, allowing re-arbitration at each four-beat burst end.

3: Eight Beat Burst

The undefined length burst is split into an eight-beat burst, allowing re-arbitration at each eight-beat burst end.
4: Sixteen Beat Burst

The undefined length burst is split into a sixteen-beat burst, allowing re-arbitration at each sixteen-beat burst end.

Alm L 146

32054D-AVR32-10/07 I ©

s A T32AP7002

15.6.2 Bus Matrix Slave Configuration Registers

Register Name: SCFGO0...SCFG15

Access Type: Read/Write
31 30 29 28 27 26 25 24

- 1 - T - - - S ARET]
23 22 21 20 19 18 17 16

| - [- | FIXED_DEFMSTR [DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

T - T - - - S — 1]
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

¢ SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.

This limit has been placed to avoid locking a very slow slave when very long bursts are used.

This limit must not be very small. Unreasonably small values break every burst and the Bus Matrix arbitrates without per-
forming any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

« DEFMSTR_TYPE: Default Master Type

0: No Default Master

At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in a one cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master
having accessed it.

This results in not having one cycle latency when the last master tries to access the slave again.
2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number that has been written in the FIXED_DEFMSTR field.

This results in not having one cycle latency when the fixed master tries to access the slave again.
 FIXED_DEFMSTR: Fixed Default Master

This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a mas-
ter which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

» ARBT: Arbitration Type
0: Round-Robin Arbitration

1. Fixed Priority Arbitration

Alm L 147

32054D-AVR32-10/07 I ©

s A T32AP7002

15.6.3 Bus Matrix Priority Registers A For Slaves

Register Name: PRASO...PRAS15

Access Type: Read/Write
31 30 29 28 27 26 25 24

| M7PR | M6PR |
23 22 21 20 19 18 17 16

| M5PR [M4PR |
15 14 13 12 11 10 9 8

| M3PR [M2PR |
7 6 5 4 3 2 1 0

| M1PR | MOPR |

* MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave.

32054D-AVR32-10/07

The higher the number, the higher the priority.

ATMEL

L ________________(0G]

148

s A T32AP7002

15.6.4 Bus Matrix Priority Registers B For Slaves

Register Name: PRBSO0...PRBS15

Access Type: Read/Write
31 30 29 28 27 26 25 24

| M15PR | M14PR |
23 22 21 20 19 18 17 16

| M13PR [M12PR |
15 14 13 12 11 10 9 8

| M11PR [M10PR |
7 6 5 4 3 2 1 0

| M9PR | M8PR |

* MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave.

32054D-AVR32-10/07

The higher the number, the higher the priority.

ATMEL

L ________________(0G]

149

s A T32AP7002

15.6.5

Register Name:

Access Type:

MRCR
Read/Write

Bus Matrix Master Remap Control Register

Reset: 0x0000_0000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RCB15 | RCB14 | RCB13 | RCB12 | RCB11 | RCB10 | RCB9 | RCBS8 |
7 6 5 4 3 2 1 0

| RCB7 | RCB6 | RCB5 | RCB4 | RCB3 | RCB2 | RCB1 | RCBO |

 RCB: Remap Command Bit for Master x
0: Disable remapped address decoding for the selected Master

1: Enable remapped address decoding for the selected Master

Alm L 150

32054D-AVR32-10/07 I ©

s A T32AP7002

15.6.6 Bus Matrix Special Function Registers

Register Name: SFRO0...SFR15
Access Type: Read/Write
Reset:
31 30 29 28 27 26 25 24
| SFR |
23 22 21 20 19 18 17 16
| SFR |
15 14 13 12 11 10 9 8
| SFR |
7 6 5 4 3 2 1 0
SFR |

* SFR: Special Function Register Fields

The bitfields of these registers are described in the Peripherals chapter.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

151

s A T32AP7002

16. External Bus Interface (EBI)

Rev: 1.0.1.2
16.1 Features

* Optimized for Application Memory Space support
* Integrates Three External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
— ECC Controller
« Additional Logic for NAND Flash/SmartMedia™ and CompactFlash™ Support
— NAND Flash support: 8-bit as well as 16-bit devices are supported
— CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are
supported but the signals _I0IS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode)
are not handled.
* Optimized External Bus:
— 16-bit Data Bus
— Up to 23-bit Address Bus, Up to 8-Mbytes Addressable
— Optimized pin multiplexing to reduce latencies on External Memories
* Up to 6 Chip Selects, Configurable Assignment:
— Static Memory Controller on NCSO
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS3, Optional NAND Flash Support

16.2 Description

The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the embedded Memory Controller of an AVR32 device. The Static
Memory, SDRAM and ECC Controllers are all featured external Memory Controllers on the EBI.
These external Memory Controllers are capable of handling several types of external memory
and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash, and SDRAM.

The EBI also supports the CompactFlash and the NAND Flash/SmartMedia protocols via inte-
grated circuitry that greatly reduces the requirements for external components. Furthermore, the
EBI handles data transfers with up to six external devices, each assigned to six address spaces
defined by the embedded Memory Controller. Data transfers are performed through a 16-bit
data bus, an address bus of up to 23 bits, up to three chip select lines (NCS[1:0] and NCS3) and
several control pins that are generally multiplexed between the different external Memory
Controllers.

AIMEL 152

32054D-AVR32-10/07 I ©

s A T32AP7002

16.3 Block Diagram
16.3.1 External Bus Interface

Figure 16-1 shows the organization of the External Bus Interface.

Figure 16-1. Organization of the External Bus Interface

Bus Matrix External Bus Interface 0
< > »[] D[150]
HSB _,| SDRAM < > »[] AO/NBD
Controller] AUNWRINES2
o] Al15:2], A[22:18]
»[] A16/BAO
Static mléff: =S AL7/BAL
Memory
< p| Controller | g——m——Tp »[] NCO
»[] NCS1/sbCs
»[[] NCS3/NANDCS
»[] NRD/NOHCFOE
i »[] NWRO/NWE CFWE
A »[] NWRL/NBSL/CFIOR
*[] NWR3/NBS3/CAOW
[] D
»[] SDCKE
v *[] RAS
—»| NANDHash |4 »[] cas
SmartMedia] SDWE
Logic »[] SDA10
i *[] NANDOE
—p oo »[] NANDWE
Controller
Address Decoders » GX;?:E?
User Interface
T

N
ATEL

32054D-AVR32-10/07 I ©

Peripheral Bus

s A T32AP7002

16.4 1/O Lines Description

Table 16-1. EBI I/O Lines Description

Name Function Type Active Level
EBI
DO - D15 Data Bus /10
AO - A23 Address Bus Output
SMC
NCSO0, NCS1, NCS3 Chip Select Lines Output Low
NWRO - NWR3 Write Signals Output Low
NOE Output Enable Output Low
NRD Read Signal Output Low
NWE Write Enable Output Low
NBSO - NBS3 Byte Mask Signals Output Low
EBI for NAND Flash/SmartMedia Support
NANDCS NAND Flash Chip Select Line Output Low
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
SDRAM Controller
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Controller Chip Select Line Output Low
BAO - BAl Bank Select Output
SDWE SDRAM Write Enable Output Low
RAS - CAS Row and Column Signal Output Low
NWRO - NWR3 Write Signals Output Low
NBSO - NBS3 Byte Mask Signals Output Low
SDA10 SDRAM Address 10 Line Output

Depending on the Memory Controller in use, all signals are not connected directly through the
Mux Logic.

AIMEL 154

32054D-AVR32-10/07 I ©

s A T32AP7002

Table 16-2 on page 155 details the connections between the two Memory Controllers and the

EBI pins.
Table 16-2. EBI Pins and Memory Controllers I/O Lines Connections
EBI Pins SDRAMC I/O Lines SMC I/O Lines

NWR1/NBS1/CFIOR NBS1 NWR1/NUB
AO/NBSO Not Supported SMC_AO/NLB
A1/NBS2/NWR2 Not Supported SMC_A1
A[11:2] SDRAMC_A[9:0] SMC_A[11:2]
SDA10 SDRAMC_A10 Not Supported
Al12 Not Supported SMC_A12
A[14:13] SDRAMC_A[12:11] SMC_A[14:13]
A[22:15] Not Supported SMC_A[22:15]
A[25:23] Not Supported SMC_A[25:23]
D[15:0] D[15:0] D[15:0]

AIMEL 155

32054D-AVR32-10/07 I ©

s A T32AP7002

16.5 Application Example
16.5.1 Hardware Interface

Table 16-3 on page 152 details the connections to be applied between the EBI pins and the
external devices for each Memory Controller.

32054D-AVR32-10/07

Table 16-3. EBI Pins and External Static Devices Connections
Pins of the Interfaced Device
8-bit Static 2 x 8-bit 16-bit Static

. Static .
Signals Device Devices Device
Controller SMC
DO - D7 DO - D7 DO - D7 DO - D7
D8 - D15 - D8 - D15 D8 - D15
AO/NBSO A0 - NLB
A1/NWR2/NBS2 Al A0 A0
A2 - A22 A[2:22] A[1:21] A[1:21]
NCSO0 Cs Cs (oFS]
NCS1/SDCS Cs (o] (oFS]
NCS3/NANDCS cs cs cs
NRD/NOE/CFOE OE OE OE
NWRO/NWE WE WE®W WE
NWR1/NBS1 - WE® NUB
NWR3/NBS3 - - -

Note: 1. NWR1 enables upper byte writes. NWRO enables lower byte writes.

2.

ATMEL

L ________________(0G]

156

s A T32AP7002

Table 16-4. EBI Pins and External Devices Connections

Pins of the Interfaced Device
Smart Media

SDRAM or
Signals NAND Flash
Controller SDRAMC SMC
DO - D7 DO - D7 ADO-AD7
D8 - D15 D8 - D15 AD8-AD15
AO/NBSO DQMO -
A1/NWR2/NBS2 DQM2 -
A2 - A10 A[0:8] -
A1l A9 -
SDA10 A10 -
Al2 - -
A13-Al4 A[11:12] -
Al15 - -
A16/BAO BAO -
A17/BA1 BA1 -
A18 - A20 - -
A21 - CLE®
A22 - ALE®
NCSO - -
NCS1/SDCS cs[o] -
NCS2 - _
NANDCS - -
NCS3/NANDCS - -
NANDOE - OE
NANDWE - WE
NRD/NOE/CFOE - -
NWRO/NWE/CFWE - -
NWR1/NBS1/CFIOR DQM1 -
NWR3/NBS3/CFIOW DQM3 -
SDCK CLK -
SDCKE CKE -
RAS RAS -
CAS CAS -
SDWE WE -

Alm L 157

32054D-AVR32-10/07 I ©

s A T32AP7002

Table 16-4. EBI Pins and External Devices Connections (Continued)

Pins of the Interfaced Device
Smart Media
SDRAM or
Signals NAND Flash
Controller SDRAMC SMC
Pxx® - -
Pxx@ - CE
Pxx® - RDY

Note: 1. Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer
between the EBI data bus and the CompactFlash slot.

2. Any PIO line.
3. The CLE and ALE signals of the NAND Flash device may be driven by any address bit. For
details, see "SmartMedia and NAND Flash Support” on page 161.

AIMEL 158

32054D-AVR32-10/07 I ©

16.5.2

Connection Examples

Figure 16-3 shows an example of connections between the EBI and external devices.

Figure 16-2. EBI Connections to Memory Devices

EBI
DO-D15
RAS|
cas\. 2M x 8 2M x 8
SDCK \ SDRM SDRM
SDCKE| \] 0007 | oo pe-o1s| -
SDWE]| N
AO/NBSO N cs cs
NWR1/NBS1| A\ CLK CLK
ALNWR2/NBS2 \] ke A0-A9ALL | A2-A11A13 P AO-A9 ALL
NWR3/NBS3, N SOWE| i AL0 SOWE] e AL0
NRD/NOE| BAO BAO
RAS
NwroNwWEl N cAs BALL_AL7/BAL Eﬁg BAL
~eso Lo oM NBs1] oM
SDA10! —\ \
A2-A15 AN
A16/BA0[N
A17/8A1[N
A18-A22 N
—
NCS0
NCS1/SDC
NCS
3
((
128K x 8 128K x8
D0-D7 SRM D8-D15 SRM
D0-D7 AO-A16 AL-ALY D0-D7 AO-A16 AL-ALY
cs cs
N__NRDINOE__| o NRDINGE | e
AONWRO/NBSO NWR1/NBST

32054D-AVR32-10/07

ATMEL

L ________________(0G]

AT32AP7002

159

s A T32AP7002

16.6 Product Dependencies
16.6.1 I/O Lines

The pins used for interfacing the External Bus Interface may be multiplexed with the PIO lines.
The programmer must first program the PIO controller to assign the External Bus Interface pins
to their peripheral function. If /O lines of the External Bus Interface are not used by the applica-
tion, they can be used for other purposes by the PIO Controller.

16.7 Functional Description

The EBI transfers data between the internal HSB Bus (handled by the HMatrix) and the external
memories or peripheral devices. It controls the waveforms and the parameters of the external
address, data and control busses and is composed of the following elements:
» The Static Memory Controller (SMC)
* The SDRAM Controller (SDRAMC)
» The ECC Controller (ECC)
« A chip select assignment feature that assigns an HSB address space to the external devices
< A multiplex controller circuit that shares the pins between the different Memory Controllers
» Programmable SmartMedia and NAND Flash support logic
16.7.1 Bus Multiplexing

The EBI offers a complete set of control signals that share the 16-bit data lines, the address
lines of up to 23 bits and the control signals through a multiplex logic operating in function of the
memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAM Controller without
delaying the other external Memory Controller accesses.

16.7.2 Pull-up Control

A specific HMATRIX_SFR register in the Matrix User Interface permit enabling of on-chip pull-up
resistors on the data bus lines not multiplexed with the PIO Controller lines. For details on this
register, refer to the Peripherals Section. The pull-up resistors are enabled after reset. Setting
the EBI_DBPUC bit disables the pull-up resistors on lines not muxed with PIO. Enabling the pull-
up resistor on lines multiplexed with PIO lines can be performed by programming the appropri-
ate PIO controller.

16.7.3 Static Memory Controller

For information on the Static Memory Controller, refer to the Static Memory Controller Section.

16.7.4 SDRAM Controller

For information on the SDRAM Controller, refer to the SDRAM Section.
16.7.5 ECC Controller

For information on the ECC Controller, refer to the ECC Section.

Alm L 160

32054D-AVR32-10/07 I ©

s A T32AP7002

16.7.6 SmartMedia and NAND Flash Support

The External Bus Interface integrates circuitry that interfaces to SmartMedia and NAND Flash
devices.

The NAND Flash logic is driven by the Static Memory Controller on the NCS3 address space.
Programming the EBI_CS3A field in a specific HMATRIX_SFR Register to the appropriate value
enables the NAND Flash logic. For details on this register, refer to the Peripherals Section.
Access to an external NAND Flash device is then made by accessing the address space
reserved to NCS3 (i.e., between 0xOC00 0000 and OXxOFFF FFFF).

The NAND Flash Logic drives the read and write command signals of the SMC on the NANDOE
and NANDWE signals when the NCS3 signal is active. NANDOE and NANDWE are invalidated
as soon as the transfer address fails to lie in the NCS3 address space. See Figure "NAND Flash
Signal Multiplexing on EBI Pins” on page 161 for more informations. For details on these wave-
forms, refer to the Static Memory Controller Section.

The SmartMedia device is connected the same way as the NAND Flash device.

Figure 16-3. NAND Flash Signal Multiplexing on EBI Pins

SMC SmartMedia Logic
NANDOE
NCSx < D > NANDOE
NRD_NOE >) J
ﬁ_ﬁ NANDWE NANDWE
NWRO_NWE >)

16.7.6.1 NAND Flash Signals

32054D-AVR32-10/07

The address latch enable and command latch enable signals on the NAND Flash device are
driven by address bits A22 and A21 of the EBI address bus. The user should note that any bit on
the EBI address bus can also be used for this purpose. The command, address or data words
on the data bus of the NAND Flash device are distinguished by using their address within the
NCSx address space. The chip enable (CE) signal of the device and the ready/busy (R/B) sig-
nals are connected to PIO lines. The CE signal then remains asserted even when NCSx is not
selected, preventing the device from returning to standby mode.

Alm L 161

L ________________(0G]

s A T32AP7002

32054D-AVR32-10/07

Figure 16-4. NAND Flash Application Example

EBI

P10

P10

D[7:0]
< >
A[22:21]
>
NCSx/NANDCS Not Connected
NANDOE >
NANDWE g

AD[7:0]
ALE
CLE

SmartMedia

NOE

NWE

CE

R/B

Note: The External Bus Interfaces is also able to support 16-bits devices.

ATMEL

L ________________(0G]

162

s A T32AP7002

17. DMA Controller (DMACA)

17.1 Features

17.2 Description

32054D-AVR32-10/07

Rev: 2.0.6a.3

* 2 HSB Master Interfaces
e 3 Channels
* Software and Hardware Handshaking Interfaces
— 11 Hardware Handshaking Interfaces
* Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
* Single-block DMA Transfer
* Multi-block DMA Transfer
— Linked Lists
— Auto-Reloading
— Contiguous Blocks
* DMA Controller is Always the Flow Controller
e Additional Features
— Scatter and Gather Operations
— Channel Locking
— Bus Locking
— FIFO Mode
— Pseudo Fly-by Operation

The DMA Controller (DMACA) is an HSB-central DMA controller core that transfers data from a
source peripheral to a destination peripheral over one or more System Bus. One channel is
required for each source/destination pair. In the most basic configuration, the DMACA has one
master interface and one channel. The master interface reads the data from a source and writes
it to a destination. Two System Bus transfers are required for each DMA data transfer. This is
also known as a dual-access transfer.

The DMACA is programmed via the HSB slave interface.

AIMEL 163

L ________________(0G]

s A T32AP7002

17.3 Block Diagram

Figure 17-1. DMA Controller (DMACA) Block Diagram
DMA Controller

HSB Slfve HSBSlave | CEG Interrupt |rq_=dma
.| I/E o = Generator
[Chamneil |
Channel 0
FIFO
HSB Maiter HSB Master P .
< I/F N
SRC | DST | |
FSM | FSM

17.4 Product Dependencies
17.4.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the P1O controllers to assign the DMACA pins to their
peripheral functions.

17.4.2 Power Management

The DMACA clock is generated by the Power Manager. Before using the DMACA, the program-
mer must ensure that the DMACA clock is enabled in the Power Manager.

To prevent bus errors the DMACA operation must be terminated before entering sleep mode.

17.4.3 Interrupt

The DMACA interface has an interrupt line connected to the Interrupt Controller. Handling the
DMACA interrupt requires programming the interrupt controller before configuring the DMACA.

17.4.4 Peripherals

Both the source peripheral and the destination peripheral must be set up correctly prior to the
DMA transfer.

17.5 Functional Description
1751 Basic Definitions

Source peripheral: Device on a System Bus layer from where the DMACA reads data, which is
then stored in the channel FIFO. The source peripheral teams up with a destination peripheral to
form a channel.

Destination peripheral: Device to which the DMACA writes the stored data from the FIFO (pre-
viously read from the source peripheral).

Alm L 164

32054D-AVR32-10/07 I ©

s A T32AP7002

32054D-AVR32-10/07

Memory: Source or destination that is always “ready” for a DMA transfer and does not require a
handshaking interface to interact with the DMACA. A peripheral should be assigned as memory
only if it does not insert more than 16 wait states. If more than 16 wait states are required, then
the peripheral should use a handshaking interface (the default if the peripheral is not pro-
grammed to be memory) in order to signal when it is ready to accept or supply data.

Channel: Read/write datapath between a source peripheral on one configured System Bus
layer and a destination peripheral on the same or different System Bus layer that occurs through
the channel FIFO. If the source peripheral is not memory, then a source handshaking interface
is assigned to the channel. If the destination peripheral is not memory, then a destination hand-
shaking interface is assigned to the channel. Source and destination handshaking interfaces can
be assigned dynamically by programming the channel registers.

Master interface: DMACA is a master on the HSB bus reading data from the source and writing
it to the destination over the HSB bus.

Slave interface: The HSB interface over which the DMACA is programmed. The slave interface
in practice could be on the same layer as any of the master interfaces or on a separate layer.

Handshaking interface: A set of signal registers that conform to a protocol and handshake
between the DMACA and source or destination peripheral to control the transfer of a single or
burst transaction between them. This interface is used to request, acknowledge, and control a
DMACA transaction. A channel can receive a request through one of three types of handshaking
interface: hardware, software, or peripheral interrupt.

Hardware handshaking interface: Uses hardware signals to control the transfer of a single or
burst transaction between the DMACA and the source or destination peripheral.

Software handshaking interface: Uses software registers to control the transfer of a single or
burst transaction between the DMACA and the source or destination peripheral. No special
DMACA handshaking signals are needed on the 1/0 of the peripheral. This mode is useful for
interfacing an existing peripheral to the DMACA without modifying it.

Peripheral interrupt handshaking interface: A simple use of the hardware handshaking inter-
face. In this mode, the interrupt line from the peripheral is tied to the dma_req input of the
hardware handshaking interface. Other interface signals are ignored.

Flow controller: The device (either the DMACA or source/destination peripheral) that deter-
mines the length of and terminates a DMA block transfer. If the length of a block is known before
enabling the channel, then the DMACA should be programmed as the flow controller. If the
length of a block is not known prior to enabling the channel, the source or destination peripheral
needs to terminate a block transfer. In this mode, the peripheral is the flow controller.

Flow control mode (CFGx.FCMODE): Special mode that only applies when the destination
peripheral is the flow controller. It controls the pre-fetching of data from the source peripheral.

Transfer hierarchy: Figure 17-2 on page 166 illustrates the hierarchy between DMACA trans-
fers, block transfers, transactions (single or burst), and System Bus transfers (single or burst) for
non-memory peripherals. Figure 17-3 on page 166 shows the transfer hierarchy for memory.

Alm L 165

L ________________(0G]

s A T32AP7002

Figure 17-2. DMACA Transfer Hierarchy for Non-Memory Peripheral

DMAC Transfer DMA Transfer
| Level
Block Transfer
Block Block -——— Block
Level
Y v v v
Burst Burst Burst Single DMA Transaction
Transaction Transaction Transaction Transaction| Level
v v v v l
System Bus| [System Bus System Bus| |System Bus System Bus
Burst Burst |- - - Burst Single Single System Bus
Transfer Transfer Transfer Transfer Transfer Transfer Level
Figure 17-3. DMACA Transfer Hierarchy for Memory
DMAC Transfer DMA Transfer
| Level
Block Block Block Transfer
Block oc ocl Level
|
System Bus| |System Bus System Bus| [System Bus
Burst Burst - - Burst Single SyStem Bus
Transfer Transfer Transfer Transfer Transfer Level

Block: A block of DMACA data. The amount of data (block length) is determined by the flow
controller. For transfers between the DMACA and memory, a block is broken directly into a
sequence of System Bus bursts and single transfers. For transfers between the DMACA and a
non-memory peripheral, a block is broken into a sequence of DMACA transactions (single and
bursts). These are in turn broken into a sequence of System Bus transfers.

Transaction: A basic unit of a DMACA transfer as determined by either the hardware or soft-
ware handshaking interface. A transaction is only relevant for transfers between the DMACA
and a source or destination peripheral if the source or destination peripheral is a non-memory
device. There are two types of transactions: single and burst.

—Single transaction: The length of a single transaction is always 1 and is converted
to a single System Bus transfer.

AIMEL 166

32054D-AVR32-10/07 I ©

s A T32AP7002

32054D-AVR32-10/07

—Burst transaction: The length of a burst transaction is programmed into the
DMACA. The burst transaction is converted into a sequence of System Bus bursts
and single transfers. DMACA executes each burst transfer by performing
incremental bursts that are no longer than the maximum System Bus burst size set.
The burst transaction length is under program control and normally bears some
relationship to the FIFO sizes in the DMACA and in the source and destination
peripherals.

DMA transfer: Software controls the number of blocks in a DMACA transfer. Once the DMA
transfer has completed, then hardware within the DMACA disables the channel and can gener-
ate an interrupt to signal the completion of the DMA transfer. You can then re-program the
channel for a new DMA transfer.

Single-block DMA transfer: Consists of a single block.

Alm L 167

L ________________(0G]

s A T32AP7002

Multi-block DMA transfer: A DMA transfer may consist of multiple DMACA blocks. Multi-block
DMA transfers are supported through block chaining (linked list pointers), auto-reloading of
channel registers, and contiguous blocks. The source and destination can independently select
which method to use.

—Linked lists (block chaining) — A linked list pointer (LLP) points to the location in
system memory where the next linked list item (LLI) exists. The LLI is a set of
registers that describe the next block (block descriptor) and an LLP register. The
DMACA fetches the LLI at the beginning of every block when block chaining is
enabled.

—Auto-reloading — The DMACA automatically reloads the channel registers at the end
of each block to the value when the channel was first enabled.

—Contiguous blocks — Where the address between successive blocks is selected to
be a continuation from the end of the previous block.

Scatter: Relevant to destination transfers within a block. The destination System Bus address is
incremented/decremented by a programmed amount when a scatter boundary is reached. The
number of System Bus transfers between successive scatter boundaries is under software
control.

Gather: Relevant to source transfers within a block. The source System Bus address is incre-
mented/decremented by a programmed amount when a gather boundary is reached. The
number of System Bus transfers between successive gather boundaries is under software
control.

Channel locking: Software can program a channel to keep the HSB master interface by locking
the arbitration for the master bus interface for the duration of a DMA transfer, block, or transac-
tion (single or burst).

Bus locking: Software can program a channel to maintain control of the System Bus bus by
asserting hlock for the duration of a DMA transfer, block, or transaction (single or burst). Chan-
nel locking is asserted for the duration of bus locking at a minimum.

FIFO mode: Special mode to improve bandwidth. When enabled, the channel waits until the
FIFO is less than half full to fetch the data from the source peripheral and waits until the FIFO is
greater than or equal to half full to send data to the destination peripheral. Thus, the channel can
transfer the data using System Bus bursts, eliminating the need to arbitrate for the HSB master
interface for each single System Bus transfer. When this mode is not enabled, the channel only
waits until the FIFO can transmit/accept a single System Bus transfer before requesting the
master bus interface.

Pseudo fly-by operation: Typically, it takes two System Bus cycles to complete a transfer, one
for reading the source and one for writing to the destination. However, when the source and des-
tination peripherals of a DMA transfer are on different System Bus layers, it is possible for the
DMACA to fetch data from the source and store it in the channel FIFO at the same time as the
DMACA extracts data from the channel FIFO and writes it to the destination peripheral. This
activity is known as pseudo fly-by operation. For this to occur, the master interface for both
source and destination layers must win arbitration of their HSB layer. Similarly, the source and
destination peripherals must win ownership of their respective master interfaces.

Alm L 168

32054D-AVR32-10/07 I ©

s A T32AP7002

17.6 Memory Peripherals

Figure 17-3 on page 166 shows the DMA transfer hierarchy of the DMACA for a memory periph-
eral. There is no handshaking interface with the DMACA, and therefore the memory peripheral
can never be a flow controller. Once the channel is enabled, the transfer proceeds immediately
without waiting for a transaction request. The alternative to not having a transaction-level hand-
shaking interface is to allow the DMACA to attempt System Bus transfers to the peripheral once
the channel is enabled. If the peripheral slave cannot accept these System Bus transfers, it
inserts wait states onto the bus until it is ready; it is not recommended that more than 16 wait
states be inserted onto the bus. By using the handshaking interface, the peripheral can signal to
the DMACA that it is ready to transmit/receive data, and then the DMACA can access the
peripheral without the peripheral inserting wait states onto the bus.

17.7 Handshaking Interface
Handshaking interfaces are used at the transaction level to control the flow of single or burst
transactions. The operation of the handshaking interface is different and depends on whether
the peripheral or the DMACA is the flow controller.

The peripheral uses the handshaking interface to indicate to the DMACA that it is ready to trans-
fer/accept data over the System Bus. A non-memory peripheral can request a DMA transfer
through the DMACA using one of two handshaking interfaces:

eHardware handshaking
«Software handshaking

Software selects between the hardware or software handshaking interface on a per-channel
basis. Software handshaking is accomplished through memory-mapped registers, while hard-
ware handshaking is accomplished using a dedicated handshaking interface.

17.71 Software Handshaking
When the slave peripheral requires the DMACA to perform a DMA transaction, it communicates
this request by sending an interrupt to the CPU or interrupt controller.

The interrupt service routine then uses the software registers to initiate and control a DMA trans-
action. These software registers are used to implement the software handshaking interface.

The HS_SEL_SRC/HS_SEL_DST bit in the CFGx channel configuration register must be set to
enable software handshaking.

When the peripheral is not the flow controller, then the last transaction registers LstSrcReg and
LstDstReg are not used, and the values in these registers are ignored.

17.7.1.1 Burst Transactions
Writing a 1 to the RegSrcReg[x]/RegDstReg[x] register is always interpreted as a burst transac-
tion request, where x is the channel number. However, in order for a burst transaction request to
start, software must write a 1 to the SgIReqSrcReg[x]/SglRegDstReq[x] register.

You can write a 1 to the SglReqSrcReg[x]/SglReqDstReg[x] and ReqSrcReg[x]/ReqDstReg[X]
registers in any order, but both registers must be asserted in order to initiate a burst transaction.
Upon completion of the burst transaction, the hardware clears the SglReqSrcReg[x]/SglReqD-
stReg[x] and ReqSrcReg[x]/ReqDstReg[X] registers.

Alm L 169

32054D-AVR32-10/07 I ©

s A T32AP7002

17.7.1.2 Single Transactions

Writing a 1 to the SglReqSrcReg/SglReqDstReg initiates a single transaction. Upon completion
of the single transaction, both the SglIReqSrcReg/SgIReqDstReg and ReqSrcReg/RegDstReg
bits are cleared by hardware. Therefore, writing a 1 to the ReqSrcReg/ReqDstReg is ignored
while a single transaction has been initiated, and the requested burst transaction is not serviced.

Again, writing a 1 to the ReqSrcReg/RegDstReg register is always a burst transaction request.
However, in order for a burst transaction request to start, the corresponding channel bit in the
SglRegSrcReg/SglReqDstReg must be asserted. Therefore, to ensure that a burst transaction is
serviced, you must write a 1 to the ReqSrcReg/ReqDstReg before writing a 1 to the SgIReqSr-
cReg/SglReqDstReqg register.

Software can poll the relevant channel bit in the SgIReqSrcReg/ SglReqDstReg and ReqSr-
cReg/RegDstReg registers. When both are 0, then either the requested burst or single
transaction has completed. Alternatively, the IntSrcTran or IntDstTran interrupts can be enabled
and unmasked in order to generate an interrupt when the requested source or destination trans-
action has completed.

Note: The transaction-complete interrupts are triggered when both single and burst transactions are
complete. The same transaction-complete interrupt is used for both single and burst transactions.

17.7.2 Hardware Handshaking

There are 11 hardware handshaking interfaces between the DMACA and peripherals. Refer to
the “Peripherals” chapter for the device-specific mapping of these interfaces.

17.7.2.1 External DMA Request Definition

32054D-AVR32-10/07

When an external slave peripheral requires the DMACA to perform DMA transactions, it commu-
nicates its request by asserting the external nDMAREQX signal. This signal is resynchronized to
ensure a proper functionality (see "External DMA Request Timing” on page 171).

The external nDMAREQX is asserted when the source threshold level is reached. After resyn-
chronization, the rising edge of dma_req starts the transfer. dma_req is de-asserted when
dma_ack is asserted.

The external N DMAREQx signal must be de-asserted after the last transfer and re-asserted
again before a new transaction starts.

For a source FIFO, an active edge is triggered on nDMAREQXx when the source FIFO exceeds a
watermark level. For a destination FIFO, an active edge is triggered on nDMAREQx when the
destination FIFO drops below the watermark level.

The source transaction length, CTLx.SRC_MSIZE, and destination transaction length,
CTLx.DEST_MSIZE, must be set according to watermark levels on the source/destination
peripherals.

Alm L 170

L ________________(0G]

AT32AP7002

Figure 17-4. External DMA Request Timing

o JUUUUUUUUUUUUTUUUUL UYL YT

DMA Transaction

nDMAREQx _\ ,_\
dma_req o _’_"_—\—,
[
dma_ack ,_\ ,_\

DMA Transfers

A mE|,® 171

32054D-AVR32-10/07

s A T32AP7002

17.8 DMACA Transfer Types

A DMA transfer may consist of single or multi-block transfers. On successive blocks of a multi-
block transfer, the SARX/DARX register in the DMACA is reprogrammed using either of the fol-
lowing methods:

*Block chaining using linked lists

*Auto-reloading

*Contiguous address between blocks
On successive blocks of a multi-block transfer, the CTLx register in the DMACA is re-pro-
grammed using either of the following methods:

*Block chaining using linked lists

*Auto-reloading
When block chaining, using linked lists is the multi-block method of choice, and on successive
blocks, the LLPx register in the DMACA is re-programmed using the following method:

*Block chaining using linked lists

A block descriptor (LLI) consists of following registers, SARx, DARX, LLPx, CTL. These regis-
ters, along with the CFGx register, are used by the DMACA to set up and describe the block
transfer.

17.8.1 Multi-block Transfers

17.8.1.1 Block Chaining Using Linked Lists

32054D-AVR32-10/07

In this case, the DMACA re-programs the channel registers prior to the start of each block by
fetching the block descriptor for that block from system memory. This is known as an LLI update.

DMACA block chaining is supported by using a Linked List Pointer register (LLPx) that stores the
address in memory of the next linked list item. Each LLI (block descriptor) contains the corre-
sponding block descriptor (SARx, DARX, LLPx, CTLX).

To set up block chaining, a sequence of linked lists must be programmed in memory.

The SARX, DARX, LLPx and CTLx registers are fetched from system memory on an LLI update.
The updated contents of the CTLX register are written back to memory on block completion. Fig-
ure 17-5 on page 173 shows how to use chained linked lists in memory to define multi-block
transfers using block chaining.

The Linked List multi-block transfers is initiated by programming LLPx with LLPx(0) (LLI(0) base
address) and CTLx with CTLx.LLP_S_EN and CTLx.LLP_D_EN.

Alm L 172

L ________________(0G]

s A T32AP7002

Figure 17-5. Multi-block Transfer Using Linked Lists

System Memory

LLI(0) LLI(L)
CTLX[63..32] CTLX[63..32]
CTLX[31..0] CTLX[31..0]
LLPx(1) LLPx(2)
DARX DARX
— | sARx SARX LLPX(2)
LLPx(0) LLPx(1)

Alm L 173

32054D-AVR32-10/07 I ©

s A T32AP7002

A mE|,® 174

32054D-AVR32-10/07

s A T32AP7002

Table 17-1. Programming of Transfer Types and Channel Register Update Method (DMACA State Machine Table)
RELOAD_ RELOAD_ | CTLx,
LLP. LLP_S_EN SR LLP_D_EN | DS LLPx DARX
Transfer Type LOC ((((Update SARX Update Update
=0 CTLX) CFGx) CTLx) CFGx) Method Method Method
1) Single Block or None. user None
last transfer of multi- | Yes 0 0 0 0 ’ None (single) .
reprograms (single)
Block
2) AutoReload multi- CTLX,LLPx are Auto-
block transfer with Yes 0 0 0 1 reloaded from Contiguous
) L Reload
contiguous SAR initial values.
3) AutoReload multi- CTLX,LLPx are Con-
block transfer with Yes 0 1 0 0 reloaded from Auto-Reload -
) L tiguous
contiguous DAR initial values.
. CTLX,LLPx are
4) AutoReload multi- |y o 0 1 0 1 reloaded from Auto-Reload Auto-
block transfer L Reload
initial values.
5) Single Block or None. user None
last transfer of multi- | No 0 0 0 0 ’ None (single) .
reprograms (single)
block
6) Linked List multi- CTLx,LLPx Linked
block transfer with No 0 0 1 0 loaded from next | Contiguous List
contiguous SAR Linked List item
7) Linked List multi- CTLx,LLPx Linked
block transfer with No 0 1 1 0 loaded from next | Auto-Reload List
auto-reload SAR Linked List item
8) Linked List multi- CTLx,LLPx Con-
block transfer with No 1 0 0 0 loaded from next Linked List tiouous
contiguous DAR Linked List item g
9) Linked List multi- CTLx,LLPx Auto-
block transfer with No 1 0 0 1 loaded from next Linked List Reload
auto-reload DAR Linked List item
. . . CTLx,LLPx .
10) Linked Listmulti- |, 1 0 1 0 loaded from next | Linked List Linked
block transfer ; o List
Linked List item

17.8.1.2

Auto-reloading of Channel Registers

During auto-reloading, the channel registers are reloaded with their initial values at the comple-
tion of each block and the new values used for the new block. Depending on the row number in
Table 17-1 on page 175, some or all of the SARXx, DARx and CTLx channel registers are
reloaded from their initial value at the start of a block transfer.
17.8.1.3 Contiguous Address Between Blocks
In this case, the address between successive blocks is selected to be a continuation from the
end of the previous block. Enabling the source or destination address to be contiguous between
blocks is a function of CTLx.LLP_S_EN, CFGx.RELOAD_SR, CTLx.LLP_D_EN, and
CFGx.RELOAD_DS registers (see Figure 17-1 on page 164).

Note: Both SARx and DARXx updates cannot be selected to be contiguous. If this functionality is
required, the size of the Block Transfer (CTLx.BLOCK_TS) must be increased. If this is at the max-
imum value, use Row 10 of Table 17-1 on page 175 and setup the LLI.SARx address of the
block descriptor to be equal to the end SARx address of the previous block. Similarly, setup the

LLI.DARXx address of the block descriptor to be equal to the end DARx address of the previous

AIMEL

L ________________(0G]

175
32054D-AVR32-10/07

s A T32AP7002

17.8.1.4 Suspension of Transfers Between Blocks
At the end of every block transfer, an end of block interrupt is asserted if:

sinterrupts are enabled, CTLX.INT_EN =1
the channel block interrupt is unmasked, MaskBlock[n] = 0, where n is the channel number.
Note: The block complete interrupt is generated at the completion of the block transfer to the destination.

For rows 6, 8, and 10 of Table 17-1 on page 175, the DMA transfer does not stall between block
transfers. For example, at the end of block N, the DMACA automatically proceeds to block N + 1.

Forrows 2, 3, 4, 7, and 9 of Table 17-1 on page 175 (SARx and/or DARXx auto-reloaded between
block transfers), the DMA transfer automatically stalls after the end of block. Interrupt is asserted
if the end of block interrupt is enabled and unmasked.

The DMACA does not proceed to the next block transfer until a write to the block interrupt clear
register, ClearBlock[n], is performed by software. This clears the channel block complete
interrupt.

Forrows 2, 3, 4, 7, and 9 of Table 17-1 on page 175 (SARx and/or DARXx auto-reloaded between
block transfers), the DMA transfer does not stall if either:

einterrupts are disabled, CTLX.INT_EN =0, or
the channel block interrupt is masked, MaskBlock[n] = 1, where n is the channel number.

Channel suspension between blocks is used to ensure that the end of block ISR (interrupt ser-
vice routine) of the next-to-last block is serviced before the start of the final block commences.
This ensures that the ISR has cleared the CFGx.RELOAD_SR and/or CFGx.RELOAD_DS bits
before completion of the final block. The reload bits CFGx.RELOAD_SR and/or
CFGx.RELOAD_DS should be cleared in the ‘end of block ISR’ for the next-to-last block
transfer.

17.8.2 Ending Multi-block Transfers
All multi-block transfers must end as shown in either Row 1 or Row 5 of Table 17-1 on page 175.
At the end of every block transfer, the DMACA samples the row number, and if the DMACA is in
Row 1 or Row 5 state, then the previous block transferred was the last block and the DMA trans-
fer is terminated.

Note: Row 1 and Row 5 are used for single block transfers or terminating multiblock transfers. Ending in
Row 5 state enables status fetch for the last block. Ending in Row 1 state disables status fetch for
the last block.

For rows 2,3 and 4 of Table 17-1 on page 175, (LLPx = 0 and CFGXx.RELOAD_SR and/or

CFGXx.RELOAD_DS is set), multi-block DMA transfers continue until both the

CFGx.RELOAD_SR and CFGx.RELOAD_DS registers are cleared by software. They should be

programmed to zero in the end of block interrupt service routine that services the next-to-last

block transfer. This puts the DMACA into Row 1 state.

For rows 6, 8, and 10 (both CFGXx.RELOAD_SR and CFGx.RELOAD_DS cleared) the user must
setup the last block descriptor in memory such that both LLI.CTLx.LLP_S_EN and
LLI.CTLX.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

For rows 7 and 9, the end-of-block interrupt service routine that services the next-to-last block
transfer should clear the CFGX.RELOAD_SR and CFGx.RELOAD_DS reload bits. The last

Alm L 176

32054D-AVR32-10/07 I ©

s A T32AP7002

17.9 Programming

block descriptor in memory should be set up so that both the LLI.CTLx.LLP_S_EN and
LLI.CTLx.LLP_D_EN are zero. If the LLI.LLPx register of the last block descriptor in memory is
non-zero, then the DMA transfer is terminated in Row 5. If the LLI.LLPx register of the last block
descriptor in memory is zero, then the DMA transfer is terminated in Row 1.

Note: The only allowed transitions between the rows of Table 17-1 on page 175are from any row into
row 1 or row 5. As already stated, a transition into row 1 or row 5 is used to terminate the DMA
transfer. All other transitions between rows are not allowed. Software must ensure that illegal tran-
sitions between rows do not occur between blocks of a multi-block transfer. For example, if block N
is in row 10 then the only allowed rows for block N + 1 are rows 10, 5 or 1.

a Channel

Three registers, the LLPX, the CTLx and CFGXx, need to be programmed to set up whether single
or multi-block transfers take place, and which type of multi-block transfer is used. The different
transfer types are shown in Table 17-1 on page 175.

The “Update Method” column indicates where the values of SARx, DARX, CTLx, and LLPx are
obtained for the next block transfer when multi-block DMACA transfers are enabled.

Note: In Table 17-1 on page 175, all other combinations of LLPx.LOC =0, CTLx.LLP_S_EN,
CFGx.RELOAD_SR, CTLx.LLP_D_EN, and CFGx.RELOAD_DS are illegal, and causes indeter-
minate or erroneous behavior.

17.9.1 Programming Examples

17.9.1.1 Single-block Transfer (Row 1)

32054D-AVR32-10/07

Row 5 in Table 17-1 on page 175 is also a single block transfer.

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, Clear-
Err. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all
interrupts have been cleared.

3. Program the following channel registers:
a. Write the starting source address in the SARX register for channel x.
b. Write the starting destination address in the DARX register for channel x.

¢. Program CTLx and CFGx according to Row 1 as shown in Table 17-1 on page 175.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in the register, you can program the following:

—i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLXx register.

—ii. Set up the transfer characteristics, such as:

Transfer width for the source in the SRC_TR_WIDTH field.
Transfer width for the destination in the DST_TR_WIDTH field.
Source master layer in the SMS field where source resides.

— Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.

AIMEL 177

L ________________(0G]

s A T32AP7002

e. Write the channel configuration information into the CFGx register for channel x.

—i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bhits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests.
Writing a ‘1’ activates the software handshaking interface to handle
source/destination requests.

—ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign a handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.
4. After the DMACA selected channel has been programmed, enable the channel by writing

a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit 0 of the DmaCfgReg register is
enabled.

5. Source and destination request single and burst DMA transactions to transfer the block of
data (assuming non-memory peripherals). The DMACA acknowledges at the comple-
tion of every transaction (burst and single) in the block and carry out the block transfer.

6. Once the transfer completes, hardware sets the interrupts and disables the channel. At
this time you can either respond to the Block Complete or Transfer Complete interrupts,
or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to
detect when the transfer is complete.

17.9.1.2 Multi-block Transfer with Linked List for Source and Linked List for Destination (Row 10)
1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the chain of Linked List Items (otherwise known as block descriptors) in memory.
Write the control information in the LLI.CTLx register location of the block descriptor for
each LLI in memory (see Figure 17-5 on page 173) for channel x. For example, in the
register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control device by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:
—i. Transfer width for the source in the SRC_TR_WIDTH field.
—ii. Transfer width for the destination in the DST_TR_WIDTH field.
—iii. Source master layer in the SMS field where source resides.
—iv. Destination master layer in the DMS field where destination resides.
—v. Incrementing/decrementing or fixed address for source in SINC field.
—vi. Incrementing/decrementing or fixed address for destination DINC field.
3. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination periph-
eral. This requires programming the SRC_PER and DEST_PER bits, respectively.

4. Make sure that the LLI.CTLx register locations of all LLI entries in memory (except the
last) are set as shown in Row 10 of Table 17-1 on page 175. The LLI.CTLx register of

Alm L 178

32054D-AVR32-10/07 I ©

s A T32AP7002

the last Linked List ltem must be set as described in Row 1 or Row 5 of Table 17-1 on
page 175. Figure 17-7 on page 181 shows a Linked List example with two list items.

5. Make sure that the LLI.LLPx register locations of all LLI entries in memory (except the
last) are non-zero and point to the base address of the next Linked List Item.

6. Make sure that the LLI.SARX/LLI.DARX register locations of all LLI entries in memory
point to the start source/destination block address preceding that LLI fetch.

7. Make sure that the LLI.CTLx.DONE field of the LLI.CTLx register locations of all LLI
entries in memory are cleared.

8. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, Clear-
Err. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all
interrupts have been cleared.

9. Program the CTLx, CFGx registers according to Row 10 as shown in Table 17-1 on page
175.

10.Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

11.Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed.

12.The DMACA fetches the first LLI from the location pointed to by LLPx(0).

Note: The LLL.SARX, LLI. DARX, LLI.LLPx and LLI.CTLx registers are fetched. The DMACA automati-
cally reprograms the SARx, DARX, LLPx and CTLx channel registers from the LLPx(0).
13.Source and destination request single and burst DMA transactions to transfer the block

of data (assuming non-memory peripheral). The DMACA acknowledges at the comple-
tion of every transaction (burst and single) in the block and carry out the block transfer.
Note: Table 17-1 on page 175

14.The DMACA does not wait for the block interrupt to be cleared, but continues fetching
the next LLI from the memory location pointed to by current LLPx register and automat-
ically reprograms the SARx, DARX, LLPx and CTLx channel registers. The DMA
transfer continues until the DMACA determines that the CTLx and LLPx registers at the
end of a block transfer match that described in Row 1 or Row 5 of Table 17-1 on page
175. The DMACA then knows that the previous block transferred was the last block in
the DMA transfer. The DMA transfer might look like that shown in Figure 17-6 on page
180.

Alm L 179

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 17-6. Multi-Block with Linked List Address for Source and Destination

Address of A_ddrgss of
Source Layer Destination Layer

Block 2 Block 2

SAR(2) — DAR(2) —>
Block 1 Block 1

SAR(1) — DAR(1) —>
Block O Block O

SAR(0) —» DAR(0) ——

Source Blocks Destination Blocks

If the user needs to execute a DMA transfer where the source and destination address are con-
tiguous but the amount of data to be transferred is greater than the maximum block size
CTLx.BLOCK_TS, then this can be achieved using the type of multi-block transfer as shown in
Figure 17-7 on page 181.

A|III L 180

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 17-7. Multi-Block with Linked Address for Source and Destination Blocks are

Contiguous
Address of Address of
Source Layer Destination Layer
Block 2
/ «~— DAR(3)
Block 2 Block 2
SAR(3) —> / <« DAR(2)
Block 2 Block 1
SAR(2) —— / <« DAR(1)
Block 1 Block 0
SAR(1) —— / . DAR()
Block 0
SAR(0) — »
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 17-9 on page 184.

Alm L 181

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 17-8. DMA Transfer Flow for Source and Destination Linked List Address

Channel enabled by
software

!

LLI Fetch D

v

Hardware reprograms
SARX, DARX, CTLX, LLPx

v

DMAC block transfer

!

Source/destination
status fetch

Block Complete interrupt > l
generated here

Is DMAC in
Rowl of
MAC State Machine Table?

no

DMAC transfer Complete
interrupt generated here

yes

Channel Disabled by
hardware

17.9.1.3 Multi-block Transfer with Source Address Auto-reloaded and Destination Address Auto-reloaded (Row 4)
1. Read the Channel Enable register to choose an available (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, Clear-
Err. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all
interrupts have been cleared.

3. Program the following channel registers:

AIMEL 182

32054D-AVR32-10/07 I ©

s A T32AP7002

a. Write the starting source address in the SARX register for channel x.
b. Write the starting destination address in the DARX register for channel x.

c. Program CTLx and CFGx according to Row 4 as shown in Table 17-1 on page 175.
Program the LLPx register with ‘0’.
d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in the register, you can program the following:
—i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the CTLx register.

—ii. Set up the transfer characteristics, such as:
— Transfer width for the source in the SRC_TR_WIDTH field.
— Transfer width for the destination in the DST_TR_WIDTH field.
— Source master layer in the SMS field where source resides.
— Destination master layer in the DMS field where destination resides.
— Incrementing/decrementing or fixed address for source in SINC field.
— Incrementing/decrementing or fixed address for destination in DINC field.

e. Write the channel configuration information into the CFGx register for channel x.
Ensure that the reload bits, CFGx. RELOAD_SR and CFGX.RELOAD_DS are
enabled.

—i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a ‘1’ activates the software handshaking interface to
handle source/destination requests.

—ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMACA selected channel has been programmed, enable the channel by writing
a ‘1’ to the ChEnReg.CH_EN bit. Make sure that bit O of the DmaCfgReg register is
enabled.

5. Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges on com-
pletion of each burst/single transaction and carry out the block transfer.

6. When the block transfer has completed, the DMACA reloads the SARx, DARx and CTLXx
registers. Hardware sets the Block Complete interrupt. The DMACA then samples the
row number as shown in Table 17-1 on page 175. If the DMACA is in Row 1, then the
DMA transfer has completed. Hardware sets the transfer complete interrupt and dis-
ables the channel. So you can either respond to the Block Complete or Transfer
Complete interrupts, or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is dis-
abled, to detect when the transfer is complete. If the DMACA is not in Row 1, the next
step is performed.

7. The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1'b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)

Alm L 183

32054D-AVR32-10/07 I ©

s A T32AP7002

should clear the reload bits in the CFGX.RELOAD_SR and CFGx.RELOAD_DS
registers. This put the DMACA into Row 1 as shown in Table 17-1 on page 175. If
the next block is not the last block in the DMA transfer, then the reload bits should
remain enabled to keep the DMACA in Row 4.

b. If interrupts are disabled (CTLX.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1'b0, where x is the channel number), then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case software must clear the
reload bits in the CFGx.RELOAD_SR and CFGx.RELOAD_DS registers to put the
DMACA into ROW 1 of Table 17-1 on page 175 before the last block of the DMA
transfer has completed. The transfer is similar to that shown in Figure 17-9 on page
184. The DMA transfer flow is shown in Figure 17-10 on page 185.

Figure 17-9. Multi-Block DMA Transfer with Source and Destination Address Auto-reloaded

Address of Address of
Source Layer Destination Layer

Block0

Blockl
BIockZ

SAR —»

<+— DAR

BIockN

Source Blocks Destination Blocks

A mE|,® 184

32054D-AVR32-10/07

s A T32AP7002

Figure 17-10. DMA Transfer Flow for Source and Destination Address Auto-reloaded

Channel Enabled by
software

:

Block Transfer K=

’

Reload SARX, DARXx, CTLx

Block Complete interrupt

_
generated here i

DMAC transfer Complete
interrupt generated here yes

Channel Disabled by
hardware

Is DMAC in Row1 of
DMAC State Machine Table?

CTLX.INT_EN=1
&&
MASKBLOCK[x]=1?

Stall until block complete
interrupt cleared by software

179.1.4 Multi-block Transfer with Source Address Auto-reloaded and Linked List Destination Address (Row7)

32054D-AVR32-10/07

1. Read the Channel Enable register to choose a free (disabled) channel.
2. Set up the chain of linked list items (otherwise known as block descriptors) in memory.

Write the control information in the LLI.CTLx register location of the block descriptor for
each LLI in memory for channel x. For example, in the register you can program the
following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control peripheral by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:

—i. Transfer width for the source in the SRC_TR_WIDTH field.

—ii. Transfer width for the destination in the DST_TR_WIDTH field.

—iii. Source master layer in the SMS field where source resides.

—iv. Destination master layer in the DMS field where destination resides.
—v. Incrementing/decrementing or fixed address for source in SINC field.
—vi. Incrementing/decrementing or fixed address for destination DINC field.

ATMEL

L ________________(0G]

185

s A T32AP7002

3. Write the starting source address in the SARX register for channel x.

Note: The values in the LLI.SARX register locations of each of the Linked List Items (LLIs) setup up in
memory, although fetched during a LLI fetch, are not used.

4. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bhits, respectively.

5. Make sure that the LLI.CTLx register locations of all LLIs in memory (except the last) are
set as shown in Row 7 of Table 17-1 on page 175 while the LLI.CTLx register of the last
Linked List item must be set as described in Row 1 or Row 5 of Table 17-1 on page
175. Figure 17-5 on page 173 shows a Linked List example with two list items.

6. Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last) are
non-zero and point to the next Linked List Item.

7. Make sure that the LLI.DARX register location of all LLIs in memory point to the start des-
tination block address proceeding that LLI fetch.

8. Make sure that the LLI.CTLx.DONE field of the LLI.CTLXx register locations of all LLIs in
memory is cleared.

9. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, Clear-
Err. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all
interrupts have been cleared.

10.Program the CTLx, CFGx registers according to Row 7 as shown in Table 17-1 on page
175.

11.Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

12.Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit O of the DmaCfgReg register is enabled.

13.The DMACA fetches the first LLI from the location pointed to by LLPx(0).

Note: The LLI.SARX, LLI.DARX, LLI. LLPx and LLI.CTLx registers are fetched. The LLI.SARX register
although fetched is not used.
14.Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). DMACA acknowledges at the com-
pletion of every transaction (burst and single) in the block and carry out the block
transfer.

15.Table 17-1 on page 175The DMACA reloads the SARX register from the initial value.
Hardware sets the block complete interrupt. The DMACA samples the row number as
shown in Table 17-1 on page 175. If the DMACA is in Row 1 or 5, then the DMA trans-
fer has completed. Hardware sets the transfer complete interrupt and disables the
channel. You can either respond to the Block Complete or Transfer Complete interrupts,
or poll for the Channel Enable (ChEnReg.CH_EN) bit until it is cleared by hardware, to
detect when the transfer is complete. If the DMACA is not in Row 1 or 5 as shown in
Table 17-1 on page 175 the following steps are performed.

16.The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1'b1, where x is the channel number) hardware sets the

Alm L 186

32054D-AVR32-10/07 I ©

s A T32AP7002

block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)
should clear the CFGx.RELOAD_SR source reload bit. This puts the DMACA into
Row1 as shown in Table 17-1 on page 175. If the next block is not the last block in
the DMA transfer, then the source reload bit should remain enabled to keep the
DMACA in Row 7 as shown in Table 17-1 on page 175.

b. If interrupts are disabled (CTLX.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1'b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case, software must clear the
source reload bit, CFGx.RELOAD_SR, to put the device into Row 1 of Table 17-1
on page 175 before the last block of the DMA transfer has completed.

17.The DMACA fetches the next LLI from memory location pointed to by the current LLPx
register, and automatically reprograms the DARXx, CTLx and LLPx channel registers.
Note that the SARX is not re-programmed as the reloaded value is used for the next
DMA block transfer. If the next block is the last block of the DMA transfer then the CTLx
and LLPx registers just fetched from the LLI should match Row 1 or Row 5 of Table 17-
1 on page 175. The DMA transfer might look like that shown in Figure 17-11 on page
187.

Figure 17-11. Multi-Block DMA Transfer with Source Address Auto-reloaded and Linked List

Address of A_ddrgss of
Source Layer Destination Layer

BlockOQ

DAR(0)_,

SAR —

DAR(2)_,

BlockN
DAR(N)_’

Source Blocks Destination Blocks

Destination Address

The DMA Transfer flow is shown in Figure 17-12 on page 188

Alm L 187

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 17-12. DMA Transfer Flow for Source Address Auto-reloaded and Linked List Destina-
tion Address

Channel Enabled by
software

|

LLI Fetch

!

Hardware reprograms
DARX, CTLX, LLPx

|

DMAC block transfer

|

Source/destination status fetch

|

Reload SARX

Block Complete interrupt —_—
generated here

Is DMAC in
Row1 or Row5 of
DMAC State Machine Table?

DMAC Transfer Complete yes

interrupt generated here

Channel Disabled by
hardware

CTLx.INT_EN=1
&&
MASKBLOCK[X]=1 ?

Stall until block interrupt
Cleared by hardware

AIMEL 188

32054D-AVR32-10/07 I ©

s A T32AP7002

17.9.1.5 Multi-block Transfer with Source Address Auto-reloaded and Contiguous Destination Address (Row 3)

1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, Clear-
Err. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all
interrupts have been cleared.

3. Program the following channel registers:

a. Write the starting source address in the SARX register for channel x.

b. Write the starting destination address in the DARX register for channel x.

c. Program CTLx and CFGx according to Row 3 as shown in Table 17-1 on page 175.
Program the LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the CTLx register for channel x.
For example, in this register, you can program the following:

—i. Set up the transfer type (memory or non-memory peripheral for source and

destination) and flow control device by programming the TT_FC of the CTLx register.

—ii. Set up the transfer characteristics, such as:
— Transfer width for the source in the SRC_TR_WIDTH field.
— Transfer width for the destination in the DST_TR_WIDTH field.
— Source master layer in the SMS field where source resides.
— Destination master layer in the DMS field where destination resides.
— Incrementing/decrementing or fixed address for source in SINC field.
— Incrementing/decrementing or fixed address for destination in DINC field.

e. Write the channel configuration information into the CFGx register for channel x.

—i. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests

for the specific channel. Writing a ‘1’ activates the software handshaking interface to
handle source/destination requests.

—ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMACA channel has been programmed, enable the channel by writing a ‘1’ to
the ChEnReg.CH_EN bit. Make sure that bit O of the DmaCfgReg register is enabled.

5. Source and destination request single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges at the
completion of every transaction (burst and single) in the block and carries out the block
transfer.

6. When the block transfer has completed, the DMACA reloads the SARX register. The
DARX register remains unchanged. Hardware sets the block complete interrupt. The
DMACA then samples the row number as shown in Table 17-1 on page 175. If the
DMACA is in Row 1, then the DMA transfer has completed. Hardware sets the transfer
complete interrupt and disables the channel. So you can either respond to the Block
Complete or Transfer Complete interrupts, or poll for the Channel Enable (ChEn-

Alm L 189

32054D-AVR32-10/07 I ©

s A T32AP7002

Reg.CH_EN) bit until it is cleared by hardware, to detect when the transfer is complete.
If the DMACA is not in Row 1, the next step is performed.

7. The DMA transfer proceeds as follows:

a. If interrupts are enabled (CTLX.INT_EN = 1) and the block complete interrupt is un-
masked (MaskBlock[x] = 1'b1, where X is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)
should clear the source reload bit, CFGx.RELOAD_SR. This puts the DMACA into
Row1 as shown in Table 17-1 on page 175. If the next block is not the last block in
the DMA transfer then the source reload bit should remain enabled to keep the
DMACA in Row3 as shown in Table 17-1 on page 175.

b. If interrupts are disabled (CTLX.INT_EN = 0) or the block complete interrupt is
masked (MaskBlock[x] = 1'b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case software must clear the
source reload bit, CFGx.RELOAD_SR, to put the device into ROW 1 of Table 17-1
on page 175 before the last block of the DMA transfer has completed.

The transfer is similar to that shown in Figure 17-13 on page 190.

The DMA Transfer flow is shown in Figure 17-14 on page 191.

Figure 17-13. Multi-block Transfer with Source Address Auto-reloaded and Contiguous Desti-
nation Address

Address of
Destination Layer

Address of
Source Layer

Block2
— DAR(2)

Blockl
«— DAR(1)

Block0

SAR
’ DAR(0)
Source Blocks Destination Blocks

Alm L 190

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 17-14. DMA Transfer for Source Address Auto-reloaded and Contiguous Destination
Address

Channel Enabled by
software

|

Block Transfer «—

l

Reload SARX, CTLx

Block Complete interrupt EE— l
generated here

DMAC Transfer Complete
interrupt generated here yes

L

Is DMAC in Rowl of
DMAC State Machine Table?

Channel Disabled by
hardware

CTLX.INT_EN=1
&&
MASKBLOCK][x]=1?

l yes

Stall until Block Complete
interrupt cleared by software

17.9.1.6 Multi-block DMA Transfer with Linked List for Source and Contiguous Destination Address (Row 8)
1. Read the Channel Enable register to choose a free (disabled) channel.

2. Set up the linked list in memory. Write the control information in the LLI. CTLx register
location of the block descriptor for each LLI in memory for channel x. For example, in
the register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and destina-
tion) and flow control device by programming the TT_FC of the CTLx register.

b. Set up the transfer characteristics, such as:
—i. Transfer width for the source in the SRC_TR_WIDTH field.

—ii. Transfer width for the destination in the DST_TR_WIDTH field.
—iii. Source master layer in the SMS field where source resides.
—iv. Destination master layer in the DMS field where destination resides.

AIMEL 191

L ________________(0G]

32054D-AVR32-10/07

s A T32AP7002

—Vv. Incrementing/decrementing or fixed address for source in SINC field.
—vi. Incrementing/decrementing or fixed address for destination DINC field.
3. Write the starting destination address in the DARX register for channel x.

Note: The values in the LLI.DARX register location of each Linked List Item (LLI) in memory, although
fetched during an LLI fetch, are not used.

4. Write the channel configuration information into the CFGx register for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and
destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripherals.
This requires programming the SRC_PER and DEST_PER bits, respectively.

5. Make sure that all LLI.CTLx register locations of the LLI (except the last) are set as
shown in Row 8 of Table 17-1 on page 175, while the LLI.CTLx register of the last
Linked List item must be set as described in Row 1 or Row 5 of Table 17-1 on page
175. Figure 17-5 on page 173 shows a Linked List example with two list items.

6. Make sure that the LLI.LLPx register locations of all LLIs in memory (except the last) are
non-zero and point to the next Linked List Iltem.

7. Make sure that the LLI.SARX register location of all LLIs in memory point to the start
source block address proceeding that LLI fetch.

8. Make sure that the LLI.CTLx.DONE field of the LLI.CTLXx register locations of all LLIs in
memory is cleared.

9. Clear any pending interrupts on the channel from the previous DMA transfer by writing to
the Interrupt Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, Clear-
Err. Reading the Interrupt Raw Status and Interrupt Status registers confirms that all
interrupts have been cleared.

10.Program the CTLx, CFGx registers according to Row 8 as shown in Table 17-1 on page
175

11.Program the LLPx register with LLPx(0), the pointer to the first Linked List item.

12.Finally, enable the channel by writing a ‘1’ to the ChEnReg.CH_EN bit. The transfer is
performed. Make sure that bit O of the DmaCfgReg register is enabled.

13.The DMACA fetches the first LLI from the location pointed to by LLPx(0).

Note: The LLL.SARX, LLI.DARX, LLI.LLPx and LLI.CTLx registers are fetched. The LLI.DARX register
location of the LLI although fetched is not used. The DARX register in the DMACA remains
unchanged.

14.Source and destination requests single and burst DMACA transactions to transfer the
block of data (assuming non-memory peripherals). The DMACA acknowledges at the
completion of every transaction (burst and single) in the block and carry out the block
transfer.

Note:
15.The DMACA does not wait for the block interrupt to be cleared, but continues and
fetches the next LLI from the memory location pointed to by current LLPx register and
automatically reprograms the SARx, CTLx and LLPx channel registers. The DARX reg-
ister is left unchanged. The DMA transfer continues until the DMACA samples the CTLx
and LLPx registers at the end of a block transfer match that described in Row 1 or Row

Alm L 192

32054D-AVR32-10/07 I ©

s A T32AP7002

32054D-AVR32-10/07

5 of Table 17-1 on page 175. The DMACA then knows that the previous block trans-
ferred was the last block in the DMA transfer.

The DMACA transfer might look like that shown in Figure 17-15 on page 193 Note that the des-
tination address is decrementing.

Figure 17-15. DMA Transfer with Linked List Source Address and Contiguous Destination

Address
Address of Address of
Source Layer Destination Layer
Block 2
SAR(2) —> \ Block 2
< DAR(2)
Block 1 > | Block 1
SAR(1) — <«— DAR(1)
/ Block 0
Block 0 < DAR(0)
SAR(0) —
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 17-16 on page 194.

Alm L 193

L ________________(0G]

s A T32AP7002

Figure 17-16. DMA Transfer Flow for Source Address Auto-reloaded and Contiguous Destination Address

Channel Enabled by
software

|

LLI Fetch

Hardware reprograms
SARX, CTLx, LLPx

DMAC block transfer

Source/destination
status fetch

Block Complete interrupt ——8 —— l
generated here

Is DMAC in
Row 1 of Table 4 ?

no

DMAC Transfer Complete

. —>|VYES
interrupt generated here

Channel Disabled by
hardware

17.10 Disabling a Channel Prior to Transfer Completion
Under normal operation, software enables a channel by writing a ‘1’ to the Channel Enable Reg-
ister, ChEnReg.CH_EN, and hardware disables a channel on transfer completion by clearing the
ChEnReg.CH_EN register bit.

The recommended way for software to disable a channel without losing data is to use the
CH_SUSP bit in conjunction with the FIFO_EMPTY bit in the Channel Configuration Register
(CFGX) register.

AIMEL 104

32054D-AVR32-10/07 I ©

s A T32AP7002

1. If software wishes to disable a channel prior to the DMA transfer completion, then it can
set the CFGx.CH_SUSP bit to tell the DMACA to halt all transfers from the source
peripheral. Therefore, the channel FIFO receives no new data.
2. Software can now poll the CFGx.FIFO_EMPTY bit until it indicates that the channel FIFO
is empty.
3. The ChEnReg.CH_EN bit can then be cleared by software once the channel FIFO is
empty.
When CTLx.SRC_TR_WIDTH is less than CTLx.DST_TR_WIDTH and the CFGx.CH_SUSP bit
is high, the CFGx.FIFO_EMPTY is asserted once the contents of the FIFO do not permit a single
word of CTLx.DST_TR_WIDTH to be formed. However, there may still be data in the channel
FIFO but not enough to form a single transfer of CTLx.DST_TR_WIDTH width. In this configura-
tion, once the channel is disabled, the remaining data in the channel FIFO are not transferred to
the destination peripheral. It is permitted to remove the channel from the suspension state by
writing a ‘0’ to the CFGx.CH_SUSP register. The DMA transfer completes in the normal manner.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

17.10.1 Abnormal Transfer Termination

32054D-AVR32-10/07

A DMACA DMA transfer may be terminated abruptly by software by clearing the channel enable
bit, ChEnReg.CH_EN. This does not mean that the channel is disabled immediately after the
ChEnReg.CH_EN bit is cleared over the HSB slave interface. Consider this as a request to dis-
able the channel. The ChEnReg.CH_EN must be polled and then it must be confirmed that the
channel is disabled by reading back 0. A case where the channel is not be disabled after a chan-
nel disable request is where either the source or destination has received a split or retry
response. The DMACA must keep re-attempting the transfer to the system HADDR that origi-
nally received the split or retry response until an OKAY response is returned. To do otherwise is
an System Bus protocol violation.

Software may terminate all channels abruptly by clearing the global enable bit in the DMACA
Configuration Register (DmaCfgReg[0]). Again, this does not mean that all channels are dis-
abled immediately after the DmaCfgReg|0] is cleared over the HSB slave interface. Consider
this as a request to disable all channels. The ChEnReg must be polled and then it must be con-
firmed that all channels are disabled by reading back ‘0’.

Note: If the channel enable bit is cleared while there is data in the channel FIFO, this data is not sent to
the destination peripheral and is not present when the channel is re-enabled. For read sensitive
source peripherals such as a source FIFO this data is therefore lost. When the source is not a
read sensitive device (i.e., memory), disabling a channel without waiting for the channel FIFO to
empty may be acceptable as the data is available from the source peripheral upon request and is
not lost.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

AIMEL 195

L ________________(0G]

s A T32AP7002

17.11 DMA Controller (DMACA) User Interface

Table 17-2. DMA Controller (DMACA) User Interface

Offset Register Register Name Access Reset Value
0x0 Channel 0 Source Address Register SARO Read/Write 0x0
0x4 Reserved - - -

0x8 Channel 0 Destination Address Register DARO Read/Write 0x0
oxC Reserved - - -

0x10 Channel 0 Linked List Pointer Register LLPO Read/Write 0x0
0x14 Reserved - - -

0x18 Channel 0 Control Register Low CTLOL Read/Write -
0x1C Channel 0 Control Register High CTLOH Read/Write -

0x20 Reserved - - -

0x24 Reserved - - -

0x28 Reserved - - -
0x2C Reserved - - -

0x30 Reserved - - -

0x34 Reserved - - -

0x38 Reserved - - -
0x3C Reserved - - -

0x40 Channel 0 Configuration Register low CFGOL Read/Write 0x00000c00
0x44 Channel 0 Configuration Register High CFGOH Read/Write 0x00000004
0x48 Reserved - - -
0x4C Reserved - - -

0x50 Reserved - - -

0x54 Reserved - - -

0x58 Channel 1 Source Address Register SAR1 Read/Write 0x0
0x5C Reserved - - -

0x60 Channel 1 Destination Address Register DAR1 Read/Write 0x0
0x64 Reserved - - -

0x68 Channel 1 Linked List Pointer Register LLP1 Read/Write 0x0
0x7C Reserved - - -

0x70 Channel 1 Control Register Low CTL1L Read/Write -

0x74 Channel 1 Control Register High CTL1H Read/Write -

0x78 Reserved - - -
0x7C Reserved - - -

0x80 Reserved - - -

0x84 Reserved - - -

0x88 Reserved - - -

AIMEL 196

32054D-AVR32-10/07

®

s A T32AP7002

Table 17-2. DMA Controller (DMACA) User Interface (Continued)

Offset Register Register Name Access Reset Value
0x8C Reserved - - -
0x90 Reserved - - -
0x94 Reserved - - -
0x98 Channel 1 Configuration Register Low CFG1L Read/Write 0x00000c20
0x9C Channel 1 Configuration Register High CFG1H Read/Write 0x00000004
0xa0 Reserved - - -
Oxa4 Reserved - - -
O0xa8 Reserved - - -
Oxac Channel 2 Source Address Register SAR2 Read/Write 0x0
0xb0 Reserved - - -
Oxb4 Channel 2 Destination Address Register DAR2 Read/Write 0x0
0xb8 Reserved - - -
Oxbc Channel 2 Linked List Pointer Register LLP2 Read/Write 0x0
0xc0 Reserved - - -
Oxc4 Channel 2 Control Register Low CTL2L Read/Write -
0xc8 Channel 2 Control Register High CTL2H Read/Write -
Oxcc Reserved - - -
0xdo Reserved - - -
O0xd4 Reserved - - -
0xd8 Reserved - - -
Oxdc Reserved - - -
0xe0 Reserved - - -
Oxe4 Reserved - - -
Oxe8 Reserved - - -
Oxec Channel 2 Configuration Register low CFG2L Read/Write 0x00000c00
0xfO Channel 2 Configuration Register High CFG2H Read/Write 0x00000004
0xf4 Reserved - - -
0xf8 Reserved - - -
Oxfc Reserved - - -

OxlOOC..Ox2b Reserved)))
0x2c0 Raw Status for IntTfr Interrupt RawTfr Read 0x0
0x2c4 Reserved - - -
0x2c8 Raw Status for IntBlock Interrupt RawBlock Read 0x0
0x2cc Reserved - - -
0x2d0 Raw Status for IntSrcTran Interrupt RawSrcTran Read 0x0

AIMEL 107

32054D-AVR32-10/07

®

s A T32AP7002

Table 17-2. DMA Controller (DMACA) User Interface (Continued)
Offset Register Register Name Access Reset Value
0x2d4 Reserved - - -
0x2d8 Raw Status for IntDstTran Interrupt RawDstTran Read 0x0
0x2dc Reserved - - -
0x2e0 Raw Status for IntErr Interrupt RawErr Read 0x0
0x2e4 Reserved - - -
0x2e8 Status for IntTfr Interrupt StatusTfr Read 0x0
Ox2ec Reserved - - -
0x2f0 Status for IntBlock Interrupt StatusBlock Read 0x0
0x2f4 Reserved - - -
0x2f8 Status for IntSrcTran Interrupt StatusSrcTran Read 0x0
0Ox2fc Reserved - - -
0x300 Status for IntDstTran Interrupt StatusDstTran Read 0x0
0x304 Reserved - - -
0x308 Status for IntErr Interrupt StatusErr Read 0x0
0x30c Reserved - - -
0x310 Mask for IntTfr Interrupt MaskTfr Read/Write 0x0
0x314 Reserved - - -
0x318 Mask for IntBlock Interrupt MaskBlock Read/Write 0x0
0x31c Reserved - - -
0x320 Mask for IntSrcTran Interrupt MaskSrcTran Read/Write 0x0
0x324 Reserved - - -
0x328 Mask for IntDstTran Interrupt MaskDstTran Read/Write 0x0
0x32c Reserved - - -
0x330 Mask for IntErr Interrupt MaskErr Read/Write 0x0
0x334 Reserved - - -
0x338 Clear for IntTfr Interrupt ClearTfr Write 0x0
0x33c Reserved - - -
0x340 Clear for IntBlock Interrupt ClearBlock Write 0x0
0x344 Reserved - - -
0x348 Clear for IntSrcTran Interrupt ClearSrcTran Write 0x0
0x34c Reserved - - -
0x350 Clear for IntDstTran Interrupt ClearDstTran Write 0x0
0x354 Reserved - - -
0x358 Clear for IntErr Interrupt ClearErr Write 0x0
0x35¢c Reserved - - -
0x360 Status for each interrupt type Statuslint Read 0x0
AIMEL 198

32054D-AVR32-10/07

L ________________(0G]

s A T32AP7002

Table 17-2. DMA Controller (DMACA) User Interface (Continued)
Offset Register Register Name Access Reset Value
0x364 Reserved - - -
0x368 Source Software Transaction Request Register ReqSrcReg Read/Write 0x0
0x36¢ Reserved - - -
0x370 Destination Software Transaction Request Register RegDstReg Read/Write 0x0
0x374 Reserved - - -
0x378 Single Source Transaction Request Register SglReqSrcReg Read/Write 0x0
0x37c Reserved - - -
0x380 Single Destination Transaction Request Register SglRegDstReg Read/Write 0x0
0x384 Reserved - - -
0x388 Last Source Transaction Request Register LstSrcReg Read/Write 0x0
0x38c Reserved - - -
0x390 Last Destination Transaction Request Register LstDstReg Read/Write 0x0
0x394 Reserved - - -
0x398 DMA Configuration Register DmaCfgReg Read/Write 0x0
0x39c Reserved - - -
0x3a0 Channel Enable Register ChEnReg Read/Write 0x0
0x3a4 Reserved - - -
0x3a8 DMA ID Register IdReg Read DMA_ID_NUM
0x3ac Reserved - - -
0x3b0 DMA Test Register DmaTestReg Read/Write -
0x3b4 Reserved - - -
0x3b8 Reserved - - -
0x3b8 Reserved - - -
AIMEL 199

32054D-AVR32-10/07

®

s A T32AP7002

17.11.1 Channel x Source Address Register

Name: SARX

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| SADD |
23 22 21 20 19 18 17 16

| SADD |
15 14 13 12 11 10 9 8

| SADD |
7 6 5 4 3 2 1 0

| SADD |

The address offset for each channel is: [x *0x58]

For example, SARO: 0x000, SAR1: 0x058, etc.

» SADD: Source Address of DMA transfer

The starting System Bus source address is programmed by software before the DMA channel is enabled or by a LLI update
before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the source
address of the current System Bus transfer.

Updated after each source System Bus transfer. The SINC field in the CTLx register determines whether the address incre-
ments, decrements, or is left unchanged on every source System Bus transfer throughout the block transfer.

Alm L 200

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.2 Channel x Destination Address Register

Name: DARX

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| DADD |
23 22 21 20 19 18 17 16

| DADD |
15 14 13 12 11 10 9 8

| DADD |
7 6 5 4 3 2 1 0

| DADD |

The address offset for each channel is: 0x08+[x * 0x58]

For example, DARO: 0x008, DAR1: 0x060, etc.

 DADD: Destination Address of DMA transfer

The starting System Bus destination address is programmed by software before the DMA channel is enabled or by a LLI
update before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the desti-
nation address of the current System Bus transfer.

Updated after each destination System Bus transfer. The DINC field in the CTLx register determines whether the address
increments, decrements or is left unchanged on every destination System Bus transfer throughout the block transfer.

Alm L 201

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.3 Linked List Pointer Register for Channel x

Name: LLPx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| LOC |
23 22 21 20 19 18 17 16

| LOC |
15 14 13 12 11 10 9 8

| LOC |
7 6 5 4 3 2 1 0

| LOC LMS |

The address offset for each channel is: 0x10+[x * 0x58]

For example, LLPO: 0x010, LLP1: 0x068, etc.

* LMS: List Master Select
Identifies the High speed bus interface for the device that stores the next linked list item.

* LOC: Address of the next LLI
Starting address in memory of next LLI if block chaining is enabled.

The user need to program this register to point to the first Linked List Item (LLI) in memory prior to enabling the channel if
block chaining is enabled.

The LLP register has two functions:

1. The logical result of the equation LLP.LOC != 0 is used to set up the type of DMA transfer (single or multi-block).

If LLP.LOC is set to 0x0, then transfers using linked lists are NOT enabled. This register must be programmed prior to
enabling the channel in order to set up the transfer type.

It (LLP.LOC != 0) contains the pointer to the next Linked Listed Item for block chaining using linked lists.

2. The LLPx register is also used to point to the address where write back of the control and source/destination status
information occurs after block completion.

Alm L 202

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.4 Control Register for Channel x Low

Name: CTLxL

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| - [- - LLP_S_EN [LLP_D_EN] SMS | DMS |
23 22 21 20 19 18 17 16

| DMS | TT_FC | - | - - | SRC_MSIZE |
15 14 13 12 11 10 9 8

| SRC_MSIZE DEST_MSIZE | SINC | DINC |
7 6 5 4 3 2 1 0

| DINC | SRC_TR_WIDTH [DST_TR_WIDTH [INTEN]

The address offset for each channel is: 0x18+[x * 0x58]
For example, CTLO: 0x018, CTL1: 0x070, etc.

This register contains fields that control the DMA transfer. The CTLXL register is part of the block descriptor (linked list item)
when block chaining is enabled. It can be varied on a block-by-block basis within a DMA transfer when block chaining is
enabled.

e INT_EN: Interrupt Enable Bit
If set, then all five interrupt generating sources are enabled.

e DST_TR_WIDTH: Destination Transfer Width

« SRC_TR_WIDTH: Source Transfer Width

SRC_TR_WIDTH/DST_TR_WIDTH Size (bits)
000 8

001 16

010 32

Other Reserved

» DINC: Destination Address Increment
Indicates whether to increment or decrement the destination address on every destination System Bus transfer. If your
device is writing data to a destination peripheral FIFO with a fixed address, then set this field to “No change”.

00 = Increment
01 = Decrement
1x = No change

* SINC: Source Address Increment

Indicates whether to increment or decrement the source address on every source System Bus transfer. If your device is
fetching data from a source peripheral FIFO with a fixed address, then set this field to “No change”.

00 = Increment

01 = Decrement

Alm L 203

32054D-AVR32-10/07 I ©

s A T32AP7002

1x = No change

 DEST_MSIZE: Destination Burst Transaction Length
Number of data items, each of width CTLx.DST_TR_WIDTH, to be written to the destination every time a destination burst
transaction request is made from either the corresponding hardware or software handshaking interface.

e« SRC_MSIZE: Source Burst Transaction Length
Number of data items, each of width CTLx.SRC_TR_WIDTH, to be read from the source every time a source burst transac-
tion request is made from either the corresponding hardware or software handshaking interface.

e TT_FC: Transfer Type and Flow Control
The following transfer types are supported.

* Memory to Memory
» Memory to Peripheral
* Peripheral to Memory

Flow Control can be assigned to the DMACA, the source peripheral, or the destination peripheral.

TT_FC Transfer Type Flow Controller

000 Memory to Memory DMACA

001 Memory to Peripheral DMACA

010 Peripheral to Memory DMACA

011 Peripheral to Peripheral DMACA

100 Peripheral to Memory Peripheral

101 Peripheral to Peripheral Source Peripheral
110 Memory to Peripheral Peripheral

111 Peripheral to Peripheral Destination Peripheral

» DMS: Destination Master Select
Identifies the Master Interface layer where the destination device (peripheral or memory) resides.

00 = HSB master 1
01 = Reserved
10 = Reserved

11 = Reserved

» SMS: Source Master Select
Identifies the Master Interface layer where the source device (peripheral or memory) is accessed from.

00 = HSB master 1
01 = Reserved
10 = Reserved
11 = Reserved

* LLP_D_EN
Block chaining is only enabled on the destination side if the LLP_D_EN field is high and LLPx.LOC is non-zero.

AIMEL 204

32054D-AVR32-10/07 I ©

s A T32AP7002

« LLP_S_EN
Block chaining is only enabled on the source side if the LLP_S_EN field is high and LLPx.LOC is non-zero.

A mE|,® 205

32054D-AVR32-10/07

s A T32AP7002

17.11.5 Control Register for Channel x High

Name: CTLxH

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - - - - BLOCK_TS |
7 6 5 4 3 2 1 0

| BLOCK_TS |

* BLOCK_TS: Block Transfer Size
When the DMACA is flow controller, this field is written by the user before the channel is enabled to indicate the block size.

The number programmed into BLOCK_TS indicates the total number of single transactions to perform for every block
transfer. The width of the single transaction is determined by CTLXx.SRC_TR_WIDTH.

Alm L 206

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.6 Configuration Register for Channel x Low

Name: CFGXxL

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| RELOAD_DS | RELOAD_SR MAX_ABRST |
23 22 21 20 19 18 17 16

| MAX_ABRST | SR_HS_POL [DS_HS_POL [LOCK B | LOCK CH |
15 14 13 12 11 10 9 8

| LOCK B_L LOCK_CH_L | HS_SEL_SR [HS_SEL_DS | FIFO_EMPT | CH_SUSP |
7 6 5 4 3 2 1 0

| CH_PRIOR - T - [- T -1]

The address offset for each channel is: 0x40+[x * 0x58]

For example, CFGO: 0x040, CFG1: 0x098, etc.

* CH_PRIOR: Channel priority
A priority of 7 is the highest priority, and O is the lowest. This field must be programmed within the following range [0, x — 1]

A programmed value outside this range causes erroneous behavior.

* CH_SUSP: Channel Suspend

Suspends all DMA data transfers from the source until this bit is cleared. There is no guarantee that the current transaction
will complete. Can also be used in conjunction with CFGx.FIFO_EMPTY to cleanly disable a channel without losing any
data.

0 = Not Suspended.

1 = Suspend. Suspend DMA transfer from the source.

* FIFO_EMPTY

Indicates if there is data left in the channel's FIFO. Can be used in conjunction with CFGx.CH_SUSP to cleanly disable a
channel.

1 = Channel's FIFO empty
0 = Channel's FIFO not empty

e HS SEL_DST: Destination Software or Hardware Handshaking Select
This register selects which of the handshaking interfaces, hardware or software, is active for destination requests on this
channel.

0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.
1 = Software handshaking interface. Hardware Initiated transaction requests are ignored.

If the destination peripheral is memory, then this bit is ignored.

« HS SEL_SRC: Source Software or Hardware Handshaking Select
This register selects which of the handshaking interfaces, hardware or software, is active for source requests on this
channel.

0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.

Alm L 207

32054D-AVR32-10/07 I ©

s A T32AP7002

1 = Software handshaking interface. Hardware-initiated transaction requests are ignored.

If the source peripheral is memory, then this bit is ignored.

e LOCK_CH_L: Channel Lock Level
Indicates the duration over which CFGx.LOCK_CH bit applies.

00 = Over complete DMA transfer
01 = Over complete DMA block transfer

1x = Over complete DMA transaction

e LOCK B _L: Bus Lock Level
Indicates the duration over which CFGx.LOCK_B bit applies.

00 = Over complete DMA transfer
01 = Over complete DMA block transfer

1x = Over complete DMA transaction

e« LOCK_CH: Channel Lock Bit

When the channel is granted control of the master bus interface and if the CFGx.LOCK_CH bit is asserted, then no other
channels are granted control of the master bus interface for the duration specified in CFGx.LOCK_CH_L. Indicates to the
master bus interface arbiter that this channel wants exclusive access to the master bus interface for the duration specified
in CFGx.LOCK_CH_L.

« LOCK_B: Bus Lock Bit
When active, the System Bus master signal hlock is asserted for the duration specified in CFGx.LOCK_B_L.

« DS _HS_POL: Destination Handshaking Interface Polarity
0 = Active high

1 = Active low

* SR_HS_POL: Source Handshaking Interface Polarity
0 = Active high

1 = Active low

« MAX_ABRST: Maximum System Bus Burst Length
Maximum System Bus burst length that is used for DMA transfers on this channel. A value of ‘0’ indicates that software is
not limiting the maximum burst length for DMA transfers on this channel.

« RELOAD_SR: Automatic Source Reload
The SARX register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.

« RELOAD_DS: Automatic Destination Reload
The DARX register can be automatically reloaded from its initial value at the end of every block for multi-block transfers. A
new block transfer is then initiated.

Alm L 208

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.7 Configuration Register for Channel x High

Name: CFGxH

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | DEST_PER | SRC_PER |
7 6 5 4 3 2 1 0

| SRC_PER | - | - | PROTCTL |FIFO_MODE| FCMODE |

» FCMODE: Flow Control Mode
Determines when source transaction requests are serviced when the Destination Peripheral is the flow controller.

0 = Source transaction requests are serviced when they occur. Data pre-fetching is enabled.

1 = Source transaction requests are not serviced until a destination transaction request occurs. In this mode the amount of
data transferred from the source is limited such that it is guaranteed to be transferred to the destination prior to block termi-
nation by the destination. Data pre-fetching is disabled.

» FIFO_MODE: R/W 0x0 FIFO Mode Select
Determines how much space or data needs to be available in the FIFO before a burst transaction request is serviced.

0 = Space/data available for single System Bus transfer of the specified transfer width.

1 = Space/data available is greater than or equal to half the FIFO depth for destination transfers and less than half the FIFO
depth for source transfers. The exceptions are at the end of a burst transaction request or at the end of a block transfer.

* PROTCTL: Protection Control
Bits used to drive the System Bus HPROT[3:1] bus. The System Bus Specification recommends that the default value of
HPROT indicates a non-cached, nonbuffered, privileged data access. The reset value is used to indicate such an access.

HPROT]IO0] is tied high as all transfers are data accesses as there are no opcode fetches. There is a one-to-one mapping of
these register bits to the HPROT[3:1] master interface signals.

» SRC_PER: Source Hardware Handshaking Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the source of channel x if the
CFGx.HS_SEL_SRC field is 0. Otherwise, this field is ignored. The channel can then communicate with the source periph-
eral connected to that interface via the assigned hardware handshaking interface.

For correct DMACA operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.

 DEST_PER: Destination Hardware Handshaking Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the destination of channel x if the
CFGx.HS_SEL_DST field is 0. Otherwise, this field is ignored. The channel can then communicate with the destination
peripheral connected to that interface via the assigned hardware handshaking interface.

For correct DMA operation, only one peripheral (source or destination) should be assigned to the same handshaking

interface.
Alm L 209

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.8 Interrupt Registers

The following sections describe the registers pertaining to interrupts, their status, and how to clear them. For each channel,
there are five types of interrupt sources:

« IntTfr: DMA Transfer Complete Interrupt
This interrupt is generated on DMA transfer completion to the destination peripheral.

« IntBlock: Block Transfer Complete Interrupt
This interrupt is generated on DMA block transfer completion to the destination peripheral.

* IntSrcTran: Source Transaction Complete Interrupt
This interrupt is generated after completion of the last System Bus transfer of the requested single/burst transaction from
the handshaking interface on the source side.

If the source for a channel is memory, then that channel never generates a IntSrcTran interrupt and hence the correspond-
ing bit in this field is not set.

« IntDstTran: Destination Transaction Complete Interrupt
This interrupt is generated after completion of the last System Bus transfer of the requested single/burst transaction from
the handshaking interface on the destination side.

If the destination for a channel is memory, then that channel never generates the IntDstTran interrupt and hence the corre-
sponding bit in this field is not set.
e IntErr: Error Interrupt

This interrupt is generated when an ERROR response is received from an HSB slave on the HRESP bus during a DMA
transfer. In addition, the DMA transfer is cancelled and the channel is disabled.

AIMEL 210

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.9 Interrupt Raw Status Registers

Name: RawTfr, RawBlock, RawSrcTran, RawDstTran, RawErr

Access: Read

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | — | - | - | - | RAW2 | RAW1 | RAWO |

The address offset are
RawTfr — 0x2c0
RawBlock — 0x2c8
RawSrcTran — 0x2d0
RawDstTran — 0x2d8
RawErr — 0x2e0

 RAWI2:0]: Raw interrupt for each channel

Interrupt events are stored in these Raw Interrupt Status Registers before masking: RawTfr, RawBlock, RawSrcTran,
RawDstTran, RawErr. Each Raw Interrupt Status register has a bit allocated per channel, for example, RawTfr[2] is Chan-
nel 2's raw transfer complete interrupt. Each bit in these registers is cleared by writing a 1 to the corresponding location in
the ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr registers.

Alm L 211

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.10 Interrupt Status Registers

Name: StatusTfr, StatusBlock, StatusSrcTran, StatusDstTran, StatusErr

Access: Read

Reset: 0x0
31 30 29 28 27 26 25 24
T : S I R R R
23 22 21 20 19 18 17 16
T - S I R R R
15 14 13 12 11 10 9 8
I - : S R A R R
7 6 5 4 3 2 1 0
| - | - - - | - | STATUS2 | STATUS1 | STATUSO |

The address offset are
StatusTfr: 0x2e8
StatusBlock: 0x2f0
StatusSrcTran: 0x2f8
StatusDstTran: 0x300
StatusErr: 0x308

. STATUS[2:0]

All interrupt events from all channels are stored in these Interrupt Status Registers after masking: StatusTfr, StatusBlock,
StatusSrcTran, StatusDstTran, Statuskrr. Each Interrupt Status register has a bit allocated per channel, for example, Sta-

tusTfr[2] is Channel 2's status transfer complete interrupt. The contents of these registers are used to generate the interrupt

signals leaving the DMACA.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

212

s A T32AP7002

17.11.11 Interrupt Status Registers

Name: MaskTfr, MaskBlock, MaskSrcTran, MaskDstTran, MaskErr

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | — | — | — | INT_M_WE2 [INT_M_WEL [INT_M_WEO |
7 6 5 4 3 2 1 0

| — | - | - | - | - | INT_MASK2 | INT_MASK1 | INT_MASKO |

The address offset are
MaskTfr: 0x310
MaskBlock: 0x318
MaskSrcTran: 0x320
MaskDstTran: 0x328
MaskErr: 0x330

The contents of the Raw Status Registers are masked with the contents of the Mask Registers: MaskTfr, MaskBlock,
MaskSrcTran, MaskDstTran, MaskErr. Each Interrupt Mask register has a bit allocated per channel, for example, Mask-
Tfr[2] is the mask bit for Channel 2's transfer complete interrupt.

A channel’'s INT_MASK bit is only written if the corresponding mask write enable bit in the INT_MASK_WE field is asserted
on the same System Bus write transfer. This allows software to set a mask bit without performing a read-modified write
operation.

For example, writing hex 01x1 to the MaskTfr register writes a 1 into MaskTfr[0], while MaskTfr[7:1] remains unchanged.
Writing hex 00xx leaves MaskTfr[7:0] unchanged.

Writing a 1 to any bit in these registers unmasks the corresponding interrupt, thus allowing the DMACA to set the appropri-
ate bit in the Status Registers.

e INT_MASK][2:0]: Interrupt Mask
0 = Masked

1 = Unmasked

e INT_M_WE[10:8]: Interrupt Mask Write Enable
0 = Write disabled

1 = Write enabled

Alm L 213

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.12 Interrupt Clear Registers

Name: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran,ClearErr

Access: Write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | — | - | - | - | CLEAR2 | CLEAR1 | CLEARO |

The address offset are
ClearTfr: 0x338
ClearBlock: 0x340
ClearSrcTran: 0x348
ClearDstTran: 0x350
ClearErr: 0x358

* CLEAR][2:0]: Interrupt Clear
0 = No effect

1 = Clear interrupt

Each bit in the Raw Status and Status registers is cleared on the same cycle by writing a 1 to the corresponding location in
the Clear registers: ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr. Each Interrupt Clear register has a bit allo-
cated per channel, for example, ClearTfr[2] is the clear bit for Channel 2’s transfer complete interrupt. Writing a 0 has no
effect. These registers are not readable.

Alm L 214

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.13 Combined Interrupt Status Registers

Name: Statusint

Access: Read

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | ERR | DSTT | SRCT | BLOCK | TFR |

The contents of each of the five Status Registers (StatusTfr, StatusBlock, StatusSrcTran, StatusDstTran, Statuskgrr) is
OR’d to produce a single bit per interrupt type in the Combined Status Register (Statusint).

« TFR
OR of the contents of StatusTfr Register.

e« BLOCK
OR of the contents of StatusBlock Register.

e SRCT
OR of the contents of StatusSrcTran Register.

e« DSTT
OR of the contents of StatusDstTran Register.

e ERR
OR of the contents of StatusErr Register.

Alm L 215

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.14 Source Software Transaction Request Register

Name: ReqgSrcReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | - | — | - | REQ_WE2 | REQ_WE1 | REQ_WEO |
7 6 5 4 3 2 1 0

| - | — | - | - | - | SRC_REQ2 | SRC_REQ1 | SRC_REQO |

A bit is assigned for each channel in this register. ReqSrcReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel SRC_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

For example, writing 0x101 writes a 1 into ReqSrcReg[0], while ReqSrcReg[3:1] remains unchanged. Writing hex 0x0yy
leaves ReqSrcReg[3:0] unchanged. This allows software to set a bit in the ReqSrcReg register without performing a read-
modified write

» SRC_REQ[2:0]: Source request

« REQ_WE[10:8]: Request write enable
0 = Write disabled

1 = Write enabled

Alm L 216

32054D-AVR32-10/07 I ©

s A T32AP7002

Name: RegDstReg

Access: Read/write

17.11.15 Destination Software Transaction Request Register

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | - | — | - | REQ_WE2 | REQ_WE1 | REQ_WEO |
7 6 5 4 3 2 1 0

| — | — | — | - | - | DST_REQ2 | DST_REQ1 | DST_REQO |

A bit is assigned for each channel in this register. ReqDstReg[n] is ignored when software handshaking is not enabled for
the source of channel n.

A channel DST_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on the

same System Bus write transfer.

e DST_REQ[2:0]: Destination request

« REQ_WE[10:8]: Request write enable
0 = Write disabled

1 = Write enabled

32054D-AVR32-10/07

ATMEL

L ________________(0G]

217

s A T32AP7002

17.11.16 Single Source Transaction Request Register

Name: SglReqSrcReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
| — | — | - | — | - | REQ_WE2 | REQ_WE1 | REQ_WEO |
7 6 5 4 3 2 1 0

| — | - | - | - | - | S_SG_REQ2 | S_SG_REQ1 | S_SG_REQO |

A bit is assigned for each channel in this register. SgIReqSrcReg|[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel S_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

S _SG_REQJ2:0]: Source single request

« REQ_WE[10:8]: Request write enable
0 = Write disabled

1 = Write enabled

Alm L 218

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.17 Single Destination Transaction Request Register

Name: SglRegDstReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | - | — | - | REQ_WE2 | REQ_WE1 | REQ_WEO |
7 6 5 4 3 2 1 0

| - | — | - | - | - | D_SG_REQ2| D_SG_REQll D_SG_REQOl

A bit is assigned for each channel in this register. SgIReqDstReg|[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel D_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same System Bus write transfer.

 D_SG_REQ[2:0]: Destination single request

« REQ_WE[10:8]: Request write enable
0 = Write disabled

1 = Write enabled

Alm L 219

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.18 Last Source Transaction Request Register

Name: LstSrcReqReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | - | — | - | LSTSR_WE2 | LSTSR_WE1 | LSTSR_WEO |
7 6 5 4 3 2 1 0

| — | — | — | - | - | LSTSRC2 | LSTSRC1 | LSTSRCO |

A bit is assigned for each channel in this register. LstSrcReqReg[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel LSTSRC bhit is written only if the corresponding channel write enable bit in the LSTSR_WE field is asserted on
the same System Bus write transfer.

e LSTSRCJ2:0]: Source Last Transaction request

 LSTSR_WEJ[10:8]: Source Last Transaction request write enable
0 = Write disabled

1 = Write enabled

Alm L 220

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.19 Last Destination Transaction Request Register

Name: LstDstReqReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | - | — | - | LSTDS WE2 | LSTDS WE1 | LSTDS WEO |
7 6 5 4 3 2 1 0

| — | — | — | - | - | LSTDST2 | LSTDST1 | LSTDSTO |

A bit is assigned for each channel in this register. LstDstReqReg[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel LSTDST bit is written only if the corresponding channel write enable bit in the LSTDS_WE field is asserted on
the same System Bus write transfer.

e LSTDSTJ[2:0]: Destination Last Transaction request

 LSTDS_WE[10:8]: Destination Last Transaction request write enable
0 = Write disabled

1 = Write enabled

Alm L 221

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.20 DMACA Configuration Register

Name: DmaCfgReg

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | DMAEN |

 DMA_EN: DMA Controller Enable
0 = DMACA Disabled

1 = DMACA Enabled.
This register is used to enable the DMACA, which must be done before any channel activity can begin.

If the global channel enable bit is cleared while any channel is still active, then DmaCfgReg.DMA_EN still returns ‘1’ to indi-
cate that there are channels still active until hardware has terminated all activity on all channels, at which point the
DmaCfgReg.DMA_EN bit returns ‘0.

Alm L 222

32054D-AVR32-10/07 I ©

s A T32AP7002

17.11.21 DMACA Channel Enable Register

Name: ChEnReg

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - - - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - - - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — - — | - | CH_EN_WE2 | CH_EN_WE1 | CH_EN_WEO |
7 6 5 4 3 2 1 0

| —_ | — — - | - | CH_EN2 | CH_EN1 | CH_ENO |

« CH_EN[2:0]

0 = Disable the Channel

1 = Enable the Channel

Enables/Disables the channel. Setting this bit enables a channel, clearing this bit disables the channel.

The ChEnReg.CH_EN bit is automatically cleared by hardware to disable the channel after the last System Bus transfer of
the DMA transfer to the destination has completed.Software can therefore poll this bit to determine when a DMA transfer

has completed.

« CH_EN_WE[10:8]

The channel enable bit, CH_EN, is only written if the corresponding channel write enable bit, CH_EN_WE, is asserted on

the same System Bus write transfer.

For example, writing 0x101 writes a 1 into ChEnReg[0], while ChEnReg[7:1] remains unchanged.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

223

s A T32AP7002

18. Peripheral DMA Controller (PDC)

18.1 Features

18.2 Description

32054D-AVR32-10/07

Rev: 1.0.0.1

* Generates Transfers to/from Peripherals such as USART, SSC and SPI

e Supports Up to 20 Channels (Product Dependent)

* One Master Clock Cycle Needed for a Transfer from Memory to Peripheral
e Two Master Clock Cycles Needed for a Transfer from Peripheral to Memory

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals such as
the UART, USART, SSC, SPI, and the on- and off-chip memories. Using the Peripheral DMA
Controller avoids processor intervention and removes the processor interrupt-handling over-
head. This significantly reduces the number of clock cycles required for a data transfer and, as a
result, improves the performance of the microcontroller and makes it more power efficient.

The PDC channels are implemented in pairs, each pair being dedicated to a particular periph-
eral. One channel in the pair is dedicated to the receiving channel and one to the transmitting
channel of each UART, USART, SSC and SPI.

The user interface of a PDC channel is integrated in the memory space of each peripheral. It
contains:

* A 32-bit memory pointer register

A 16-bit transfer count register

» A 32-bit register for next memory pointer

« A 16-bit register for next transfer count

The peripheral triggers PDC transfers using transmit and receive signals. When the pro-
grammed data is transferred, an end of transfer interrupt is generated by the corresponding
peripheral.

AIMEL 224

L ________________(0G]

s A T32AP7002

18.3 Block Diagram

Figure 18-1. Block Diagram

Peripheral Peripheral DMA Controller
THR PDC Channel 0
Memory
RHR PDC Channel 1 > Control > Controller

Status & Control

Control <

AImEl 225

32054D-AVR32-10/07 I ©

s A T32AP7002

18.4 Product Dependencies

18.4.1 Power Management

18.4.2 Interrupt

18.4.3 Peripherals

The PDC clock is generated by the Power Manager. The PDC also depends on the HSB-HSB
bridge clock. Before using the PDC, the programmer must ensure that the PDC clock and HSB-
HSB bridge clock are enabled in the Power Manager.

To prevent bus errors the PDC operation must be terminated before entering sleep mode

The PDC has an interrupt line for each channel connected to the Interrupt Controller via the cor-
responding peripheral. Handling the PDC interrupt requires programming the interrupt controller
before configuring the PDC.

Before using each PDC channel the corresponding peripheral has to be configured correctly.

18.5 Functional Description

18.5.1 Configuration

32054D-AVR32-10/07

The PDC channels user interface enables the user to configure and control the data transfers for
each channel. The user interface of a PDC channel is integrated into the user interface of the
peripheral (offset 0x100), which it is related to.

Per peripheral, it contains four 32-bit Pointer Registers (RPR, RNPR, TPR, and TNPR) and four
16-bit Counter Registers (RCR, RNCR, TCR, and TNCR).

The size of the buffer (number of transfers) is configured in an internal 16-bit transfer counter
register, and it is possible, at any moment, to read the number of transfers left for each channel.

The memory base address is configured in a 32-bit memory pointer by defining the location of
the first address to access in the memory. It is possible, at any moment, to read the location in
memory of the next transfer and the number of remaining transfers. The PDC has dedicated sta-
tus registers which indicate if the transfer is enabled or disabled for each channel. The status for
each channel is located in the peripheral status register. Transfers can be enabled and/or dis-
abled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in PDC Transfer Control Register. These
control bits enable reading the pointer and counter registers safely without any risk of their
changing between both reads.

The PDC sends status flags to the peripheral visible in its status-register (ENDRX, ENDTX,
RXBUFF, and TXBUFE).

ENDRX flag is set when the PERIPH_RCR register reaches zero.
RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.
ENDTX flag is set when the PERIPH_TCR register reaches zero.
TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.

These status flags are described in the peripheral status register.

Alm L 226

L ________________(0G]

s A T32AP7002

18.5.2 Memory Pointers

Each peripheral is connected to the PDC by a receiver data channel and a transmitter data
channel. Each channel has an internal 32-bit memory pointer. Each memory pointer points to a
location anywhere in the memory space (on-chip memory or external bus interface memory).

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
by 1, 2 or 4, respectively for peripheral transfers. The size of the transfer is setup up in the
peripheral’s control register and automatically sensed by the PDC. The size is always rounded
up to wither byte, half-word or word.

If a memory pointer is reprogrammed while the PDC is in operation, the transfer address is
changed, and the PDC performs transfers using the new address.

18.5.3 Transfer Counters

18.5.4 Data Transfers

32054D-AVR32-10/07

There is one internal 16-bit transfer counter for each channel used to count the size of the block
already transferred by its associated channel. These counters are decremented after each data
transfer. When the counter reaches zero, the transfer is complete and the PDC stops transfer-
ring data.

If the Next Counter Register is equal to zero, the PDC disables the trigger while activating the
related peripheral end flag.

If the counter is reprogrammed while the PDC is operating, the number of transfers is updated
and the PDC counts transfers from the new value.

Programming the Next Counter/Pointer registers chains the buffers. The counters are decre-
mented after each data transfer as stated above, but when the transfer counter reaches zero,
the values of the Next Counter/Pointer are loaded into the Counter/Pointer registers in order to
re-enable the triggers.

For each channel, two status bits indicate the end of the current buffer (ENDRX, ENTX) and the
end of both current and next buffer (RXBUFF, TXBUFE). These bits are directly mapped to the
peripheral status register and can trigger an interrupt request to the Interrupt Controller.

The peripheral end flag is automatically cleared when one of the counter-registers (Counter or
Next Counter Register) is written.

Note: When the Next Counter Register is loaded into the Counter Register, it is set to zero.

The peripheral triggers PDC transfers using transmit (TXRDY) and receive (RXRDY) signals.

When the peripheral receives an external character, it sends a Receive Ready signal to the PDC
which then requests access to the system bus. When access is granted, the PDC starts a read
of the peripheral Receive Holding Register (RHR) and then triggers a write in the memory.

After each transfer, the relevant PDC memory pointer is incremented and the number of trans-
fers left is decremented. When the memory block size is reached, a signal is sent to the
peripheral and the transfer stops.

The same procedure is followed, in reverse, for transmit transfers.

Alm L 227

L ________________(0G]

s A T32AP7002

18.5.5 Priority of PDC Transfer Requests

32054D-AVR32-10/07

The Peripheral DMA Controller handles transfer requests from the channel according to priori-
ties fixed for each product.These priorities are defined in the product datasheet.

If simultaneous requests of the same type (receiver or transmitter) occur on identical peripher-
als, the priority is determined by the numbering of the peripherals.

If transfer requests are not simultaneous, they are treated in the order they occurred. Requests
from the receivers are handled first and then followed by transmitter requests.

Alm L 228

L ________________(0G]

s A T32AP7002

18.6 Peripheral DMA Controller (PDC) User Interface

Table 18-1. Register Mapping

Offset Register Register Name Read/Write Reset
0x100 Receive Pointer Register PERIPH®Y RPR Read/Write 0x0
0x104 Receive Counter Register PERIPH_RCR Read/Write 0x0
0x108 Transmit Pointer Register PERIPH_TPR Read/Write 0x0
0x10C Transmit Counter Register PERIPH_TCR Read/Write 0x0
0x110 Receive Next Pointer Register PERIPH_RNPR Read/Write 0x0
0x114 Receive Next Counter Register PERIPH_RNCR Read/Write 0x0
0x118 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0x0
0x11C Transmit Next Counter Register PERIPH_TNCR Read/Write 0x0
0x120 PDC Transfer Control Register PERIPH_PTCR Write-only -
0x124 PDC Transfer Status Register PERIPH_PTSR Read-only 0x0

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user

according to the function and the peripheral desired (USART, SSC, SPI, etc).

32054D-AVR32-10/07

ATMEL

L ________________(0G]

229

s A T32AP7002

18.6.1 PDC Receive Pointer Register

Register Name: PERIPH_RPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| RXPTR |
23 22 21 20 19 18 17 16

| RXPTR |
15 14 13 12 11 10 9 8

| RXPTR |
7 6 5 4 3 2 1 0

| RXPTR |

* RXPTR: Receive Pointer Address

Address of the next receive transfer.

ATMEL 230

32054D-AVR32-10/07

L ________________(0G]

s A T32AP7002

18.6.2 PDC Receive Counter Register

Register Name: PERIPH_RCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| RXCTR |
7 6 5 4 3 2 1 0
| RXCTR |

* RXCTR: Receive Counter Value
Number of receive transfers to be performed.

AIMEL 281

32054D-AVR32-10/07 I ©

s A T32AP7002

18.6.3 PDC Transmit Pointer Register

Register Name: PERIPH_TPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TXPTR |
23 22 21 20 19 18 17 16

| TXPTR |
15 14 13 12 11 10 9 8

| TXPTR |
7 6 5 4 3 2 1 0

| TXPTR |

e TXPTR: Transmit Pointer Address

Address of the transmit buffer.

AIMEL 232

32054D-AVR32-10/07

L ________________(0G]

s A T32AP7002

18.6.4 PDC Transmit Counter Register

Register Name: PERIPH_TCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| TXCTR |
7 6 5 4 3 2 1 0
| TXCTR |

e TXCTR: Transmit Counter Value

TXCTR is the size of the transmit transfer to be performed. At zero, the peripheral data transfer is stopped.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

233

s A T32AP7002

18.6.5 PDC Receive Next Pointer Register

Register Name: PERIPH_RNPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| RXNPTR |
23 22 21 20 19 18 17 16

| RXNPTR |
15 14 13 12 11 10 9 8

| RXNPTR |
7 6 5 4 3 2 1 0

| RXNPTR |

¢ RXNPTR: Receive Next Pointer Address

RXNPTR is the address of the next buffer to fill with received data when the current buffer is full.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

234

s A T32AP7002

18.6.6 PDC Receive Next Counter Register

Register Name: PERIPH_RNCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| RXNCR |
7 6 5 4 3 2 1 0
| RXNCR |

¢ RXNCR: Receive Next Counter Value
RXNCR is the size of the next buffer to receive.

AIMEL 235

32054D-AVR32-10/07 I ©

s A T32AP7002

18.6.7 PDC Transmit Next Pointer Register

Register Name: PERIPH_TNPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TXNPTR |
23 22 21 20 19 18 17 16

| TXNPTR |
15 14 13 12 11 10 9 8

| TXNPTR |
7 6 5 4 3 2 1 0

| TXNPTR |

e TXNPTR: Transmit Next Pointer Address

TXNPTR is the address of the next buffer to transmit when the current buffer is empty.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

236

s A T32AP7002

18.6.8 PDC Transmit Next Counter Register

Register Name: PERIPH_TNCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| TXNCR |
7 6 5 4 3 2 1 0
| TXNCR |

¢ TXNCR: Transmit Next Counter Value
TXNCR is the size of the next buffer to transmit.

AIMEL 287

32054D-AVR32-10/07 I ©

s A T32AP7002

18.6.9 PDC Transfer Control Register

Register Name: PERIPH_PTCR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | _ | — | — | — | _ | txmIs | TxTEN |
7 6 5 4 3 2 1 0

| - | — | - | - | - | — | RxtDis | RXTEN |

¢ RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables the receiver PDC transfer requests if RXTDIS is not set.

RXTDIS: Receiver Transfer Disable
0 = No effect.

1 = Disables the receiver PDC transfer requests.

e TXTEN: Transmitter Transfer Enable
0 = No effect.

1 = Enables the transmitter PDC transfer requests.

e TXTDIS: Transmitter Transfer Disable
0 = No effect.

1 = Disables the transmitter PDC transfer requests

AIMEL 238

32054D-AVR32-10/07 I ©

s A T32AP7002

18.6.10 PDC Transfer Status Register

Register Name: PERIPH_PTSR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - | - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - | - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - | TxtEN |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | RxtEN |

* RXTEN: Receiver Transfer Enable
0 = Receiver PDC transfer requests are disabled.

1 = Receiver PDC transfer requests are enabled.

e TXTEN: Transmitter Transfer Enable
0 = Transmitter PDC transfer requests are disabled.

1 = Transmitter PDC transfer requests are enabled.

A mE|,® 239

32054D-AVR32-10/07

s A T32AP7002

19. Parallel Input/Output Controller (PIO)

19.1 Features

19.2 Description

32054D-AVR32-10/07

Rev: 2.0.2.2

e Up to 32 Programmable I/O Lines

* Fully Programmable through Set/Clear Registers

* Multiplexing of Two Peripheral Functions per I/O Line

* For each I/O Line (Whether Assigned to a Peripheral or Used as General Purpose 1/O)
Input Change Interrupt

Glitch Filter

Programmable Pull Up on Each I/O Line

Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time

* Synchronous Output, Provides Set and Clear of Several I/O lines in a Single Write

The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output
lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.

Each 1/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User
Interface.

Each 1/0 line of the PIO Controller features:

< An input change interrupt enabling level change detection on any I/O line.

* A glitch filter providing rejection of pulses lower than one-half of clock cycle.
« Control of the the pull-up of the 1/O line.

« Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a
single write operation.

AIMEL 240

L ________________(0G]

s A T32AP7002

19.3 Block Diagram

Figure 19-1. Block Diagram

PIO Controller

Interrupt PIO Interrupt
Controller
P10 Clock
Power Manager

| Data, Enable N

| € > > Up to 32
peripheral I0s
Embedded |
Peripheral
< <—>|:| PIN O
Data, Enable
|) <—>|:| PIN 1
|<—> Up to 32 pins
- Up to 32 :
Embedded —> peripheral 10s pe
Peripheral PIN 31
J ‘ 'l:l

Peripheral Bus

Figure 19-2. Application Block Diagram

On-Chip Peripheral Drivers

Keyboard Driver Control & Command
Driver

On-Chip Peripherals

PIO Controller

Keyboard Driver General Purpose 1/0Os External Devices

Alm L 241

32054D-AVR32-10/07 I ©

s A T32AP7002

19.4 Product Dependencies

19.4.1 Pin Multiplexing

Each pin is configurable, according to product definition as either a general-purpose 1/O line
only, or as an I/O line multiplexed with one or two peripheral I/0s. As the multiplexing is hard-
ware-defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an 1/O line is general-purpose only, i.e. not multiplexed with any peripheral 1/O, programming of
the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Con-
troller can control how the pin is driven by the product.

19.4.2 External Interrupt Lines

The external interrupt request signals are most generally multiplexed through the PIO Control-
lers. However, it is not necessary to assign the I/O line to the interrupt function as the PIO
Controller has no effect on inputs and the external interrupt lines are used only as inputs.

19.4.3 Power Management

The PIO clock is generated by the Power Manager. Before accessing the PIO, the programmer
must ensure that the P1O clock is enabled in the Power Manager. Note that the PIO clock must
be enabled when using the Input Change interrupt.

In the PIO description, Master Clock (MCK) is the clock of the peripheral bus to which the PIO is
connected.

1944 Interrupt Generation

32054D-AVR32-10/07

The PIO interrupt line is connected to the Interrupt Controller. Using the PIO interrupt requires
the Interrupt Controller to be programmed first.

Alm L 242

L ________________(0G]

s A T32AP7002

19.5 Functional Description

The PIO Controller features up to 32 fully-programmable 1/O lines. Most of the control logic asso-
ciated to each 1/0O is represented in Figure 19-3. In this description each signal shown
represents but one of up to 32 possible indexes.

Figure 19-3. 1/O Line Control Logic

PIO_MDER[0]

PIO_MDDRI0]
PIO_SODRI[0]

PIO_ODSR[0]
PIO_CODR[0]
PIO_OER[0]
PIO_OSRI0]
PIO_ODR[0]

PIO_MDSR[0] |———

PIO_PUER[0]
PIO_PUSR[0]
PIO_PUDR[0]

W

Peripheral A

Output Enable ————0
Peripheral B

Output Enable ——— 1

PIO_ASR[0]
PIO_ABSR[0]
PIO_BSR[0]

Peripheral A
Output

Peripheral B
Output

PIO_SODR[0]
PIO_ODSR[0]
PIO_CODRI0]

PIO_MDER[0]
PIO_MDSRI0]
PIO_MDDR[0]

32054D-AVR32-10/07

Glitch
Filter
PIO_IFER[0]

PIO_IFSR[0]
PIO_IFDRI0]

[Pio_ppsrig] | [Pio_isrio) |

Edge
Detector

PIO_ISR[31]
PIO_IER[31]

PIO_IMR[31]
PIO_IDR[31]

ATMEL

L ________________(0G]

<F

Peripheral A
Input

Peripheral B
Input

(Up to 32 possible inputs)

PIO Interrupt

243

s A T32AP7002

19.5.1 Pull-up Resistor Control
Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled
or disabled by writing respectively PUER (Pull-up Enable Register) and PUDR (Pull-up Disable
Resistor). Writing in these registers results in setting or clearing the corresponding bit in PUSR
(Pull-up Status Register). Reading a 1 in PUSR means the pull-up is disabled and reading a 0
means the pull-up is enabled.

Control of the pull-up resistor is possible regardless of the configuration of the I/O line.

After reset, all of the pull-ups are enabled, i.e. PUSR resets at the value 0x0.

19.5.2 I/O Line or Peripheral Function Selection
When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PER (PIO Enable Register) and PDR (P10 Disable Register). The register PSR
(PIO Status Register) is the result of the set and clear registers and indicates whether the pin is
controlled by the corresponding peripheral or by the PIO Controller. A value of 0 indicates that
the pin is controlled by the corresponding on-chip peripheral selected in the ABSR (AB Select
Status Register). A value of 1 indicates the pin is controlled by the PIO controller.

If a pin is used as a general purpose /O line (not multiplexed with an on-chip peripheral), PER
and PDR have no effect and PSR returns 1 for the corresponding bit.

After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PSR resets at
1. However, in some events, it is important that PIO lines are controlled by the peripheral (as in
the case of memory chip select lines that must be driven inactive after reset or for address lines
that must be driven low for booting out of an external memory). Thus, the reset value of PSR is
defined at the product level, depending on the multiplexing of the device.

19.5.3 Peripheral A or B Selection
The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The
selection is performed by writing ASR (A Select Register) and BSR (Select B Register). ABSR
(AB Select Status Register) indicates which peripheral line is currently selected. For each pin,
the corresponding bit at level 0 means peripheral A is selected whereas the corresponding bit at
level 1 indicates that peripheral B is selected.

Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral
input lines are always connected to the pin input.

After reset, ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A. How-
ever, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line mode.

Writing in ASR and BSR manages ABSR regardless of the configuration of the pin. However,
assignment of a pin to a peripheral function requires a write in the corresponding peripheral
selection register (ASR or BSR) in addition to a write in PDR.

1954 Output Control

When the 1/0 line is assigned to a peripheral function, i.e. the corresponding bit in PSR is at 0O,
the drive of the 1/O line is controlled by the peripheral. Peripheral A or B, depending on the value
in ABSR, determines whether the pin is driven or not.

When the /O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing OER (Output Enable Register) and ODR (Output Disable Register). The
results of these write operations are detected in OSR (Output Status Register). When a bit in this

Alm L 244

32054D-AVR32-10/07 I ©

s A T32AP7002

register is at 0, the corresponding 1/O line is used as an input only. When the bit is at 1, the cor-
responding I/O line is driven by the PIO controller.

The level driven on an I/O line can be determined by writing in SODR (Set Output Data Register)
and CODR (Clear Output Data Register). These write operations respectively set and clear
ODSR (Output Data Status Register), which represents the data driven on the I/O lines. Writing
in OER and ODR manages OSR whether the pin is configured to be controlled by the PIO con-
troller or assigned to a peripheral function. This enables configuration of the 1/O line prior to
setting it to be managed by the PIO Controller.

Similarly, writing in SODR and CODR effects ODSR. This is important as it defines the first level
driven on the 1/O line.

1955 Multi-drive capability

The PIO is able to configure each pin as open drain to support external drivers on the same pin.
This is done by writing MDER (Multi-Drive Enable Register) and MDDR (Multi-Drive Disable
Register). The result of these write operations are detected in MDSR (multui-Drive Status Regis-
ter). The multi-drive mode is only available when the PIO is controlling the pin, i.e. PSR is set.

When using multi-drive the PIO will tri-state the pin when ODSR is set and drive the pin low
when ODSR is cleared. writing to OER or ODR will have no effect.

19.5.6 Synchronous Data Output

Controlling all parallel busses using several PIOs requires two successive write operations in the
SODR and CODR registers. This may lead to unexpected transient values. The PIO controller
offers a direct control of PIO outputs by single write access to ODSR (Output Data Status Regis-
ter). Only bits unmasked by OSWSR (Output Write Status Register) are written. The mask bits in
the OWSR are set by writing to OWER (Output Write Enable Register) and cleared by writing to
OWDR (Output Write Disable Register).

After reset, the synchronous data output is disabled on all the 1/O lines as OWSR resets at 0x0.

19.5.7 Output Line Timings

Figure 19-4 shows how the outputs are driven either by writing SODR or CODR, or by directly
writing ODSR. This last case is valid only if the corresponding bit in OWSR is set. Figure 19-4
also shows when the feedback in PDSR is available.

Figure 19-4. Output Line Timings

MCK J

Write PIO_SODR

| L

Peripheral Bus Access

Write PIO_ODSR at 1

Write PIO_CODR

Peripheral Bus Access

Write PIO_ODSR at 0

PIO_ODSR

PIO_PDSR

2 cycles 2 cycles

32054D-AVR32-10/07

Alm L 245

L ________________(0G]

s A T32AP7002

19.5.8 Inputs

The level on each 1/O line can be read through PDSR (Pin Data Status Register). This register
indicates the level of the I/O lines regardless of their configuration, whether uniquely as an input
or driven by the PIO controller or driven by a peripheral.

Reading the 1/O line levels requires the clock of the PIO controller to be enabled, otherwise
PDSR reads the levels present on the I/O line at the time the clock was disabled.

19.5.9 Input Glitch Filtering

Optional input glitch filters are independently programmable on each I/O line. When the glitch fil-
ter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically
rejected, while a pulse with a duration of 1 Master Clock cycle or more is accepted. For pulse
durations between 1/2 Master Clock cycle and 1 Master Clock cycle the pulse may or may not
be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to be
visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably filtered out, its
duration must not exceed 1/2 Master Clock cycle. The filter introduces one Master Clock cycle
latency if the pin level change occurs before a rising edge. However, this latency does not
appear if the pin level change occurs before a falling edge. This is illustrated in Figure 19-5.

The glitch filters are controlled by the register set; IFER (Input Filter Enable Register), IFDR
(Input Filter Disable Register) and IFSR (Input Filter Status Register). Writing IFER and IFDR
respectively sets and clears bits in IFSR. This last register enables the glitch filter on the I/O
lines.

When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals.
It acts only on the value read in PDSR and on the input change interrupt detection. The glitch fil-
ters require that the P1O Controller clock is enabled.

Figure 19-5. Input Glitch Filter Timing

MCK J

Pin Level

m

up to 1.5 cycles

gl 71 [[

PIO_PDSR
if PIO_IFSR =0

PIO_PDSR

1 cycle 1 cycle 1 cycle 1 cycle
2 cycles 1 cycle
up to 2.5 cycles up to R cycles

if PIO_IFSR=1

19.5.10 Input Change Interrupt

32054D-AVR32-10/07

The PIO Controller can be programmed to generate an interrupt when it detects an input change
on an I/O line. The Input Change Interrupt is controlled by writing IER (Interrupt Enable Register)
and IDR (Interrupt Disable Register), which respectively enable and disable the input change
interrupt by setting and clearing the corresponding bit in IMR (Interrupt Mask Register). As Input
change detection is possible only by comparing two successive samplings of the input of the 1/0
line, the PIO Controller clock must be enabled. The Input Change Interrupt is available, regard-
less of the configuration of the I/O line, i.e. configured as an input only, controlled by the PIO
Controller or assigned to a peripheral function.

Alm L 246

L ________________(0G]

s A T32AP7002

When an input change is detected on an 1/O line, the corresponding bit in ISR (Interrupt Status
Register) is set. If the corresponding bit in IMR is set, the PIO Controller interrupt line is
asserted. The interrupt signals of the thirty-two channels are ORed-wired together to generate a
single interrupt signal to the Interrupt Controller.

When the software reads ISR, all the interrupts are automatically cleared. This signifies that all
the interrupts that are pending when ISR is read must be handled.

Figure 19-6. Input Change Interrupt Timings

vek || L L | L L |

Pin Level
PIO_ISR
Read PIO_ISR |Peripheral Bus Access Peripheral Bus Access

19.6 1/O Lines Programming Example
The programing example as shown in Table 19-1 below is used to define the following
configuration.
* 4-bit output port on I/O lines 0 to 3, (should be written in a single write operation)
 Four output signals on 1/O lines 4 to 7 (to drive LEDs for example)

« Four input signals on 1/O lines 8 to 11 (to read push-button states for example), with pull-up
resistors, glitch filters and input change interrupts

« Four input signals on 1/O line 12 to 15 to read an external device status (polled, thus no input
change interrupt), no pull-up resistor, no glitch filter

« 1/0O lines 16 to 19 assigned to peripheral A functions with pull-up resistor
« 1/0O lines 20 to 23 assigned to peripheral B functions, no pull-up resistor
« 1/0O line 24 to 27 assigned to peripheral A with Input Change Interrupt and pull-up resistor

Alm L 247

32054D-AVR32-10/07 I ©

s A T32AP7002

32054D-AVR32-10/07

Table 19-1. Programming Example
Register Value to be Written
PER 0x0000 FFFF
PDR OxOFFF 0000
OER 0x0000 OOFF
ODR OxOFFF FFOO0
IFER 0x0000 OF00
IFDR OxOFFF FOFF
SODR 0x0000 0000
CODR OxOFFF FFFF
IER 0xOF00 OF00
IDR OxOOFF FOFF
PUDR 0x00FO0 00FO0
PUER OxOFOF FFOF
ASR O0xOFOF 0000
BSR 0xO0F0 0000
OWER 0x0000 000F
OWDR OxOFFF FFFO

ATMEL

L ________________(0G]

248

s A T32AP7002

19.7 User Interface

Each 1/O line controlled by the PIO Controller is associated with a bit in each of the PIO Control-
ler User Interface registers. Each register is 32 bits wide. If a parallel I/O line is not defined,
writing to the corresponding bits has no effect. Undefined bits read zero. If the I/O line is not mul-
tiplexed with any peripheral, the 1/O line is controlled by the PIO Controller and PSR returns 1
systematically.

Table 19-2. Register Mapping

Offset Register Name Access Reset Value
0x0000 P10 Enable Register PER Write-only -
0x0004 P10 Disable Register PDR Write-only -
0x0008 PIO Status Register ¥ PSR Read-only 0x0000 0000
0x000C Reserved

0x0010 Output Enable Register OER Write-only -
0x0014 Output Disable Register ODR Write-only -
0x0018 Output Status Register OSR Read-only 0x0000 0000
0x001C Reserved

0x0020 Glitch Input Filter Enable Register IFER Write-only -
0x0024 Glitch Input Filter Disable Register IFDR Write-only -
0x0028 Glitch Input Filter Status Register IFSR Read-only 0x0000 0000
0x002C Reserved

0x0030 Set Output Data Register SODR Write-only -
0x0034 Clear Output Data Register CODR Write-only -
0x0038 Output Data Status Register® ODSR Read-only 0x0000 0000
0x003C Pin Data Status Register® PDSR Read-only

0x0040 Interrupt Enable Register IER Write-only -
0x0044 Interrupt Disable Register IDR Write-only -
0x0048 Interrupt Mask Register IMR Read-only 0x0000 0000
0x004C Interrupt Status Register® ISR Read-only 0x0000 0000
0x0050 Multi-driver Enable Register MDER Write-only

0x0054 Multi-driver Disable Register MDDR Write-only

0x0058 Multi-driver Status Register MDSR Read-only

0x005C Reserved

0x0060 Pull-up Disable Register PUDR Write-only -
0x0064 Pull-up Enable Register PUER Write-only -
0x0068 Pad Pull-up Status Register PUSR Read-only 0x0000 0000
0x006C Reserved

32054D-AVR32-10/07

AIMEL 249

L ________________(0G]

s A T32AP7002

Table 19-2. Register Mapping (Continued)
Offset Register Name Access Reset Value
0x0070 Peripheral A Select Register® ASR Write-only -
0x0074 Peripheral B Select Register® BSR Write-only -
0x0078 AB Status Register® ABSR Read-only 0x0000 0000
0x007C to Reserved
0x009C
0x00A0 Output Write Enable OWER Write-only -
0x00A4 Output Write Disable OWDR Write-only -
0x00A8 Output Write Status Register OWSR Read-only 0x0000 0000
0x00AC Reserved
Notes: 1. Reset value of PSR depends on the product implementation.
2. ODSR is Read-only or Read/Write depending on OWSR I/O lines.
3. Reset value of PDSR depends on the level of the 1/O lines.
4. ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have occurred.
5. Only this set of registers clears the status by writing 1 in the first register and sets the status by writing 1 in the second

32054D-AVR32-10/07

register.

ATMEL

L ________________(0G]

250

s A T32AP7002

19.7.1 P10 Controller PIO Enable Register

Name: PER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» P0-P31: PIO Enable
0 = No effect.
1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

A mE|,® 251

32054D-AVR32-10/07

s A T32AP7002

19.7.2 PIO Controller PIO Disable Register

Name: PDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

* P0O-P31: PIO Disable

0 = No effect.

1 = Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

32054D-AVR32-10/07

ATMEL

252

s A T32AP7002

19.7.3 P10 Controller PIO Status Register

Name: PSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* PO-P31: PIO Status
0 = PIO is inactive on the corresponding I/O line (peripheral is active).
1 = PIO is active on the corresponding I/O line (peripheral is inactive).

A mE|,® 253

32054D-AVR32-10/07

s A T32AP7002

19.7.4 PIO Controller Output Enable Register

Name: OER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

* PO0-P31: Output Enable
0 = No effect.

1 = Enables the output on the 1/O line.

32054D-AVR32-10/07

ATMEL

254

s A T32AP7002

19.7.5 P10 Controller Output Disable Register

Name: ODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Output Disable
0 = No effect.
1 = Disables the output on the I/O line.

A mE|,® 255

32054D-AVR32-10/07

s A T32AP7002

19.7.6 P10 Controller Output Status Register

Name: OSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

* PO-P31: Output Status
0 = The I/O line is a pure input.
1 =The I/O line is enabled in output.

32054D-AVR32-10/07

ATMEL

256

s A T32AP7002

19.7.7 P10 Controller Glitch Input Filter Enable Register

Name: IFER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 P2 P1 PO |

e PO-P31: Input Filter Enable
0 = No effect.
1 = Enables the input glitch filter on the 1/O line.

32054D-AVR32-10/07

ATMEL

257

s A T32AP7002

19.7.8 PIO Controller Glitch Input Filter Disable Register

Name: IFDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

» PO-P31: Input Filter Disable

0 = No effect.

1 = Disables the input glitch filter on the I/O line.

32054D-AVR32-10/07

ATMEL

258

s A T32AP7002

19.7.9 P10 Controller Glitch Input Filter Status Register

Name: IFSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Input Filer Status
0 = The input glitch filter is disabled on the 1/O line.
1 = The input glitch filter is enabled on the 1/O line.

A mE|,® 259

32054D-AVR32-10/07

s A T32AP7002

19.7.10 PIO Controller Set Output Data Register

Name: SODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

* PO-P31: Set Output Data

0 = No effect.

1 = Sets the data to be driven on the I/O line.

32054D-AVR32-10/07

ATMEL

260

s A T32AP7002

19.7.11 PIO Controller Clear Output Data Register

Name: CODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* PO-P31: Set Output Data
0 = No effect.
1 = Clears the data to be driven on the I/O line.

A mE|,® 261

32054D-AVR32-10/07

s A T32AP7002

19.7.12
Name:

Access Type:

P1O Controller Output Data Status Register
ODSR
Read-only or Read/Write

31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 P2 P1 PO |

e PO-P31: Output Data Status
0 = The data to be driven on the 1/O line is 0.
1 = The data to be driven on the I/O line is 1.

32054D-AVR32-10/07

ATMEL

262

s A T32AP7002

19.7.13 PIO Controller Pin Data Status Register

Name: PDSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Output Data Status
0 =The I/O line is at level 0.
1 =The I/O line is at level 1.

A mE|,® 263

32054D-AVR32-10/07

s A T32AP7002

19.7.14 PIO Controller Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

* PO-P31: Input Change Interrupt Enable
0 = No effect.

1 = Enables the Input Change Interrupt on the I/O line.

32054D-AVR32-10/07

ATMEL

264

s A T32AP7002

19.7.15 PIO Controller Interrupt Disable Register

Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Input Change Interrupt Disable
0 = No effect.
1 = Disables the Input Change Interrupt on the 1/O line.

A mE|,® 265

32054D-AVR32-10/07

s A T32AP7002

19.7.16 PIO Controller Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

» PO-P31: Input Change Interrupt Mask

0 = Input Change Interrupt is disabled on the I/O line.
1 = Input Change Interrupt is enabled on the I/O line.

32054D-AVR32-10/07

ATMEL

266

s A T32AP7002

19.7.17 PIO Controller Interrupt Status Register

Name: ISR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Input Change Interrupt Status
0 = No Input Change has been detected on the 1/O line since ISR was last read or since reset.
1 = At least one Input Change has been detected on the I/O line since ISR was last read or since reset.

A mE|,® 267

32054D-AVR32-10/07

s A T32AP7002

19.7.18 PIO Controller Multi-driver Enable Register

Name: MDER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register is used to enable PIO output drivers to be configured as open drain to support external drivers on the same

pin.
* PO-P31:
0 = No effect.

1 = Enables multi-drive option on the corresponding pin.

32054D-AVR32-10/07

ATMEL

268

s A T32AP7002

19.7.19 PIO Controller Multi-driver Disable Register

Name: MDDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register is used to diasble the open drain configuration of the output buffer.

e PO-P31:
0 = No effect.

1 = Disables multi-drive option on the corresponding pin.

A mE|,® 269

32054D-AVR32-10/07

s A T32AP7002

19.7.20 PIO Controller Multi-driver Status Register

Name: MDSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

This register indicates which pins are configured with open drain drivers.

+ PO-P31:
0 = PIO is not configured as an open drain.
1 =PIO is configured as an open drain.

A mE|,® 270

32054D-AVR32-10/07

s A T32AP7002

19.7.21 PIO Pull Up Disable Register

Name: PUDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Pull Up Disable.
0 = No effect.
1 = Disables the pull up resistor on the 1/O line.

A mE|,® 271

32054D-AVR32-10/07

s A T32AP7002

19.7.22 PIO Pull Up Enable Register

Name: PUER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

* PO-P31: Pull Up Enable.

0 = No effect.

1 = Enables the pull up resistor on the I/O line.

32054D-AVR32-10/07

ATMEL

272

s A T32AP7002

19.7.23 PIO Pull Up Status Register

Name: PUSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Pull Up Status.
0 = Pull Up resistor is enabled on the 1/O line.
1 = Pull Up resistor is disabled on the I/O line.

A mE|,® 273

32054D-AVR32-10/07

s A T32AP7002

19.7.24 PIO Peripheral A Select Register

Name: ASR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

» PO-P31: Peripheral A Select.

0 = No effect.

1 = Assigns the 1/O line to the Peripheral A function.

32054D-AVR32-10/07

ATMEL

274

s A T32AP7002

19.7.25 PIO Peripheral B Select Register

Name: BSR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Peripheral B Select.
0 = No effect.
1 = Assigns the /O line to the peripheral B function.

A mE|,® 275

32054D-AVR32-10/07

s A T32AP7002

19.7.26 PIO Peripheral A B Status Register

Name: ABSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

» PO-P31: Peripheral A B Status.
0 = The I/O line is assigned to the Peripheral A.
1 =The I/O line is assigned to the Peripheral B.

32054D-AVR32-10/07

ATMEL

276

s A T32AP7002

19.7.27 PIO Output Write Enable Register

Name: OWER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Output Write Enable.
0 = No effect.
1 = Enables writing ODSR for the 1/O line.

A mE|,® 277

32054D-AVR32-10/07

s A T32AP7002

19.7.28 PIO Output Write Disable Register

Name: OWDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 P28 | P27 P26 P25 P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 P20 | P19 P18 P17 P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 P12 | P11 P10 P9 P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 P4 | P3 P2 P1 PO |

» PO0-P31: Output Write Disable.

0 = No effect.

1 = Disables writing ODSR for the 1/O line.

32054D-AVR32-10/07

ATMEL

278

s A T32AP7002

19.7.29 PIO Output Write Status Register

Name: OWSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* PO0-P31: Output Write Status.
0 = Writing ODSR does not affect the 1/O line.
1 = Writing ODSR affects the I/O line.

A mE|,® 279

32054D-AVR32-10/07

s A T32AP7002

20. Serial Peripheral Interface (SPI)

20.1 Features

20.2 Description

32054D-AVR32-10/07

Rev: 1.7.1.3

e Supports Communication with Serial External Devices
— Four Chip Selects with External Decoder Support Allow Communication with Up to 15
Peripherals
— Serial Memories, such as DataFlash and 3-wire EEPROMs
— Serial Peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
— External Co-processors
* Master or Slave Serial Peripheral Bus Interface
— 8- to 16-bit Programmable Data Length Per Chip Select
— Programmable Phase and Polarity Per Chip Select
— Programmable Transfer Delays Between Consecutive Transfers and Between Clock and Data
Per Chip Select
— Programmable Delay Between Consecutive Transfers
— Selectable Mode Fault Detection
* Connection to PDC Channel Capabilities Optimizes Data Transfers
— One Channel for the Receiver, One Channel for the Transmitter
— Next Buffer Support

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master™ which controls the data
flow, while the other devices act as “slaves" which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:
« Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).

« Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of
the master. There may be no more than one slave transmitting data during any particular
transfer.

« Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the data
bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once for
each bit that is transmitted.

« Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

AIMEL 280

L ________________(0G]

s A T32AP7002

20.3 Block Diagram

Figure 20-1. Block Diagram

A
 —) PDC
ral Bus
L[] spox
e
) [miso
Power MCK |:| MOS|
Manager
SPI Interface PIO <—>|:| NPCS0/NSS
A
DIV ‘—D NPCS1
<—>|:| NPCS2
MCK® Interrupt Control

SPI Interrupt

A “'lEl,® 281

32054D-AVR32-10/07

s A T32AP7002

20.4 Application Block Diagram

Figure 20-2. Application Block Diagram: Single Master/Multiple Slave Implementation

4 N\
SPCK SPCK
MISO MISO
Slave 0
MOSI MOSI
SPI Master NPCSO NSS)
4 bCK N\
NPCS1 SPC
MISO
NPCS2X NC Slave 1
NPCS3 MOsI
NSS)
4 N\
SPCK
MISO
Slave 2
MOSI
\NSS)

Alm L 282

32054D-AVR32-10/07 I ©

s A T32AP7002

20.5 Signal Description

32054D-AVR32-10/07

Table 20-1. Signal Description

Type
Pin Name Pin Description Master Slave
MISO Master In Slave Out Input Output
MOSI Master Out Slave In Output Input
SPCK Serial Clock Output Input
NPCS1-NPCS3 Peripheral Chip Selects Output Unused
NPCSO/NSS Peripheral Chip Select/Slave Select Output Input

ATMEL

L ________________(0G]

283

s A T32AP7002

20.6 Product Dependencies
20.6.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the SPI pins to their peripheral
functions. To use the local loopback function the SPI pins must be controlled by the SPI.

20.6.2 Power Management

The SPI clock is generated by the Power Manager. Before using the SPI, the programmer must
ensure that the SPI clock is enabled in the Power Manager.

In the SPI description, Master Clock (MCK) is the clock of the peripheral bus to which the SPI is
connected.

20.6.3 Interrupt

The SPI interface has an interrupt line connected to the Interrupt Controller. Handling the SPI
interrupt requires programming the interrupt controller before configuring the SPI.

Alm L 284

32054D-AVR32-10/07 I ©

s A T32AP7002

20.7 Functional Description

20.7.1 Modes of Operation

20.7.2 Data Transfer

32054D-AVR32-10/07

The SPI operates in Master Mode or in Slave Mode.

Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register.
The pins NPCSO0 to NPCS3 are all configured as outputs, the SPCK pin is driven, the MISO line
is wired on the receiver input and the MOSI line driven as an output by the transmitter.

If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the
transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCSO pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCS3 are not driven and can be used for other
purposes.

The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in Master Mode.

Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with
the NCPHA bit. These two parameters determine the edges of the clock signal on which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 20-2 shows the four modes and corresponding parameter settings.

Table 20-2. SPI Bus Protocol Mode

SPI Mode CPOL NCPHA
0 0 1
1 0 0
2 1 1
3 1 0

Figure 20-3 and Figure 20-4 show examples of data transfers.

Alm L 285

L ________________(0G]

s A T32AP7002

Figure 20-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

SPCK cycle (for reference) 1

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

Figure 20-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

2

3

4

MSB

MSB

* Not defined, but normally MSB of previous character received.

SPCK cycle (for reference) 1

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

32054D-AVR32-10/07

2

3 4

MSB

LSB

* Not defined but normally LSB of previous character transmitted.

ATMEL

286

s A T32AP7002

20.7.3 Master Mode Operations

32054D-AVR32-10/07

When configured in Master Mode, the SPI uses the internal programmable baud rate generator
as clock source. It fully controls the data transfers to and from the slave(s) connected to the SPI
bus. The SPI drives the chip select line to the slave and the serial clock signal (SPCK).

The SPI features two holding registers, the Transmit Data Register and the Receive Data Regis-
ter, and a single Shift Register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer begins when the processor writes to the TDR (Transmit
Data Register). The written data is immediately transferred in the Shift Register and transfer on
the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO line
is sampled and shifted in the Shift Register. Transmission cannot occur without reception.

Before writing the TDR, the PCS field must be set in order to select a slave.

If new data is written in TDR during the transfer, it stays in it until the current transfer is com-
pleted. Then, the received data is transferred from the Shift Register to RDR, the data in TDR is
loaded in the Shift Register and a new transfer starts.

The transfer of a data written in TDR in the Shift Register is indicated by the TDRE bit (Transmit
Data Register Empty) in the Status Register (SR). When new data is written in TDR, this bit is
cleared. The TDRE bit is used to trigger the Transmit PDC channel.

The end of transfer is indicated by the TXEMPTY flag in the SR register. If a transfer delay (DLY-
BCT) is greater than O for the last transfer, TXEMPTY is set after the completion of said delay.
The master clock (MCK) can be switched off at this time.

The transfer of received data from the Shift Register in RDR is indicated by the RDRF bit
(Receive Data Register Full) in the Status Register (SR). When the received data is read, the
RDRF bit is cleared.

If the RDR (Receive Data Register) has not been read before new data is received, the Overrun
Error bit (OVRES) in SR is set. When this bit is set the SPI will continue to update RDR when
data is received, overwriting the previously received data. The user has to read the status regis-
ter to clear the OVRES bit.

Figure 20-5 on page 288 shows a block diagram of the SPI1 when operating in Master Mode. Fig-
ure 20-6 on page 289 shows a flow chart describing how transfers are handled.

Alm L 287

L ________________(0G]

s A T32AP7002

20.7.3.1 Master Mode Block Diagram

Figure 20-5. Master Mode Block Diagram

MCK/N |

SPI_CSRO0..3

| SCBR

Baud Rate Generator

SPI
Clock
SPI_CSRO0..3
BITS SPI_RDR —>1 RDRF
NCPHA [RrRD | OVRES
CPOL T
|
MISO| I LSB Shift Register MSB
SPI_TDR
[—>| _TDRE_|
SPI_CSRO0..3
CSAAT SPI_RDR
| | »| PCS
SPlI MR PCSDEC
PCS Current
| I Peripheral
SPI_TDR SN
PCS
||
|~
| MSTR I
MODF
NPCSO0 | I O
MODFDIS

32054D-AVR32-10/07

ATMEL

288

20.7.3.2

Master Mode Flow Diagram

Figure 20-6.

Master Mode Flow Diagram S

32054D-AVR32-10/07

SPI Enable |

- NPCS defines the current Chip Select
- CSAAT, DLYBS, DLYBCT refer to the fields of the

Chip Select Register corresponding to the Current Chip Select

- When NPCS is OxF, CSAAT is 0.

AT32AP7002

CSAAT ?

Fixed
peripheral

Variable
peripheral

SPI_TDR(PCS)

peripheral

Fixed

SPI_MR(PCS)

=NPCS ? ='NPCS ?
Variable
1 peripheral
NPCS = SPI_TDR(PCS) | | NPCS = SPI_MR(PCS) | | NPCS = OxF | | NPCS = OxF
| Delay DLYBCS | | Delay DLYBCS
| NPCS = SPI_TDR(PCS) | NPCS = g';:,ygé'zgcsé)
=
Delay DLYBS

'

Serializer = SPI_TDR(TD)
TDRE =1

!

Data Transfer

!

SPI_RDR(RD) = Serializer
RDRF =1

!

Delay DLYBCT

NPCS = OxF |

l

Delay DLYBCS |

ATMEL

L ________________(0G]

289

s A T32AP7002

20.7.3.3 Clock Generation

The SPI Baud rate clock is generated by dividing the Master Clock (MCK) or the Master Clock
divided by 32, by a value between 1 and 255. The selection between Master Clock or Master
Clock divided by 32 is done by the FDIV value set in the Mode Register

This allows a maximum operating baud rate at up to Master Clock and a minimum operating
baud rate of MCK divided by 255*32.

Programming the SCBR field at O is forbidden. Triggering a transfer while SCBR is at 0 can lead
to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first
transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the
SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud
rate for each interfaced peripheral without reprogramming.

20.7.3.4 Transfer Delays

Figure 20-7 shows a chip select transfer change and consecutive transfers on the same chip
select. Three delays can be programmed to modify the transfer waveforms:

« The delay between chip selects, programmable only once for all the chip selects by writing the
DLYBCS field in the Mode Register. Allows insertion of a delay between release of one chip
select and before assertion of a new one.

» The delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted.

» The delay between consecutive transfers, independently programmable for each chip select by
writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on the
same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus
release time.

Figure 20-7. Programmable Delays

Chip Select 1

Chip Select 2

SPCK

32054D-AVR32-10/07

DLYBCS DLYBS gg DLYBCT SS DLYBCT

Alm L 290

L ________________(0G]

s A T32AP7002

20.7.3.5 Peripheral Selection

The serial peripherals are selected through the assertion of the NPCSO to NPCS3 signals. By
default, all the NPCS signals are high before and after each transfer.

The peripheral selection can be performed in two different ways:

« Fixed Peripheral Select: SPI exchanges data with only one peripheral
« Variable Peripheral Select: Data can be exchanged with more than one peripheral

Fixed Peripheral Select is activated by writing the PS bit to zero in MR (Mode Register). In this
case, the current peripheral is defined by the PCS field in MR and the PCS field in TDR have no
effect.

Variable Peripheral Select is activated by setting PS bit to one. The PCS field in TDR is used to
select the current peripheral. This means that the peripheral selection can be defined for each
new data.

The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is
an optimal means, as the size of the data transfer between the memory and the SPI is either 8
bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be
reprogrammed.

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without repro-
gramming the Mode Register. Data written in TDR is 32 bits wide and defines the real data to be
transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit wide
buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs, however the
SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI lines with
the chip select configuration registers. This is not the optimal means in term of memory size for
the buffers, but it provides a very effective means to exchange data with several peripherals
without any intervention of the processor.

20.7.3.6 Peripheral Chip Select Decoding

The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCSO0 to NPCS3 with an external logic. This can be enabled by writing the PCS-
DEC bit at 1 in the Mode Register (MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e. driven low at a time. If two bits are defined low in a PCS field, only the lowest
numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field of
either the Mode Register or the Transmit Data Register (depending on PS).

As the SPI sets a default value of OxF on the chip select lines (i.e. all chip select lines at 1) when
not processing any transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0to 3, 4to 7, 8to 11 and 12 to 14.

Alm L 291

32054D-AVR32-10/07 I ©

s A T32AP7002

20.7.3.7 Peripheral Deselection

When operating normally, as soon as the transfer of the last data written in TDR is completed,
the NPCS lines all rise. This might lead to runtime error if the processor is too long in responding
to an interrupt, and thus might lead to difficulties for interfacing with some serial peripherals
requiring the chip select line to remain active during a full set of transfers.

To facilitate interfacing with such devices, the Chip Select Register can be programmed with the
CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select lines to remain in
their current state (low = active) until transfer to another peripheral is required.

Figure 20-8 shows different peripheral deselection cases and the effect of the CSAAT bit.

Figure 20-8. Peripheral Deselection

CSAAT =0 CSAAT =1
TDRE | |
DLYBCT DLYBCT
NPCS[0..3] A | A A A A
DLYBCS DLYBCS
PCS=A PCS=A
Write SPI_TDR T T
TDRE | |
DLYBCT DLYBCT
NPCS[0..3] A | A A A A
DLYBCS DLYBCS
PCS=A PCS=A
Write SPI_TDR T T
TDRE |
DLYBCT DLYBCT
NPCS[0..3] A B A B
DLYBCS DLYBCS
PCS=B PCS=B
Write SPI_TDR T T

AIMEL 202

32054D-AVR32-10/07 I ©

s A T32AP7002

20.7.3.8 Mode Fault Detection

A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCSO/NSS signal. NPCS0, MOSI, MISO and SPCK must be con-
figured in open-drain through the PIO controller, so that external pull up resistors are needed to
guarantee high level.

When a mode fault is detected, the MODF bit in the SR is set until the SR is read and the SPI is
automatically disabled until re-enabled by writing the SPIEN bit in the CR (Control Register) at 1.

By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault
detection by setting the MODFDIS bit in the SPI Mode Register (MR).

20.7.4 SPI Slave Mode

32054D-AVR32-10/07

When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).

The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits
defined by the BITS field of the Chip Select Register 0 (CSRO0). These bits are processed follow-
ing a phase and a polarity defined respectively by the NCPHA and CPOL bits of the CSRO. Note
that BITS, CPOL and NCPHA of the other Chip Select Registers have no effect when the SPI is
programmed in Slave Mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

When all the bits are processed, the received data is transferred in the Receive Data Register
and the RDRF bit rises. If RDRF is already high when the data is transferred, the Overrun bit
rises and the data transfer to RDR is aborted.

When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the Transmit Data Register (TDR), the last data received is transferred. If no
data has been received since the last reset, all bits are transmitted low, as the Shift Register
resets at 0.

When a first data is written in TDR, it is transferred immediately in the Shift Register and the
TDRE bit rises. If new data is written, it remains in TDR until a transfer occurs, i.e. NSS falls and
there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in TDR is
transferred in the Shift Register and the TDRE bit rises. This enables frequent updates of critical
variables with single transfers.

Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no
character is ready to be transmitted, i.e. no character has been written in TDR since the last load
from TDR to the Shift Register, the Shift Register is not modified and the last received character
is retransmitted.

Figure 20-9 shows a block diagram of the SPI when operating in Slave Mode.

Alm L 293

L ________________(0G]

32054D-AVR32-10/07

Figure 20-9. Slave Mode Functional Block Diagram

| SPIEN |

| SPIENS

| SPIDIS I

MOSI | I

AT32AP7002

{>¢ SPl
Clock
SPI_CSRO
TS SPI_RDR - RDRF
NCPHA [RD | OVRES
CPOL T
|
LSB Shift Register MsB
A
SPI_TDR
[FLoAaD | [1 —>{ TDRE

ATMEL

L ________________(0G]

294

s A T32AP7002

20.8 Serial Peripheral Interface (SPI) User Interface

Table 20-3. SPI Register Mapping

Offset Register Register Name Access Reset
0x00 Control Register CR Write-only
0x04 Mode Register MR Read/Write 0x0
0x08 Receive Data Register RDR Read-only 0x0
0x0C Transmit Data Register TDR Write-only ---
0x10 Status Register SR Read-only 0x000000F0
0x14 Interrupt Enable Register IER Write-only ---
0x18 Interrupt Disable Register IDR Write-only
0x1C Interrupt Mask Register IMR Read-only 0x0

0x20 - 0x2C Reserved
0x30 Chip Select Register 0 CSRO Read/Write 0x0
0x34 Chip Select Register 1 CSR1 Read/Write 0x0
0x38 Chip Select Register 2 CSR2 Read/Write 0x0
0x3C Chip Select Register 3 CSR3 Read/Write 0x0
0x004C - 0xO0F8 | Reserved - - -
0x00FC Version Register VERSION Read-only ox- @
0x100 - 0x124 Reserved for the PDC

Note: 1. Values in the Version Register vary with the version of the IP block implementation.

AIMEL 295

32054D-AVR32-10/07 I ©

s A T32AP7002

20.8.1 SPI Control Register

Name: CR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - | LASTXFER |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

[swrsT | - | - | - | - | - | spbis | sPEN |

¢ SPIEN: SPI Enable
0 = No effect.

1 = Enables the SPI to transfer and receive data.

¢ SPIDIS: SPI Disable
0 = No effect.

1 = Disables the SPI.

As soon as SPDIS is set, SPI finishes its transfer.

All pins are set in input mode and no data is received or transmitted.

If a transfer is in progress, the transfer is finished before the SPI is disabled.

If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled.

* SWRST: SPI Software Reset
0 = No effect.

1 = Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.
The SPl is in slave mode after a software reset.
PDC channels are not affected by software reset.

e LASTXFER: Last Transfer
0 = No effect.
1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this

allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

AIMEL 29

32054D-AVR32-10/07 I ©

s A T32AP7002

20.8.2 SPI Mode Register

Name: MR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| DLYBCS |
23 22 21 20 19 18 17 16

I - I - - I - I PCS |
15 14 13 12 11 10 9 8

I S RS B R R S
7 6 5 4 3 2 1 0

| LLB | — - | moporpis | FDiv [Pcspec | PS MSTR |

¢ MSTR: Master/Slave Mode
0 = SPlis in Slave mode.

1 = SPl is in Master mode.

* PS: Peripheral Select

0 = Fixed Peripheral Select.
1 = Variable Peripheral Select.

* PCSDEC: Chip Select Decode
0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The Chip Select Registers define the characteristics of the 15 chip selects according to the following rules:

CSRO defines peripheral chip select signals 0 to 3.

CSR1 defines peripheral chip select signals 4 to 7.

CSR2 defines peripheral chip select signals 8 to 11.

CSR3 defines peripheral chip select signals 12 to 14.

* FDIV: Clock Selection

0 = The SPI operates at MCK.
1 = The SPI operates at MCK/N.

¢ MODFDIS: Mode Fault Detection
0 = Mode fault detection is enabled.

1 = Mode fault detection is disabled.

* LLB: Local Loopback Enable
0 = Local loopback path disabled.

1 = Local loopback path enabled.

LLB controls the local loopback on the data serializer for testing in Master Mode only. MISO is internally connected to

MOSI.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

297

s A T32AP7002

* PCS: Peripheral Chip Select
This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC =0:
PCS = xxx0 NPCS[3:0] = 1110
PCS = xx01 NPCS[3:0] = 1101
PCS =x011 NPCS[3:0] = 1011
PCS =0111 NPCS[3:0] = 0111
PCS=1111 forbidden (no peripheral is selected)

(x = don’t care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS.

* DLYBCS: Delay Between Chip Selects

This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-over-
lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods (or 6*N MCK periods if FDIV is set) will be inserted by default.

Otherwise, the following equation determines the delay:

If FDIV is O:
Delay Between Chip Selects = 2LYBCS
MCK
If FDIV is 1:
Delay Between Chip Selects = DLYBCS xN
MCK

Alm L 298

32054D-AVR32-10/07 I ©

s A T32AP7002

20.8.3 SPI Receive Data Register

Name: RDR

Access Type: Read-only
31 30 29 28 27 26 25 24

I I R B R - - —]
23 22 21 20 19 18 17 16

I - I - I - I - I PCS |
15 14 13 12 11 10 9 8

I RD |
7 6 5 4 3 2 1 0

I RD |

* RD: Receive Data
Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.

* PCS: Peripheral Chip Select

In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.

AIMEL 209

32054D-AVR32-10/07 I ©

s A T32AP7002

20.8.4 SPI Transmit Data Register

Name: TDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - - | - | - - - LASTXFER |
23 22 21 20 19 18 17 16

| - | - - | - | PCS |
15 14 13 12 11 10 9 8

I i) |
7 6 5 4 3 2 1 0

I i) |

e TD: Transmit Data

Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.

* PCS: Peripheral Chip Select

This field is only used if Variable Peripheral Select is active (PS = 1).

If PCSDEC = 0:
PCS = xxx0
PCS = xx01
PCS =x011
PCS =0111
PCS =1111

(x = don't care)

If PCSDEC = 1:

NPCS[3:0] = 1110
NPCS[3:0] = 1101
NPCS[3:0] = 1011
NPCS[3:0] = 0111

forbidden (no peripheral is selected)

NPCSJ[3:0] output signals = PCS

e LASTXFER: Last Transfer

0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

This field is only used if Variable Peripheral Select is active (PS = 1).

32054D-AVR32-10/07

ATMEL

L ________________(0G]

300

s A T32AP7002

20.8.5 SPI Status Register

Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - [- [- | - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | - | sPens |
15 14 13 12 11 10 9 8

| — | — | - | — | — | — | TXEmMPTY [NSSR |
7 6 5 4 3 2 1 0

| txBUFE | RxBUFF | ENDTX | ENDRX | ovrRes | wmobrF | TORE [RDRF |

* RDRF: Receive Data Register Full
0 = No data has been received since the last read of RDR

1 = Data has been received and the received data has been transferred from the serializer to RDR since the last read of

RDR.

» TDRE: Transmit Data Register Empty
0 = Data has been written to TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.
TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

» MODF: Mode Fault Error
0 = No Mode Fault has been detected since the last read of SR.

1 = A Mode Fault occurred since the last read of the SR.

* OVRES: Overrun Error Status
0 = No overrun has been detected since the last read of SR.

1 = An overrun has occurred since the last read of SR.
An overrun occurs when RDR is loaded at least twice from the serializer since the last read of the RDR.

* ENDRX: End of RX buffer
0 = The Receive Counter Register has not reached 0 since the last write in RCR or RNCR.

1 = The Receive Counter Register has reached 0 since the last write in RCR or RNCR.

* ENDTX: End of TX buffer
0 = The Transmit Counter Register has not reached 0 since the last write in TCR or TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in TCR or TNCR.

¢ RXBUFF: RX Buffer Full
0 = RCR or RNCR has a value other than 0.

1 = Both RCR and RNCR has a value of 0.

* TXBUFE: TX Buffer Empty
0 = TCR or TNCR has a value other than 0.

ATMEL

32054D-AVR32-10/07 I ©

301

s A T32AP7002

1 = Both TCR and TNCR has a value of 0.

* NSSR: NSS Rising
0 = No rising edge detected on NSS pin since last read.

1 = Arising edge occurred on NSS pin since last read.

« TXEMPTY: Transmission Registers Empty
0 = As soon as data is written in TDR.

1 = TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of such
delay.

* SPIENS: SPI Enable Status
0 = SPl is disabled.

1 =SPl is enabled.

Alm L 302

32054D-AVR32-10/07 I ©

s A T32AP7002

20.8.6 SPI Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

I - S T - T -]
23 22 21 20 19 18 17 16

- T - - S S I R
15 14 13 12 11 10 9 8

| - | - - - | - - | txempTy [NSSrR |
7 6 5 4 3 2 1 0

| TXBUFE | RXBUFF ENDTX ENDRX | OVRES MODF | TDRE | RDRF |

» RDRF: Receive Data Register Full Interrupt Enable
e TDRE: SPI Transmit Data Register Empty Interrupt Enable

* MODF: Mode Fault Error Interrupt Enable

e OVRES: Overrun Error Interrupt Enable

* ENDRX: End of Receive Buffer Interrupt Enable

* ENDTX: End of Transmit Buffer Interrupt Enable
* RXBUFF: Receive Buffer Full Interrupt Enable

* TXBUFE: Transmit Buffer Empty Interrupt Enable
e TXEMPTY: Transmission Registers Empty Enable
* NSSR: NSS Rising Interrupt Enable

0 = No effect.

1 = Enables the corresponding interrupt.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

303

s A T32AP7002

20.8.7 SPI Interrupt Disable Register

Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - S T - T -]
23 22 21 20 19 18 17 16

- T - - S S I R
15 14 13 12 11 10 9 8

| - | - - - | - - | txempTy [NSSrR |
7 6 5 4 3 2 1 0

| TXBUFE | RXBUFF ENDTX ENDRX | OVRES MODF | TDRE | RDRF |

» RDRF: Receive Data Register Full Interrupt Disable
e TDRE: SPI Transmit Data Register Empty Interrupt Disable

» MODF: Mode Fault Error Interrupt Disable

e OVRES: Overrun Error Interrupt Disable

* ENDRX: End of Receive Buffer Interrupt Disable

* ENDTX: End of Transmit Buffer Interrupt Disable
* RXBUFF: Receive Buffer Full Interrupt Disable

* TXBUFE: Transmit Buffer Empty Interrupt Disable
e TXEMPTY: Transmission Registers Empty Disable
* NSSR: NSS Rising Interrupt Disable

0 = No effect.

1 = Disables the corresponding interrupt.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

304

s A T32AP7002

20.8.8 SPI Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - S T - T -]
23 22 21 20 19 18 17 16

- T - - S S I R
15 14 13 12 11 10 9 8

| - | - - - | - - | txempTy [NSSrR |
7 6 5 4 3 2 1 0

| TXBUFE | RXBUFF ENDTX ENDRX | OVRES MODF | TDRE | RDRF |

» RDRF: Receive Data Register Full Interrupt Mask
e TDRE: SPI Transmit Data Register Empty Interrupt Mask

» MODF: Mode Fault Error Interrupt Mask

» OVRES: Overrun Error Interrupt Mask

* ENDRX: End of Receive Buffer Interrupt Mask

* ENDTX: End of Transmit Buffer Interrupt Mask
* RXBUFF: Receive Buffer Full Interrupt Mask

e TXBUFE: Transmit Buffer Empty Interrupt Mask
e TXEMPTY: Transmission Registers Empty Mask
* NSSR: NSS Rising Interrupt Mask

0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

305

s A T32AP7002

20.8.9 SPI Chip Select Register

Name: CSRO0... CSR3

Access Type: Read/Write
31 30 29 28 27 26 25 24

| DLYBCT |
23 22 21 20 19 18 17 16

| DLYBS |
15 14 13 12 11 10 9 8

| SCBR |
7 6 5 4 3 2 1 0

| BITS CSAAT - NCPHA cpoL |

» CPOL: Clock Polarity
0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.

* NCPHA: Clock Phase
0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.

e CSAAT: Chip Select Active After Transfer
0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.
» BITS: Bits Per Transfer

The BITS field determines the number of data bits transferred. Reserved values should not be used, see Table 20-4 on
page 307.

Alm L 306

32054D-AVR32-10/07 I ©

s A T32AP7002

Table 20-4. BITS, Bits Per Transfer

BITS Bits Per Transfer
0000 8
0001 9
0010 10
0011 11
0100 12
0101 13
0110 14
0111 15
1000 16
1001 Reserved
1010 Reserved
1011 Reserved
1100 Reserved
1101 Reserved
1110 Reserved
1111 Reserved

* SCBR: Serial Clock Baud Rate

In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud
rate:

If FDIV is O:
SPCK Baudrate = MCK
SCBR
If FDIV is 1:
SPCK Baudrate = __MCK__
(N x SCBR)

Note: N =32

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at O can lead to unpredictable results.
At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.

* DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

Alm L 307

32054D-AVR32-10/07 I ©

s A T32AP7002

Otherwise, the following equations determine the delay:

If FDIV is O:
Delay Before SPCK = 2LYBS
MCK
If FDIV is 1:
Delay Before SPCK = NXDLYBS
MCK

Note: N =32

» DLYBCT: Delay Between Consecutive Transfers
This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.

Otherwise, the following equation determines the delay:

If FDIV is O:

32 xDLYBCT , SCBR

Delay Between Consecutive Transfers =
y MCK 2MCK

If FDIV is 1:

32xNxDLYBCT A NxSCBR
MCK 2MCK

Delay Between Consecutive Transfers

Note: N =32

Alm L 308

32054D-AVR32-10/07 I ©

s A T32AP7002

21. Two-wire Interface (TWI)

Rev: 1.8.0.1

21.1 Features
» Compatible with Philips’ I>C protocol
* One, Two or Three Bytes for Slave Address
* Sequential Read/Write Operations

21.2 Description

The Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of
one clock line and one data line with speeds of up to 400 Kbits per second, based on a byte-ori-
ented transfer format. It can be used with any Atmel two-wire bus Serial EEPROM. The TWI is
programmable as a master with sequential or single-byte access. A configurable baud rate gen-
erator permits the output data rate to be adapted to a wide range of core clock frequencies.

21.3 Block Diagram

Figure 21-1. Block Diagram

Peripheral Bus

Bridge
G —p < > <—>| | TWCK
PIO
Two-wire > ‘—’D TWD
Power MCK Interface
Manager
TwWI
Interrupt ,| Interrupt
Controller
21.4 Application Block Diagram
Figure 21-2. Application Block Diagram
VDD
R R
) TWD
Host with Y e >
TWI
Interface |1 WCK >
AT24LC16 AT24LC16 LCD Controller
U1l u2 U3
Slave 1 Slave 2 Slave 3

AIMEL 309

32054D-AVR32-10/07 I ©

s A T32AP7002

214.1

I/0 Lines Description

Table 21-1. 1/O Lines Description

Pin Name Pin Description Type
TWD Two-wire Serial Data Input/Output
TWCK Two-wire Serial Clock Input/Output

21.5 Product Dependencies

2151

215.2

2153

I/O Lines

Both TWD and TWCK are bi-directional lines, connected to a positive supply voltage via a cur-
rent source or pull-up resistor (see Figure 21-2 on page 309). When the bus is free, both lines
are high. The output stages of devices connected to the bus must have an open-drain or open-
collector to perform the wired-AND function.

TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the programmer
must program the PIO controller to dedicate TWD and TWCK as peripheral lines.

Power Management

Interrupt

32054D-AVR32-10/07

The TWI clock is generated by the power manager. Before using the TWI, the programmer must
ensure that the TWI clock is enabled in the power manager.

In the TWI description, Master Clock (MCK) is the clock of the peripheral bus to which the TWI is
connected.

The TWI interface has an interrupt line connected to the interrupt controller. In order to handle
interrupts, the interrupt controller must be programmed before configuring the TWI.

Alm L 310

L ________________(0G]

s A T32AP7002

21.6 Functional Description

21.6.1 Transfer format

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must
be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure
21-4 on page 311).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure
21-3 on page 311).

* A high-to-low transition on the TWD line while TWCK is high defines the START condition.
« A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 21-3. START and STOP Conditions

Start Address R/W Ack Data Ack Data Ack Stop

21.6.2 Modes of Operation
The TWI has two modes of operation:

* Master transmitter mode
* Master receiver mode

The TWI Control Register (CR) allows configuration of the interface in Master Mode. In this
mode, it generates the clock according to the value programmed in the Clock Waveform Gener-
ator Register (CWGR). This register defines the TWCK signal completely, enabling the interface
to be adapted to a wide range of clocks.

21.6.3 Transmitting Data
After the master initiates a Start condition, it sends a 7-bit slave address, configured in the Mas-
ter Mode register (DADR in MMR), to notify the slave device. The bit following the slave address
indicates the transfer direction (write or read). If this bit is 0, it indicates a write operation (trans-
mit operation). If the bit is 1, it indicates a request for data read (receive operation).

The TWI transfers require the slave to acknowledge each received byte. During the acknowl-
edge clock pulse, the master releases the data line (HIGH), enabling the slave to pull it down in
order to generate the acknowledge. The master polls the data line during this clock pulse and
sets the NAK bit in the status register if the slave does not acknowledge the byte. As with the

Alm L 311

32054D-AVR32-10/07 I ©

s A T32AP7002

other status bits, an interrupt can be generated if enabled in the interrupt enable register (IER).
After writing in the transmit-holding register (THR), setting the START bit in the control register

starts the transmission. The data is shifted in the internal shifter and

when an acknowledge is

detected, the TXRDY bit is set until a new write in the THR (see Figure 21-6 below). The master

generates a stop condition to end the transfer.

The read sequence begins by setting the START bit. When the RXRDY bit is set in the status

register, a character has been received in the receive-holding register
reset when reading the RHR.

(RHR). The RXRDY bit is

The TWI interface performs various transfer formats (7-bit slave address, 10-bit slave address).
The three internal address bytes are configurable through the Master Mode register (MMR). If
the slave device supports only a 7-bit address, IADRSZ must be set to 0. For a slave address
higher than 7 bits, the user must configure the address size (IADRSZ) and set the other slave

address bits in the internal address register (IADR).

Figure 21-5. Master Write with One, Two or Three Bytes Internal Address and One Data Byte
Three bytes internal address

N D €O O CLED € G € G € €D € &

Two bytes internal address

N EED D € G €@ CET) € S5 € &

One byte internal address

o)5 X_oror SR W X o XD

Figure 21-6. Master Write with One Byte Internal Address and Multiple Data Bytes

o X oo XX X om XX X | (X o X

TXCOMP—I\

o XX
/T

Write THR

TXRDY |y 1 ______ x |

Write THR Write THR Write THR

Figure 21-7. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

Three bytes internal address
o X5 X oaor X w X A Xnorea16)X A X aprase) X A X moro) X a4 X s X oaor X & X A

o O
NNED LT €D € () €) €9 € ETE € € € €@ O

Two bytes internal address

One byte internal address

i X5 X 0mor X oo XX S Ko T omn GO

ATMEL

32054D-AVR32-10/07 I ©

312

AT32AP7002

Figure 21-8. Master Read with One Byte Internal Address and Multiple Data Bytes

N ED D D O T €9 6 D O € G CH T € ©
TXCOMPT\

)) [—
Write START Bit l Write STOP Bit l
RXRDY [/—I /I
Read RHR Read RHR

e S = Start

e P = Stop

« W = Write
* R = Read

* A = Acknowledge

« N = Not Acknowledge

* DADR= Device Address
* IADR = Internal Address

Figure 21-9 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates the
use of internal addresses to access the device.

Figure 21-9. Internal Address Usage

S W
T R S
A . | T
R Device T FIRST SECOND o
T Address E WORD ADDRESS WORD ADDRESS DATA P
|0|_I—| | | LI I N I B | | | LI I N I B | | | LI I N I B | | |_|

D_l_l_l 1 T T T | T T T | T T T |

M LRA M A LA A

S S/ C S C SC C

B BWK B K BK K

AIMEL 313

32054D-AVR32-10/07 I ©

AT32AP7002

21.6.4 Read/Write Flowcharts

The following flowcharts shown in Figure 21-10 on page 314 and in Figure 21-11 on page 315
give examples for read and write operations in Master Mode. A polling or interrupt method can
be used to check the status bits. The interrupt method requires that the interrupt enable register
(IER) be configured first.

Figure 21-10. TWI Write in Master Mode

START

Set TWI clock:
CWGR = clock

Set the control register:
- Master enable
CR = MSEN

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit
Write ==> bit MREAD =0

Internal address size = 0?7

Set theinternal address
IADR = address

Yes

Load transmit register
THR = Data to send

Read status register

THR = data to send

Data to send?
Yes

Read status register

Alm L 314

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 21-11. TWI Read in Master Mode

START

Set TWI clock:
CWGR = clock

Set the control register:
- Master enable
CR = MSEN

Set the Master Mode register:
- Device slave address
- Internal address size
- Transfer direction bit
Read ==> bit MREAD =0

Internal address size = 0?

Set the internal address
IADR = address

Yes

Start the transfer
CR = START

Read status register

RXRDY = 0?

Read RHR

Data to read?
Yes

Stop the transfer
CR = STOP

Read status register

AlMEL 315

32054D-AVR32-10/07 I ©

s A T32AP7002

21.7 TWI User Interface

21.7.1 Register Mapping

Table 21-2. Two-wire Interface (TWI) User Interface

Offset Register Name Access Reset Value
0x0000 Control Register CR Write-only N/A
0x0004 Master Mode Register MMR Read/Write 0x0000
0x0008 Reserved - - -
0x000C Internal Address Register IADR Read/Write 0x0000
0x0010 Clock Waveform Generator Register CWGR Read/Write 0x0000
0x0020 Status Register SR Read-only 0x0008
0x0024 Interrupt Enable Register IER Write-only N/A
0x0028 Interrupt Disable Register IDR Write-only N/A
0x002C Interrupt Mask Register IMR Read-only 0x0000
0x0030 Receive Holding Register RHR Read-only 0x0000
0x0034 Transmit Holding Register THR Read/Write 0x0000

AIMEL 316

32054D-AVR32-10/07 I ©

s A T32AP7002

21.7.2 TWI Control Register

Register Name: CR
Access Type: Write-only

31 30 29 28 27 26 25 24
. - r - ¢ - - [- [- | N
23 22 21 20 19 18 17 16
. - r - ¢ - - [- [- /| S
15 14 13 12 11 10 9 8
. - - ¢ - { - [- [- | - [-]
7 6 5 4 3 2 1 0
|SWRST| - | - | - | MSDIS | MSEN | STOP | START |

* START: Send a START Condition
0 = No effect.
1 = A frame beginning with a START bit is transmitted according to the settings in the mode register.

This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a
write operation, a frame is sent with the mode register as soon as the user writes a character in the holding register.

» STOP: Send a STOP Condition

0 = No effect.

1 = STOP Condition is sent just after completing the current byte transmission in master read or write mode.
In single data byte master read or write, the START and STOP must both be set.

In multiple data bytes master read or write, the STOP must be set before ACK/NACK bit transmission.

In master read mode, if a NACK bit is received, the STOP is automatically performed.

In multiple data write operation, when both THR and shift register are empty, a STOP condition is automatically sent.
+ MSEN: TWI Master Transfer Enabled

0 = No effect.

1 =1f MSDIS = 0, the master data transfer is enabled.

» MSDIS: TWI Master Transfer Disabled

0 = No effect.

1 = The master data transfer is disabled, all pending data is transmitted. The shifter and holding characters (if they contain
data) are transmitted in case of write operation. In read operation, the character being transferred must be completely
received before disabling.

« SWRST: Software Reset
0 = No effect.
1 = Equivalent to a system reset.

Alm L 317

32054D-AVR32-10/07 I ©

s A T32AP7002

21.7.3 TWI Master Mode Register

Register Name: MMR

Address Type: Read/Write
31 30 29 28 27 26 25 24

- T - S R R - - —]
23 22 21 20 19 18 17 16

| - | DADR |
15 14 13 12 11 10 9 8

| - | - | - | MREAD | - | - | IADRSZ |
7 6 5 4 3 2 1 0

 |[ADRSZ: Internal Device Address Size

IADRSZ[9:8]

No internal device address (Byte command protocol)

One-byte internal device address

Two-byte internal device address

R |k | OO
R O |+ | O

Three-byte internal device address

« MREAD: Master Read Direction

0 = Master write direction.

1 = Master read direction.

« DADR: Device Address

The device address is used in Master Mode to access slave devices in read or write mode.

AIMEL 318

32054D-AVR32-10/07 I ©

s A T32AP7002

21.7.4

TWI Internal Address Register

Register Name: IADR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| IADR |
15 14 13 12 11 10 9 8
| IADR |
7 6 5 4 3 2 1 0
IADR |

* IADR: Internal Address
0, 1, 2 or 3 bytes depending on IADRSZ.

— Low significant byte address in 10-bit mode addresses.

32054D-AVR32-10/07

ATMEL

319

s A T32AP7002

21.7.5 TWI Clock Waveform Generator Register

Register Name: CWGR

Access Type: Read/Write
31 30 29 28 27 26 25 24

— 1 - 1T - T - T - T - - —]
23 22 21 20 19 18 17 16

. - rr - r - [- [- /] CKDIV |
15 14 13 12 11 10 9 8

| CHDIV |
7 6 5 4 3 2 1 0

| CLDIV |

» CLDIV: Clock Low Divider
The SCL low period is defined as follows:

Tiow = ((CLDIV x 27PM) 4 3) % T, o

» CHDIV: Clock High Divider
The SCL high period is defined as follows:

Thigh = ((CHDIV x 29PY) 13) % Tyex

» CKDIV: Clock Divider
The CKDIV is used to increase both SCL high and low periods.

Alm L 320

32054D-AVR32-10/07 I ©

s A T32AP7002

21.7.6 TWI Status Register

Register Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - ¢ - { - [- [- | - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- /| - -]
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- /| - [Nack |
7 6 5 4 3 2 1 0

| — | — | - | - | - | TXRDY | RXRDY | TXCOMP |

 TXCOMP: Transmission Completed
0 = In master, during the length of the current frame. In slave, from START received to STOP received.

1 = When both holding and shift registers are empty and STOP condition has been sent (in Master), or when MSEN is set
(enable TWI).

 RXRDY: Receive Holding Register Ready

0 = No character has been received since the last RHR read operation.

1 = A byte has been received in theRHR since the last read.

« TXRDY: Transmit Holding Register Ready

0 = The transmit holding register has not been transferred into shift register. Set to 0 when writing into THR register.

1 = As soon as data byte is transferred from THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

* NACK: Not Acknowledged
0 = Each data byte has been correctly received by the far-end side TWI slave component.
1 = A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP. Reset after read.

Alm L 321

32054D-AVR32-10/07 I ©

s A T32AP7002

21.7.7 TWI Interrupt Enable Register

Register Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - | Nack |
7 6 5 4 3 2 1 0

| — | — | - | - | - | TXRDY | RXRDY | TXCOMP |

TXCOMP: Transmission Completed
RXRDY: Receive Holding Register Ready
» TXRDY: Transmit Holding Register Ready
* NACK: Not Acknowledge

0 = No effect.

1 = Enables the corresponding interrupt.

32054D-AVR32-10/07

ATMEL

322

s A T32AP7002

21.7.8 TWI Interrupt Disable Register

Register Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

. - - ¢ - { - [- [- | - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- /| - -]
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- /| - [Nack |
7 6 5 4 3 2 1 0

| — | — | - | - | - | TXRDY | RXRDY | TXCOMP |

TXCOMP: Transmission Completed
RXRDY: Receive Holding Register Ready
TXRDY: Transmit Holding Register Ready
» NACK: Not Acknowledge

0 = No effect.

1 = Disables the corresponding interrupt.

32054D-AVR32-10/07

ATMEL

323

s A T32AP7002

21.7.9 TWI Interrupt Mask Register

Register Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - ¢ - { - [- [- | - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- /| - -]
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- /| - [Nack |
7 6 5 4 3 2 1 0

| — | — | - | - | - | TXRDY | RXRDY | TXCOMP |

TXCOMP: Transmission Completed
RXRDY: Receive Holding Register Ready
TXRDY: Transmit Holding Register Ready
» NACK: Not Acknowledge

0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

32054D-AVR32-10/07

ATMEL

324

s A T32AP7002

21.7.10 TWI Receive Holding Register

Register Name: RHR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - ¢ - { - [- [- | - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- /| - -]
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- /| S
7 6 5 4 3 2 1 0

| RXDATA |

« RXDATA: Master or Slave Receive Holding Data

A mE|,® 325

32054D-AVR32-10/07

s A T32AP7002

21.7.11 TWI Transmit Holding Register

Register Name: THR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - - ¢ - { - [- [- | - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- /| - -]
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- /| S
7 6 5 4 3 2 1 0

| TXDATA |

» TXDATA: Master or Slave Transmit Holding Data

A mE|,® 326

32054D-AVR32-10/07

s A T32AP7002

22. PS/2 Module (PSIF)
Rev: 1.0.0.0

22.1 Features

PS/2 Host

* Receive and transmit capability

* Parity generation and error detection
e Overrun error detection

22.2 Description

The PS/2 module provides host functionality allowing the MCU to interface PS/2 devices such as
keyboard and mice. The module is capable of both host-to-device and device-to-host
communication.

22.3 Product Dependencies
2231 I/O Lines
The PS/2 may be multiplexed with PIO lines. The programmer must first program the P1O con-
troller to give control of the pins to the PS/2 module.
22.3.2 Power Management
The clock for the PS/2 module is generated by the power manager. The programmer must
ensure that the PS/2 clock is enabled in the power manager before using the PS/2 module.
22.3.3 Interrupt

The PS/2 module has an interrupt line connected to the interrupt controller. Handling the PS/2
interrupt requires programming the interrupt controller before configuring the PS/2 module.

22.4 The PS/2 Protocol
The PS/2 protocol is a bidirectional synchronous serial communication protocol. It connects a
single master - referred to as the ‘host’ - to a single slave - referred to as the ‘device’. Communi-
cation is done through two lines called ‘data’ and ‘clock’. Both of these must be open-drain or
open-collector with a pullup resistor to perform a wired-AND function. When the bus is idle, both
lines are high.

The device always generates the clock signal, but the host may pull the clock low to inhibit trans-
fers. The clock frequency is in the range 10-16.7 kHz. Both the host and the slave may initiate a
transfer, but the host has ultimate control of the bus.

Data are transmitted one byte at a time in a frame consisting of 11-12 bits. The transfer format is
described in detail below.

224.1 Device to host communication
The device can only initiate a transfer when the bus is idle. If the host at any time pulls the clock
low, the device must stop transferring data and prepare to receive data from the host.

The device transmits data using a 11-bit frame. The device writes a bit on the data line when the
clock is high, and the host reads the bit when the clock is low.

The format of the frame is:

Alm L 327

32054D-AVR32-10/07 I ©

AT32AP7002

« 1 start bit - always 0.

- 8 data bits, least significant bit first.
« 1 parity bit - odd parity.

« 1 stop bit - always 1.

Figure 22-1. Device to host transfer

cLock [[L L L] L]
DATA L [)X T T X

Blt4><’—‘
Hr
Hr
H
H
H

Bit 5
Bit 6
Bit 7
Parity
Stop

Start
Bit 0
Bit 1
Bit 2
Bit 3

22.4.2 Host to device communication
Because the device always generates the clock, host to device communication is done differ-

ently than device to host communication.
 The host starts by inhibiting communication by pulling clock low for a minimum of 100

microseconds.
» Then applies a “request-to-send” by releasing clock and pulling data low.

The device must check for this state at least every 10 milliseconds. Once it detects a request-to-
send, it must start generating the clock and receive one frame of data. The host writes a data bit

when the clock is low, and the device reads the bit when the clock is high.

The format of the frame is:

« 1 start bit - always 0.

8 data bits - least significant bit first.

1 parity bit - odd parity

1 stop bit - always one.

« 1 acknowledge bit - the device acknowledges by pulling data low.

Alm L 328

L ________________(0G]

32054D-AVR32-10/07

s A T32AP7002

Figure 22-2. Host to device transfer

CLOCK L
DATA 1 f t It X X X X X X AR\ [

Host Clock
Host Data | £ X X X X X X X X /

Device Clock S [A S I B

Device Data

T

Inhibit
Start
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

Parity
Stop
Ack

22.5 Functional Description

2251 Prescaler
For all data transfers on the PS/2 bus, the device is responsible for generating the clock and
thus controlling the timing of the communications. When a host wants to initiate a transfer how-
ever, it needs to pull the clock line low for a given time (minimum 100us). A clock prescaler
controls the timing of the transfer request pulse.

Before initiating host to device transfers, the programmer must write PSR (Prescale Register).
This value determines the length of the “transfer request” pulse and is found by:

PRSCV = Pulse length * PS/2 module frequency

According to the PS/2 specifications, the pulse length should be at least 100us. The PS/2 mod-
ule frequency is the frequency of the peripheral bus to which the module is connected.

225.2 Receiving data
The receiver is enabled by writing the RXEN bit in CR (Control Register) to ‘1’. When enabled,
the receiver will continuously receive data transmitted by the device. The data is stored in RHR
(Receive Holding Register). When a byte has been received, the RXRDY bit in SR (Status Reg-
ister) is set.

For each received byte, the parity is calculated. If it doesn’t match the parity bit received from the
device, the PARITY bit in SR is set. The received byte should then be discarded.

If a received byte in RHR is not read before a new byte has been received, the overrun bit -
OVRUN in SR is set. The new data is stored in RHR overwriting the previously received byte.

2253 Transmitting data
The transmitter is enabled by writing the TXEN bit in CR to ‘1’. When enabled, a data transfer to
the device will be started by writing the transmit data to THR (Transmit Holding Register). Any
ongoing transfer from the device will be aborted.

Alm L 329

32054D-AVR32-10/07 I ©

s A T32AP7002

2254 Interrupts

When the data written to THR has been transmitted to the device, the TXRDY bit in SR will be
set and a new value can be loaded into THR.

At the end of the transfer, the device should acknowledge the transfer by pulling the data line
low for one cycle. If an acknowledge is not detected, the NACK bit in SR will be set.

If the device fails to acknowledge the frame, the NACK bit in SR will be set. The software is
responsible for any retries.

All transfers from host to device are started by the host pulling the clock line low for at least
100ps. The programmer must ensure that the prescaler is programmed to generate correct
pulse length.

The PS/2 module can be configured to signal an interrupt when one of the bits in SR is set. The
interrupt is enabled by writing to IER (Interrupt Enable Register) and disabled by writing to IDR
(Interrupt Disable Register). The current setting of an interrupt line can be seen by reading IMR
(Interrupt Mask Register).

22.6 User Interface

Offset Register Register Name Access Reset
0x000 PS/2 Control Register 0 CRO Write-only -
0x004 PS/2 Receive Holding Register 0 RHRO Read-only 0x0
0x008 PS/2 Transmit Holding Register 0 THRO Write-only -
0x00C RESERVED - - -
0x010 PS/2 Status Register 0 SRO Read-only 0x0
0x014 PS/2 Interrupt Enable Register 0 IERO Write-only -
0x018 PS/2 Interrupt Disable Register 0 IDRO Write-only -
0x01C PS/2 Interrupt Mask Register 0 IMRO Read-only 0x0
0x020 PS/2 Prescale Register 0 PSRO Write-only 0x0
0x100 PS/2 Control Register 1 CR1 Write-only -
0x104 PS/2 Receive Holding Register 1 RHR1 Read-only 0x0
0x108 PS/2 Transmit Holding Register 1 THR1 Write-only -
0x10C RESERVED - - -
0x110 PS/2 Status Register 1 SR1 Read-only 0x0
0x114 PS/2 Interrupt Enable Register 1 IER1 Write-only -
0x118 PS/2 Interrupt Disable Register 1 IDR1 Write-only -
0x11C PS/2 Interrupt Mask Register 1 IMR1 Read-only 0x0
0x120 PS/2 Prescale Register 1 PSR1 Write-only 0x0

32054D-AVR32-10/07

AIMEL 330

L ________________(0G]

s A T32AP7002

22.6.1 PS/2 Control Register

Name: CRO, CR1

Access Type: Write-only
31 30 29 28 27 26 25 24

. - - - - - [- [- [- |
23 22 21 20 19 18 17 16

- ! - - -t - [- [- [- |
15 14 13 12 11 10 9 8

‘ SWRST‘ - ‘ - ‘ - ‘ - ‘ - ‘ TXDIS ‘ TXEN |
7 6 5 4 3 2 1 0

I S I B B . S R

SWRST: Software Reset
Writing this strobe causes a reset of the PS/2 interface module. Data shift registers are cleared and configuration registers are
reset to default values.
e TXDIS: Transmitter Disable
0: No effect.
1: Disables the transmitter.
e TXEN: Transmitter Enable
0: No effect.
1: Enables the transmitter if TXDIS=0.
* RXDIS: Receiver Disable
0: No effect.
1: Disables the receiver.
* RXEN: Receiver Enable
0: No effect.
1: Enables the receiver if RXDIS=0.

AIMEL 331

32054D-AVR32-10/07 I ©

s A T32AP7002

22.6.2 PS/2 Receive Holding Register

Name: RHRO, RHR1

Access Type: Read-only
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

‘ RXDATA |

¢ RXDATA: Receive Data
Data received from the device.

A mE|,® 332

32054D-AVR32-10/07

s A T32AP7002

22.6.3 PS/2 Transmit Holding Register

Name: THRO, THR1

Access Type: Write-only
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

‘ TXDATA |

e TXDATA: Transmit Data
« Data to be transmitted to the device.

A mE|,® 333

32054D-AVR32-10/07

s A T32AP7002

22.6.4 PS/2 Status Register

Name: SRO, SR1

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - - - - [- [- [- |
23 22 21 20 19 18 17 16

- ! - - -t - [- [- [- |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ - ‘ PARITY ‘ NACK |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘TXEMPTY‘ TXRDY |

* PARITY:

0: No parity errors detected on incoming data since last read of SR.
1: At least one parity error detected on incoming data since last read of SR.
* NACK: Not Acknowledge
0: All transmissions has been properly acknowledged by the device since last read of SR.
1: At least one transmission was not properly acknowledged by the device since last read of SR.
* OVRUN: Overrun
0: No receive overrun has occured since the last read of SR.
1: At least one receive overrun condition has occured since the last read of SR.
* RXRDY: Receiver Ready
0: RHR is empty.
1: RHR contains valid data received from the device.
TXEMPTY: Transmitter Empty
0: Data remains in THR or is currently being transmitted from the shift register.
1: Both THR and the shift register are empty.
* TXRDY: Transmitter Ready
0: Data has been loaded in THR and is waiting to be loaded into the shift register.
1: THR is empty.

AIMEL 334

32054D-AVR32-10/07 I ©

s A T32AP7002

22.6.5 PS/2 Interrupt Enable Register

Name: IERO, IER1

Access Type: Write-only
31 30 29 28 27 26 25 24

. - - - - - [- [- [- |
23 22 21 20 19 18 17 16

. - r - r - r - < - - [- [- |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ - ‘ PARITY ‘ NACK |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘TXEMPTY‘ TXRDY |

* PARITY: PARITY Interrupt Enable
* NACK: Not Acknowledge Interrupt Enable
* OVRUN: Overrun Interrupt Enable
* RXRDY: Overrun Interrupt Enable
e TXEMPTY: Overrun Interrupt Enable
e TXRDY: Overrun Interrupt Enable
0: No effect.
1: Enables the corresponding interrupt.

AIMEL 335

32054D-AVR32-10/07 I ©

s A T32AP7002

22.6.6 PS/2 Interrupt Disable Register

Name: IDRO, IDR1

Access Type: Write-Only
31 30 29 28 27 26 25 24

. - - - - - [- [- [- |
23 22 21 20 19 18 17 16

. - r - r - r - < - - [- [- |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ - ‘ PARITY ‘ NACK |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘TXEMPTY‘ TXRDY |

* PARITY: PARITY Interrupt Disable
* NACK: Not Acknowledge Interrupt Disable
* OVRUN: Overrun Interrupt Disable
* RXRDY: Overrun Interrupt Disable
e TXEMPTY: Overrun Interrupt Disable
e TXRDY: Overrun Interrupt Disable
0: No effect.
1: Disables the corresponding interrupt.

AIMEL 336

32054D-AVR32-10/07 I ©

s A T32AP7002

22.6.7 PS/2 Interrupt Mask Register

Name: IMRO, IMR1

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - - - - [- [- [- |
23 22 21 20 19 18 17 16

. - r - r - r - < - - [- [- |
15 14 13 12 11 10 9 8

‘ - ‘ - ‘ - ‘ - ‘ - ‘ - ‘ PARITY ‘ NACK |
7 6 5 4 3 2 1 0

‘ - ‘ - ‘ OVRUN ‘ RXRDY ‘ - ‘ - ‘TXEMPTY‘ TXRDY |

* PARITY: PARITY Interrupt Mask

* NACK: Not Acknowledge Interrupt Mask

* OVRUN: Overrun Interrupt Mask

* RXRDY: Overrun Interrupt Mask

e TXEMPTY: Overrun Interrupt Mask

e TXRDY: Overrun Interrupt Mask
0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.

AIMEL 337

32054D-AVR32-10/07 I ©

s A T32AP7002

22.6.8 PS/2 Prescale Register

Name: PSRO, PSR1

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | | | | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| : | : | i | PRSCV |
7 6 5 4 3 2 1 0

‘ PRSCV |

e PRSCV: Prescale Value

A mE|,® 338

32054D-AVR32-10/07

s A T32AP7002

23. Synchronous Serial Controller (SSC)

23.1 Features

23.2 Description

32054D-AVR32-10/07

Rev: 2.2.0.0

* Provides Serial Synchronous Communication Links Used in Audio and Telecom Applications

e Contains an Independent Receiver and Transmitter and a Common Clock Divider

* Interfaced with Two PDC Channels (DMA Access) to Reduce Processor Overhead

* Offers a Configurable Frame Sync and Data Length

* Receiver and Transmitter Can be Programmed to Start Automatically or on Detection of Different
Events on the Frame Sync Signal

* Receiver and Transmitter Include a Data Signal, a Clock Signal and a Frame Synchronization
Signal

The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link
with external devices. It supports many serial synchronous communication protocols generally
used in audio and telecom applications such as 12S, Short Frame Sync, Long Frame Sync, etc.

The SSC contains an independent receiver and transmitter and a common clock divider. The
receiver and the transmitter each interface with three signals: the TD/RD signal for data, the
TK/RK signal for the clock and the TF/RF signal for the Frame Sync. The transfers can be pro-
grammed to start automatically or on different events detected on the Frame Sync signal.

The SSC'’s high-level of programmability and its two dedicated PDC channels of up to 32 bits
permit a continuous high bit rate data transfer without processor intervention.

Featuring connection to two PDC channels, the SSC permits interfacing with low processor
overhead to the following:

* CODEC's in master or slave mode
« DAC through dedicated serial interface, particularly 12S
« Magnetic card reader

AIMEL 339

L ________________(0G]

s A T32AP7002

23.3 Block Diagram
Figure 23-1. Block Diagram
High |«

Speed
Bus

Peripheral Bus

Bridge
A
b’ PDC
Peripheral
Bus
D TF
(—»
TK
v]
—] ™
Power | MCK
Manager SSC Interface PIO
> <—>|:| RF
I | RK
Interrupt Control
‘_>|:| RD

SSC Interrupt

23.4 Application Block Diagram

Figure 23-2. Application Block Diagram

0S or RTOS Driver Power Interrupt Test
Management Management Management
SSC
Serial AUDIO Codec Time Slot Frame Line Interface
Management | Management

Alm L 340

32054D-AVR32-10/07 I ©

s A T32AP7002

23.5 Pin Name List

Table 23-1. 1/O Lines Description

Pin Name Pin Description Type
RF Receiver Frame Synchro Input/Output
RK Receiver Clock Input/Output
RD Receiver Data Input

TF Transmitter Frame Synchro Input/Output
TK Transmitter Clock Input/Output
D Transmitter Data Output

23.6 Product Dependencies

23.6.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver 1/O lines to the SSC peripheral mode.

Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter I/O lines to the SSC peripheral mode.

23.6.2 Power Management
The SSC clock is generated by the power manager. Before using the SSC, the programmer
must ensure that the SSC clock is enabled in the power manager.

In the SSC description, Master Clock (MCK) is the bus clock of the peripheral bus to which the
SSC is connected.

23.6.3 Interrupt
The SSC interface has an interrupt line connected to the interrupt controller. Handling interrupts
requires programming the interrupt controller before configuring the SSC.

All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt ser-
vice routine can get the interrupt origin by reading the SSC interrupt status register.

23.7 Functional Description

This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.

The receiver and transmitter operate separately. However, they can work synchronously by pro-
gramming the receiver to use the transmit clock and/or to start a data transfer when transmission
starts. Alternatively, this can be done by programming the transmitter to use the receive clock
and/or to start a data transfer when reception starts. The transmitter and the receiver can be pro-
grammed to operate with the clock signals provided on either the TK or RK pins. This allows the
SSC to support many slave-mode data transfers. The maximum clock speed allowed on the TK
and RK pins is the master clock divided by 2.

Alm L 341

32054D-AVR32-10/07 I ©

Figure 23-3. SSC Functional Block Diagram

Transmitter Clock Output
TK
Controller
TK Input >
MCK || Clock o Transmit Clock [TX clock Frame Sync TF
Divider Controller Controller
RX clock ———>
LN S:art]
RE Selector —>| Transmit Shift Register [D
€ > 1 T
Perioheral TXPDC| Transmit Holding Transmit Sync
P - Register Holding Register
Bus
< > Load Shift —1 ¥
User
Interface
Receiver Clock Output
RK
€ > Controller
RK Input — |
Receive Clock [RX Clock Frame Sync RF
Controller Controller
TX Clock —>
RE o
TE Start —>| Receive Shift Register I RD
" | Selector . . J
4 RX PDC| Receive Holding Receive Sync
Register Holding Register
PDC Interrupt Control Load Shift ‘ A

l

Interrupt Controller

23.7.1 Clock Management

32054D-AVR32-10/07

The transmitter clock can be generated by:

« an external clock received on the TK I/O pad
* the receiver clock
« the internal clock divider

The receiver clock can be generated by:

« an external clock received on the RK I/O pad
« the transmitter clock
« the internal clock divider

AT32AP7002

Furthermore, the transmitter block can generate an external clock on the TK I/O pad, and the

receiver block can generate an external clock on the RK 1/O pad.

This allows the SSC to support many Master and Slave Mode data transfers.

ATMEL

L ________________(0G]

342

AT32AP7002

23.7.1.1 Clock Divider

Figure 23-4. Divided Clock Block Diagram

Clock Divider
SSC_CMR
MCK ivi
12-bit Counter DIVIded>CI0Ck

The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its
maximal value is 4095) in the Clock Mode Register CMR, allowing a Master Clock division by up
to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When this field is
programmed to 0, the Clock Divider is not used and remains inactive.

When DIV is set to a value equal to or greater than 1, the Divided Clock has a frequency of Mas-
ter Clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the Master
Clock multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless of
whether the DIV value is even or odd.

Figure 23-5. Divided Clock Generation

MasterCIock||||||||||||
Divided Clock l_

Div=1

' ' '
P

Divided Clock F'requency = MCK/2

MasterCIock|||||||||I|I||

Divided Clock ~ ___| E E : : l_

DIV =3 . :
. Divided Clock Frequency = MCK/6 '
Table 23-2.
Maximum Minimum
MCK /2 MCK /8190
23.7.1.2 Transmitter Clock Management

The transmitter clock is generated from the receiver clock or the divider clock or an external
clock scanned on the TK I/O pad. The transmitter clock is selected by the CKS field in TCMR

(Transmit Clock Mode Register). Transmit Clock can be inverted independently by the CKI bits
in TCMR.

Alm L 343

32054D-AVR32-10/07 I ©

s A T32AP7002

The transmitter can also drive the TK 1/O pad continuously or be limited to the actual data trans-
fer. The clock output is configured by the TCMR register. The Transmit Clock Inversion (CKI)
bits have no effect on the clock outputs. Programming the TCMR register to select TK pin (CKS
field) and at the same time Continuous Transmit Clock (CKO field) might lead to unpredictable
results.

Figure 23-6. Transmitter Clock Management

TK(pin) —

MUX Tri_state _ Clock
Controller 7 Output

Receiver >
Clock

Y

Divider >
Clock

T CKO Data Transfer
CKS
INV i
Tri-state i
Transmitter
L] MUX > Controller e Clock
CKI CKG

23.7.1.3 Receiver Clock Management

32054D-AVR32-10/07

The receiver clock is generated from the transmitter clock or the divider clock or an external
clock scanned on the RK I/O pad. The Receive Clock is selected by the CKS field in RCMR
(Receive Clock Mode Register). Receive Clocks can be inverted independently by the CKI bits
in RCMR.

The receiver can also drive the RK I/O pad continuously or be limited to the actual data transfer.
The clock output is configured by the RCMR register. The Receive Clock Inversion (CKI) bits
have no effect on the clock outputs. Programming the RCMR register to select RK pin (CKS
field) and at the same time Continuous Receive Clock (CKO field) can lead to unpredictable
results.

Alm L 344

L ________________(0G]

s A T32AP7002

23.7.1.4

23.7.2

32054D-AVR32-10/07

Figure 23-7. Receiver Clock Management

RK(pin) — p
MUX Tri-state Clock
Controller - ol
Transmitter o -
Clock
Divider ___ 5
Clock
T CKO Data Transfer
crs INV Tri-state .
> MuX > Controller » Receiver
Clock
CKI CKG

Serial Clock Ratio Considerations
The Transmitter and the Receiver can be programmed to operate with the clock signals provided

on either the TK or RK pins. This allows the SSC to support many slave-mode data transfers. In
this case, the maximum clock speed allowed on the RK pin is:

— Master Clock divided by 2 if Receiver Frame Synchro is input

— Master Clock divided by 3 if Receiver Frame Synchro is output
In addition, the maximum clock speed allowed on the TK pin is:

— Master Clock divided by 6 if Transmit Frame Synchro is input
— Master Clock divided by 2 if Transmit Frame Synchro is output

Transmitter Operations

A transmitted frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured by setting the Transmit Clock Mode Register (TCMR). See Section
“23.7.4" on page 347.

The frame synchronization is configured setting the Transmit Frame Mode Register (TFMR).
See Section “23.7.5” on page 349.

To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and
the start mode selected in the TCMR. Data is written by the application to the THR register then
transferred to the shift register according to the data format selected.

When both the THR and the transmit shift register are empty, the status flag TXEMPTY is set in
SR. When the Transmit Holding register is transferred in the Transmit shift register, the status
flag TXRDY is set in SR and additional data can be loaded in the holding register.

Alm L 345

L ________________(0G]

AT32AP7002

Figure 23-8. Transmitter Block Diagram

RF TF

v

| SSC_CR.TXEN |

| SSC_SR.TXEN |7

| SSC_CR.TXDIS |

SSC_TFMR.DATDEF SSC TCMR.STTDLY
SSC_TFMR.FSDEN
SSC_TFMR.DATNB

SSC_TFMR.MSBF 0 — — TP

* |

Transmitter Clock
—>

Start

Selector

Transmit Shift Register I—

SSC_TFMR.FSDEN
SSC_TCMR.STTDLY

ot
[|

SSC_TFMR.DATLEN 4 SSC_THR | | SSC_TSHR |—SSC_TFMR.FSLEN

23.7.3 Receiver Operations

32054D-AVR32-10/07

A received frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured setting the Receive Clock Mode Register (RCMR). See Section
“23.7.4” on page 347.

The frame synchronization is configured setting the Receive Frame Mode Register (RFMR). See
Section “23.7.5” on page 349.

The receiver uses a shift register clocked by the receiver clock signal and the start mode
selected in the RCMR. The data is transferred from the shift register depending on the data for-
mat selected.

When the receiver shift register is full, the SSC transfers this data in the holding register, the sta-
tus flag RXRDY is set in SR and the data can be read in the receiver holding register. If another
transfer occurs before read of the RHR register, the status flag OVERUN is set in SR and the
receiver shift register is transferred in the RHR register.

AIMEL 346

L ________________(0G]

s A T32AP7002

Figure 23-9. Receiver Block Diagram

| SSC_CR.RXEN |

| ssc_srRRXEN | ———

| SSC_CR.RXDIS |

SSC_RFMR.MSBF SSC_RFMR.DATNB

RF TF
vy |
Receiver Clock Start I
> . . .
Selector 4" Receive Shift Register I —

SSC_RSHR | h SSC_RHR |

SSC_RFMR.FSLEN SSC_RFMR.DATLEN

SSC_RCMR.STTDLY

23.7.4 Start

The transmitter and receiver can both be programmed to start their operations when an event

occurs, respectively in the Transmit Start Selection (START) field of TCMR and in the Receive
Start Selection (START) field of RCMR.

Under the following conditions the start event is independently programmable:

» Continuous. In this case, the transmission starts as soon as a word is written in THR and the

reception starts as soon as the Receiver is enabled.

« Synchronously with the transmitter/receiver

» On detection of a falling/rising edge on TF/RF

» On detection of a low level/high level on TF/RF

« On detection of a level change or an edge on TF/RF
A start can be programmed in the same manner on either side of the Transmit/Receive Clock
Register (RCMR/TCMR). Thus, the start could be on TF (Transmit) or RF (Receive).

Moreover, the Receiver can start when data is detected in the bit stream with the Compare
Functions.

Detection on TF/RF input/output is done by the field FSOS of the Transmit/Receive Frame Mode
Register (TFMR/RFMR).

AIMEL 347

32054D-AVR32-10/07 I ©

AT32AP7002

Figure 23-10. Transmit Start Mode

Tyt
[
TF ' .
(Input) : |
|
TD — : I
- |
Start = Low Level on TF (Output) < X : | STTDLY
T
|
|
Start = Falling Edge on TF D @(BO > ! !
(Output) : | STTDLY
’ |
|
Start = High Level on TF ™ < X
(Output) | | : , STTDLY
|
Start = Rising Edge on TF TD X < BO >- |
(Output) < > . |_STTDLY
|
|
~ ™ Q !
Start = Level Change on TF (Output) @ B1 @@ STTDLY
1
T
TD ! !
Start = Any Edge on TF (Output) o@@ BO > :
| STTDLY

Figure 23-11. Receive Pulse/Edge Start Modes

ST UL LU
RF ! !
(Input) : :
| |
RD L | |
Start = Low Level on RF | |
(Input) C(_ I I STTDLY
-« T T
— Ealli | |
Start = Falling Edge on RF RD @< BO > | |
(Input) | | _STTDLY
| |
Start = High Level on RF RD < % @@
) |
(Input) | | | | STTDLY
Start = Rising Edge on RF RD < X >< BO > :
(Input) | . STTDLY
| |
RD
Start = Level Change on RF ! {
T T
RD | 1
Start = Any Edge on RF (Input) o@@ BO >| :
STTDLY

AIMEL 348

32054D-AVR32-10/07 I ©

s A T32AP7002

23.7.5 Frame Sync

The Transmitter and Receiver Frame Sync pins, TF and RF, can be programmed to generate
different kinds of frame synchronization signals. The Frame Sync Output Selection (FSOS) field
in the Receive Frame Mode Register (RFMR) and in the Transmit Frame Mode Register (TFMR)
are used to select the required waveform.

* Programmable low or high levels during data transfer are supported.

« Programmable high levels before the start of data transfers or toggling are also supported.
If a pulse waveform is selected, the Frame Sync Length (FSLEN) field in RFMR and TFMR pro-
grams the length of the pulse, from 1 bit time up to 16 bit time.

The periodicity of the Receive and Transmit Frame Sync pulse output can be programmed
through the Period Divider Selection (PERIOD) field in RCMR and TCMR.

23.7.5.1 Frame Sync Data

Frame Sync Data transmits or receives a specific tag during the Frame Sync signal.

During the Frame Sync signal, the Receiver can sample the RD line and store the data in the
Receive Sync Holding Register and the transmitter can transfer Transmit Sync Holding Register
in the Shifter Register. The data length to be sampled/shifted out during the Frame Sync signal
is programmed by the FSLEN field in RFMR/TFMR.

Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or
lower than the delay between the start event and the actual data reception, the data sampling
operation is performed in the Receive Sync Holding Register through the Receive Shift Register.

The Transmit Frame Sync Operation is performed by the transmitter only if the bit Frame Sync
Data Enable (FSDEN) in TFMR is set. If the Frame Sync length is equal to or lower than the
delay between the start event and the actual data transmission, the normal transmission has pri-
ority and the data contained in the Transmit Sync Holding Register is transferred in the Transmit
Register, then shifted out.

23.7.5.2 Frame Sync Edge Detection

32054D-AVR32-10/07

The Frame Sync Edge detection is programmed by the FSEDGE field in RFMR/TFMR. This sets
the corresponding flags RXSYN/TXSYN in the SSC Status Register (SR) on frame synchro
edge detection (signals RF/TF).

Alm L 349

L ________________(0G]

AT32AP7002

23.7.6 Receive Compare Modes

Figure 23-12. Receive Compare Modes

v LISV ef e e felvfy
S CTD) Gl GO Gl T

Start

B — e |
FSLEN STDLY DATLEN
Up to 16 Bits
(4 in This Example)

23.7.6.1 Compare Functions
Compare 0 can be one start event of the Receiver. In this case, the receiver compares at each
new sample the last FSLEN bits received at the FSLEN lower bit of the data contained in the
Compare 0 Register (RCOR). When this start event is selected, the user can program the
Receiver to start a new data transfer either by writing a new Compare 0, or by receiving continu-
ously until Compare 1 occurs. This selection is done with the bit (STOP) in RCMR.

23.7.7 Data Format

The data framing format of both the transmitter and the receiver are programmable through the
Transmitter Frame Mode Register (TFMR) and the Receiver Frame Mode Register (RFMR). In
either case, the user can independently select:

« the event that starts the data transfer (START)

« the delay in number of bit periods between the start event and the first data bit (STTDLY)

« the length of the data (DATLEN)

« the number of data to be transferred for each start event (DATNB).

« the length of synchronization transferred for each start event (FSLEN)

* the bit sense: most or lowest significant bit first (MSBF).

Additionally, the transmitter can be used to transfer synchronization and select the level driven
on the TD pin while not in data transfer operation. This is done respectively by the Frame Sync
Data Enable (FSDEN) and by the Data Default Value (DATDEF) bits in TFMR.

Alm L 350

32054D-AVR32-10/07 I ©

s A T32AP7002

Table 23-3. Data Frame Registers
Transmitter Receiver Field Length Comment
TFMR RFMR DATLEN Up to 32 Size of word
TFEMR RFMR DATNB Upto 16 Number of words transmitted in frame
TFMR RFMR MSBF Most significant bit first
TFMR RFMR FSLEN Upto 16 Size of Synchro data register
TFMR DATDEF Oor1l Data default value ended
TFMR FSDEN Enable send TSHR
TCMR RCMR PERIOD Upto 512 Frame size
TCMR RCMR STTDLY Up to 255 Size of transmit start delay

Figure 23-13. Transmit and Receive Frame Format in Edge/Pulse Start Modes

Start

Start
PERIOD
TRRFY |
FSLEN :
|
™ > Sync Data Default Data Data > Default Sync Data ><
(FFSDEN=1) Hrom SSC_TSHR FromDATDEF| From SSC_THR From SSC_THR | FromDATDEE :
|
™ > Default Data Data > Default
(If FSDEN = 0) From | DATDEF From SSC_THR From SSC_THR From |DATDEF !
|
RD > Sync Data Ignored Data Data > Ignored Sync Data ><
To SSC_RSHR To SSC_RHR To SSC_RHR !
STTDLY DATLEN DATLEN
DATNB
Note: 1. Example of input on falling edge of TF/RF.
ATMEL 351
32054D-AVR32-10/07 I ©

AT32AP7002

Figure 23-14. Transmit Frame Format in Continuous Mode

Start

D > Data Data Default ><

From SSC_THR From SSC_THR
>
DATLEN DATLEN

Start: 1. TXEMPTY setto 1
2. Write into the SSC_THR

Note: 1. STTDLY is setto 0. In this example, THR is loaded twice. FSDEN value has no effect on the
transmission. SyncData cannot be output in continuous mode.

Figure 23-15. Receive Frame Format in Continuous Mode

Start = Enable Receiver

RD > Data Data
To SSC_RHR To SSC_RHR
DATLEN DATLEN

Note: 1. STTDLY is setto 0.

23.7.8 Loop Mode
The receiver can be programmed to receive transmissions from the transmitter. This is done by
setting the Loop Mode (LOOP) bit in RFMR. In this case, RD is connected to TD, RF is con-
nected to TF and RK is connected to TK.

23.7.9 Interrupt
Most bits in SR have a corresponding bit in interrupt management registers.

The SSC can be programmed to generate an interrupt when it detects an event. The interrupt is
controlled by writing IER (Interrupt Enable Register) and IDR (Interrupt Disable Register) These
registers enable and disable, respectively, the corresponding interrupt by setting and clearing
the corresponding bit in IMR (Interrupt Mask Register), which controls the generation of inter-
rupts by asserting the SSC interrupt line connected to the interrupt controller.

AIMEL 352

32054D-AVR32-10/07 I ©

AT32AP7002

Figure 23-16. Interrupt Block Diagram

| SSC_IMR |

| SSC_IER | | SSC_IDR |
e Setl lCIear
TXBUFE
ENDTX
Transmitter
TXRDY
TXEMPTY
TXSYNC
Interrupt M’l
RXBUFF Control
ENDRX
Receiver
RXRDY
OVRUN
RXSYNC

23.8 SSC Application Examples

The SSC can support several serial communication modes used in audio or high speed serial
links. Some standard applications are shown in the following figures. All serial link applications
supported by the SSC are not listed here.

Figure 23-17. Audio Application Block Diagram

32054D-AVR32-10/07

Clock SCK
TK
Word Select WS
12S
TF
RECEIVER
Data SD
TD >
SSC

RD Clock SCK
RF Word Select WS ("

))
RK

Data SD C_ Kusex X XX KissXmwsexX >

Left Channel Right Channel

Alm L 353

L ________________(0G]

s A T32AP7002

Figure 23-18. Codec Application Block Diagram

Serial Data Clock (SCLK)
TK
Frame sync (FSYNC)
TF
DE
Serial Data Out CODEC
TD
SSC
Serial Data In
RD [«
RF .
Serial Data Clock (SCLK)
RK Frame sync (FSYNC) First Time Slot

Dstart

Serial Data Out

Serial Data In

Figure 23-19. Time Slot Application Block Diagram

SCLK
TK ®
FSYNC
TF L4 CODEC
First
D Data Out ® Time Slot
SSC)
Data in
RD 'y
RF
RK CODEC
Second
Time Slot

Serial Data Clock (SCLK)

Frame sync (FSYNC) First Time Slot Second Time Slot

Dstart Dend

Serial Data Out

Serial Data in

Alm L 354

32054D-AVR32-10/07 I ©

s A T32AP7002

23.9 Synchronous Serial Controller (SSC) User Interface

Table 23-4. Register Mapping

Offset Register Register Name Access Reset
0x0 Control Register CR Write -
0x4 Clock Mode Register CMR Read/Write 0x0
0x8 Reserved - - -
oxC Reserved - - -
0x10 Receive Clock Mode Register RCMR Read/Write 0x0
0x14 Receive Frame Mode Register RFMR Read/Write 0x0
0x18 Transmit Clock Mode Register TCMR Read/Write 0x0
0x1C Transmit Frame Mode Register TFMR Read/Write 0x0
0x20 Receive Holding Register RHR Read 0x0
0x24 Transmit Holding Register THR Write -
0x28 Reserved - - -
0x2C Reserved - - -
0x30 Receive Sync. Holding Register RSHR Read 0x0
0x34 Transmit Sync. Holding Register TSHR Read/Write 0x0
0x38 Receive Compare 0 Register RCOR Read/Write 0x0
0x3C Receive Compare 1 Register RC1R Read/Write 0x0
0x40 Status Register SR Read 0x000000CC
0x44 Interrupt Enable Register IER Write -
0x48 Interrupt Disable Register IDR Write -
0x4C Interrupt Mask Register IMR Read 0x0

0x50-0xFC Reserved - - -
0x100- 0x124 | Reserved for Peripheral Data Controller (PDC) - - -

AIMEL 355

32054D-AVR32-10/07 I ©

s A T32AP7002

23.9.1 SSC Control Register

Name: CR

Access Type: Write-only
31 30 29 28 27 26 25 24

. - r - r - -+ - 1 - @ - [- |
23 22 21 20 19 18 17 16

. - r - r - -+ - ;r - ; - [- |
15 14 13 12 11 10 9 8

| SWRST | - | - | - | - | - | TXDIS | TXEN |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - [RxDis | RXEN |

« RXEN: Receive Enable
0: No effect.

1: Enables Receive if RXDIS is not set.

 RXDIS: Receive Disable
0: No effect.

1: Disables Receive. If a character is currently being received, disables at end of current character reception.

o TXEN: Transmit Enable
0: No effect.

1: Enables Transmit if TXDIS is not set.

» TXDIS: Transmit Disable
0: No effect.

1: Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission.

» SWRST: Software Reset
0: No effect.

1: Performs a software reset. Has priority on any other bit in CR.

Alm L 356

32054D-AVR32-10/07 I ©

s A T32AP7002

23.9.2 SSC Clock Mode Register

Name: CMR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - r - ¢ - [-] DIV |
7 6 5 4 3 2 1 0

| DIV |

» DIV: Clock Divider
0: The Clock Divider is not active.

Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is MCK/2. The
minimum bit rate is MCK/2 x 4095 = MCK/8190.

A mE|,® 357

32054D-AVR32-10/07

s A T32AP7002

23.9.3 SSC Receive Clock Mode Register
Name: RCMR
Access Type: Read/Write
31 30 29 28 27 26 25 24
| PERIOD |
23 22 21 20 19 18 17 16
| STTDLY |
15 14 13 12 11 10 9 8
| - - | - | STOP START |
7 6 5 4 3 2 1 0
| CKG | CKI | CKO CKS |
* CKS: Receive Clock Selection
CKS Selected Receive Clock
0x0 Divided Clock
0x1 TK Clock signal
0x2 RK pin
0x3 Reserved
» CKO: Receive Clock Output Mode Selection
CKO Receive Clock Output Mode RK pin
0x0 None Input-only
0x1 Continuous Receive Clock Output
0x2 Receive Clock only during data transfers Output
0x3-0x7 Reserved

* CKI: Receive Clock Inversion

0: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock falling edge. The Frame Sync signal out-
put is shifted out on Receive Clock rising edge.

1: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock rising edge. The Frame Sync signal out-
put is shifted out on Receive Clock falling edge.

CKI affects only the Receive Clock and not the output clock signal.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

358

s A T32AP7002

* CKG: Receive Clock Gating Selection

CKG Receive Clock Gating

0x0 None, continuous clock

0x1 Receive Clock enabled only if RF Low
0x2 Receive Clock enabled only if RF High
0x3 Reserved

» START: Receive Start Selection

START Receive Start

0%0 Continuous, as soon as the receiver is enabled, and immediately after the end of
transfer of the previous data.

0ox1 Transmit start
0x2 Detection of a low level on RF signal
0x3 Detection of a high level on RF signal
0x4 Detection of a falling edge on RF signal
0x5 Detection of a rising edge on RF signal
0x6 Detection of any level change on RF signal
0x7 Detection of any edge on RF signal
0x8 Compare 0

0x9-0xF Reserved

» STOP: Receive Stop Selection

0: After completion of a data transfer when starting with a Compare 0, the receiver stops the data transfer and waits for a
new compare 0.

1: After starting a receive with a Compare 0, the receiver operates in a continuous mode until a Compare 1 is detected.

o STTDLY: Receive Start Delay
If STTDLY is not O, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied.

Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG
(Receive Sync Data) reception.
* PERIOD: Receive Period Divider Selection

This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no
PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD+1) Receive Clock.

AIMEL 359

32054D-AVR32-10/07 I ©

s A T32AP7002

2394 SSC Receive Frame Mode Register

Name: RFMR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - | - - | - - - FSEDGE |
23 22 21 20 19 18 17 16

| - | FSOS | FSLEN |
15 14 13 12 11 10 9 8

. - r - ¢ - [-] DATNB |
7 6 5 4 3 2 1 0

| MSBF | - | LOOP | DATLEN |

* DATLEN: Data Length

0: Forbidden value (1-bit data length not supported).

Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDC2 assigned to the Receiver. If DATLEN is lower or equal to 7, data transfers are in bytes. If DATLEN is between 8 and
15 (included), half-words are transferred, and for any other value, 32-bit words are transferred.

e LOOP: Loop Mode
0: Normal operating mode.

1: RD is driven by TD, RF is driven by TF and TK drives RK.

* MSBF: Most Significant Bit First

0: The lowest significant bit of the data register is sampled first in the bit stream.
1: The most significant bit of the data register is sampled first in the bit stream.

» DATNB: Data Number per Frame
This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1).

* FSLEN: Receive Frame Sync Length

This field defines the length of the Receive Frame Sync Signal and the number of bits sampled and stored in the Receive
Sync Data Register. When this mode is selected by the START field in the Receive Clock Mode Register, it also deter-
mines the length of the sampled data to be compared to the Compare 0 or Compare 1 register.

Pulse length is equal to (FSLEN + 1) Receive Clock periods. Thus, if FSLEN is 0, the Receive Frame Sync signal is gener-
ated during one Receive Clock period.

Alm L 360

32054D-AVR32-10/07 I ©

s A T32AP7002

* FSOS: Receive Frame Sync Output Selection

FSOS Selected Receive Frame Sync Signal RF Pin
0x0 None Input-only
0x1 Negative Pulse Output
0x2 Positive Pulse Output
0x3 Driven Low during data transfer Output
0x4 Driven High during data transfer Output
0x5 Toggling at each start of data transfer Output

0x6-0x7 Reserved Undefined

 FSEDGE: Frame Sync Edge Detection
Determines which edge on Frame Sync will generate the interrupt RXSYN in the SSC Status Register.

FSEDGE Frame Sync Edge Detection
0x0 Positive Edge Detection
0x1 Negative Edge Detection

AIMEL 361

32054D-AVR32-10/07 I ©

s A T32AP7002

23.9.5 SSC Transmit Clock Mode Register

Name: TCMR
Access Type: Read/Write
31 30 29 28 27 26 25 24
| PERIOD |
23 22 21 20 19 18 17 16
| STTDLY |
15 14 13 12 11 10 9 8
| - - | - | - START |
7 6 5 4 3 2 1 0
| CKG | CKI | CKO CKS |
* CKS: Transmit Clock Selection
CKS Selected Transmit Clock
0x0 Divided Clock
0x1 RK Clock signal
0x2 TK Pin
0x3 Reserved
e CKO: Transmit Clock Output Mode Selection
CKO Transmit Clock Output Mode TK pin
0x0 None Input-only
0x1 Continuous Transmit Clock Output
0x2 Transmit Clock only during data transfers Output
0x3-0x7 Reserved

* CKI: Transmit Clock Inversion

0: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock falling edge. The Frame sync signal
input is sampled on Transmit clock rising edge.

1. The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock rising edge. The Frame sync signal
input is sampled on Transmit clock falling edge.

CKI affects only the Transmit Clock and not the output clock signal.

AIMEL 362

32054D-AVR32-10/07 I ©

s A T32AP7002

* CKG: Transmit Clock Gating Selection

CKG Transmit Clock Gating

0x0 None, continuous clock

0x1 Transmit Clock enabled only if TF Low
0x2 Transmit Clock enabled only if TF High
0x3 Reserved

 START: Transmit Start Selection

START Transmit Start
0x0 Continuous, as soon as a word is vyritten in the THR Register (if Transmit is enabled), and immediately
after the end of transfer of the previous data.
Ox1 Receive start
0x2 Detection of a low level on TF signal
0x3 Detection of a high level on TF signal
0x4 Detection of a falling edge on TF signal
0x5 Detection of a rising edge on TF signal
0x6 Detection of any level change on TF signal
0x7 Detection of any edge on TF signal
0x8 - OxF Reserved

e STTDLY: Transmit Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission
of data. When the Transmitter is programmed to start synchronously with the Receiver, the delay is also applied.

Note: STTDLY must be set carefully. If STTDLY is too short in respect to TAG (Transmit Sync Data) emission, data is emit-
ted instead of the end of TAG.

 PERIOD: Transmit Period Divider Selection

This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync Signal. If 0, no period
signal is generated. If not 0, a period signal is generated at each 2 x (PERIOD+1) Transmit Clock.

32054D-AVR32-10/07

AIMEL 363

L ________________(0G]

s A T32AP7002

23.9.6 SSC Transmit Frame Mode Register

Name: TEMR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - | - - | - - - FSEDGE |
23 22 21 20 19 18 17 16

| FSDEN | FSOS | FSLEN |
15 14 13 12 11 10 9 8

. - r - ¢ - [-] DATNB |
7 6 5 4 3 2 1 0

| MSBF | - | DATDEF | DATLEN |

» DATLEN: Data Length

0: Forbidden value (1-bit data length not supported).

Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDC2 assigned to the Transmit. If DATLEN is lower or equal to 7, data transfers are bytes, if DATLEN is between 8 and 15
(included), half-words are transferred, and for any other value, 32-bit words are transferred.

+ DATDEF: Data Default Value

This bit defines the level driven on the TD pin while out of transmission. Note that if the pin is defined as multi-drive by the
P10 Controller, the pin is enabled only if the SCC TD output is 1.

* MSBF: Most Significant Bit First

0: The lowest significant bit of the data register is shifted out first in the bit stream.

1: The most significant bit of the data register is shifted out first in the bit stream.

» DATNB: Data Number per frame
This field defines the number of data words to be transferred after each transfer start, which is equal to (DATNB +1).

* FSLEN: Transmit Frame Sync Length
This field defines the length of the Transmit Frame Sync signal and the number of bits shifted out from the Transmit Sync
Data Register if FSDEN is 1.

Pulse length is equal to (FSLEN + 1) Transmit Clock periods, i.e., the pulse length can range from 1 to 16 Transmit Clock
periods. If FSLEN is 0, the Transmit Frame Sync signal is generated during one Transmit Clock period.

Alm L 364

32054D-AVR32-10/07 I ©

s A T32AP7002

* FSOS: Transmit Frame Sync Output Selection

FSOS Selected Transmit Frame Sync Signal TF Pin
0x0 None Input-only
0x1 Negative Pulse Output
0x2 Positive Pulse Output
0x3 Driven Low during data transfer Output
Ox4 Driven High during data transfer Output
0x5 Toggling at each start of data transfer Output

0x6-0x7 Reserved Undefined

e FSDEN: Frame Sync Data Enable
0: The TD line is driven with the default value during the Transmit Frame Sync signal.

1: TSHR value is shifted out during the transmission of the Transmit Frame Sync signal.

 FSEDGE: Frame Sync Edge Detection
Determines which edge on frame sync will generate the interrupt TXSYN (Status Register).

FSEDGE Frame Sync Edge Detection
0x0 Positive Edge Detection
0x1 Negative Edge Detection

AIMEL 365

32054D-AVR32-10/07 I ©

s A T32AP7002

23.9.7 SSC Receive Holding Register

Name: RHR

Access Type: Read-only
31 30 29 28 27 26 25 24

| RDAT |
23 22 21 20 19 18 17 16

| RDAT |
15 14 13 12 11 10 9 8

| RDAT |
7 6 5 4 3 2 1 0

| RDAT |

» RDAT: Receive Data

Right aligned regardless of the number of data bits defined by DATLEN in RFMR.

ATMEL 366

32054D-AVR32-10/07

L ________________(0G]

s A T32AP7002

23.9.8 SSC Transmit Holding Register

Name: THR

Access Type: Write-only
31 30 29 28 27 26 25 24

| TDAT |
23 22 21 20 19 18 17 16

| TDAT |
15 14 13 12 11 10 9 8

| TDAT |
7 6 5 4 3 2 1 0

| TDAT |

 TDAT: Transmit Data

Right aligned regardless of the number of data bits defined by DATLEN in TFMR.

AIMEL 367

32054D-AVR32-10/07

L ________________(0G]

s A T32AP7002

23.9.9 SSC Receive Synchronization Holding Register

Name: RSHR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RSDAT |
7 6 5 4 3 2 1 0

| RSDAT |

* RSDAT: Receive Synchronization Data

A mE|,® 368

32054D-AVR32-10/07

s A T32AP7002

23.9.10 SSC Transmit Synchronization Holding Register

Name: TSHR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - r - r - -+ - 1 - @ - [- |
23 22 21 20 19 18 17 16

. - r - r - -+ - ;r - ; - [- |
15 14 13 12 11 10 9 8

| TSDAT |
7 6 5 4 3 2 1 0

| TSDAT |

» TSDAT: Transmit Synchronization Data

A mE|,® 369

32054D-AVR32-10/07

s A T32AP7002

23.9.11 SSC Receive Compare 0 Register

Name: RCOR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

| CPO |
7 6 5 4 3 2 1 0

| CPO |

» CPO: Receive Compare Data 0

A mE|,® 370

32054D-AVR32-10/07

s A T32AP7002

23.9.12 SSC Receive Compare 1 Register

Name: RC1R

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

| CP1 |
7 6 5 4 3 2 1 0

| CP1 |

» CP1: Receive Compare Data 1

A mE|,® 371

32054D-AVR32-10/07

s A T32AP7002

23.9.13 SSC Status Register

Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - | RXEN | TXEN |
15 14 13 12 11 10 9 8

| - | - | - | - | RXSYN | TXSYN | CP1 | CPO |
7 6 5 4 3 2 1 0

| RXBUFF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX | TXEMPTY | TXRDY |

» TXRDY: Transmit Ready
0: Data has been loaded in THR and is waiting to be loaded in the Transmit Shift Register (TSR).

1: THR is empty.

 TXEMPTY: Transmit Empty
0: Data remains in THR or is currently transmitted from TSR.

1: Last data written in THR has been loaded in TSR and last data loaded in TSR has been transmitted.

« ENDTX: End of Transmission
0: The register TCR has not reached 0 since the last write in TCR or TNCR.

1: The register TCR has reached 0 since the last write in TCR or TNCR.

 TXBUFE: Transmit Buffer Empty
0: TCR or TNCR have a value other than 0.

1: Both TCR and TNCR have a value of 0.

« RXRDY: Receive Ready
0: RHR is empty.

1: Data has been received and loaded in RHR.

* OVRUN: Receive Overrun
0: No data has been loaded in RHR while previous data has not been read since the last read of the Status Register.

1: Data has been loaded in RHR while previous data has not yet been read since the last read of the Status Register.

 ENDRX: End of Reception
0: Data is written on the Receive Counter Register or Receive Next Counter Register.

1: End of PDC transfer when Receive Counter Register has arrived at zero.

» RXBUFF: Receive Buffer Full
0: RCR or RNCR have a value other than 0.

1: Both RCR and RNCR have a value of 0.

Alm L 372

32054D-AVR32-10/07 I ©

s A T32AP7002

e CPO: Compare 0
0: A compare 0 has not occurred since the last read of the Status Register.

1: A compare 0 has occurred since the last read of the Status Register.

* CP1l. Comparel
0: A compare 1 has not occurred since the last read of the Status Register.

1: A compare 1 has occurred since the last read of the Status Register.

e TXSYN: Transmit Sync
0: A Tx Sync has not occurred since the last read of the Status Register.

1: A Tx Sync has occurred since the last read of the Status Register.

* RXSYN: Receive Sync
0: An Rx Sync has not occurred since the last read of the Status Register.

1: An Rx Sync has occurred since the last read of the Status Register.

» TXEN: Transmit Enable
0: Transmit is disabled.

1: Transmit is enabled.

« RXEN: Receive Enable
0: Receive is disabled.

1: Receive is enabled.

Alm L 373

32054D-AVR32-10/07 I ©

s A T32AP7002

23.9.14 SSC Interrupt Enable Register

Name: IER
Access Type: Write-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | - | - | - | RXSYN | TXSYN | CP1 | CPO |
7 6 5 4 3 2 1 0
| RXBUFF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX | TXEMPTY | TXRDY |
» TXRDY: Transmit Ready Interrupt Enable
0: No effect.
1: Enables the Transmit Ready Interrupt.
 TXEMPTY: Transmit Empty Interrupt Enable
0: No effect.
1. Enables the Transmit Empty Interrupt.
 ENDTX: End of Transmission Interrupt Enable
0: No effect.
1: Enables the End of Transmission Interrupt.
 TXBUFE: Transmit Buffer Empty Interrupt Enable
0: No effect.
1: Enables the Transmit Buffer Empty Interrupt
« RXRDY: Receive Ready Interrupt Enable
0: No effect.
1: Enables the Receive Ready Interrupt.
 OVRUN: Receive Overrun Interrupt Enable
0: No effect.
: Enables the Receive Overrun Interrupt.
» ENDRX: End of Reception Interrupt Enable
0: No effect.
: Enables the End of Reception Interrupt.
 RXBUFF: Receive Buffer Full Interrupt Enable
0: No effect.
: Enables the Receive Buffer Full Interrupt.
ATMEL 374

32054D-AVR32-10/07

L ________________(0G]

s A T32AP7002

* CPO: Compare 0 Interrupt Enable
0: No effect.

1: Enables the Compare 0O Interrupt.

e CP1: Compare 1 Interrupt Enable
0: No effect.

1: Enables the Compare 1 Interrupt.

e TXSYN: Tx Sync Interrupt Enable
0: No effect.

1: Enables the Tx Sync Interrupt.

* RXSYN: Rx Sync Interrupt Enable
0: No effect.

1: Enables the Rx Sync Interrupt.

Alm L 375

32054D-AVR32-10/07 I ©

s A T32AP7002

23.9.15 SSC Interrupt Disable Register

Name: IDR
Access Type: Write-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | - | - | - | RXSYN | TXSYN | CP1 | CPO |
7 6 5 4 3 2 1 0
| RXBUFF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX | TXEMPTY | TXRDY |
» TXRDY: Transmit Ready Interrupt Disable
0: No effect.
1: Disables the Transmit Ready Interrupt.
 TXEMPTY: Transmit Empty Interrupt Disable
0: No effect.
1. Disables the Transmit Empty Interrupt.
 ENDTX: End of Transmission Interrupt Disable
0: No effect.
1: Disables the End of Transmission Interrupt.
 TXBUFE: Transmit Buffer Empty Interrupt Disable
0: No effect.
1: Disables the Transmit Buffer Empty Interrupt.
« RXRDY: Receive Ready Interrupt Disable
0: No effect.
1: Disables the Receive Ready Interrupt.
* OVRUN: Receive Overrun Interrupt Disable
0: No effect.
: Disables the Receive Overrun Interrupt.
* ENDRX: End of Reception Interrupt Disable
0: No effect.
: Disables the End of Reception Interrupt.
 RXBUFF: Receive Buffer Full Interrupt Disable
0: No effect.
: Disables the Receive Buffer Full Interrupt.
ATMEL 376

32054D-AVR32-10/07

L ________________(0G]

s A T32AP7002

* CPO: Compare 0 Interrupt Disable
0: No effect.

1: Disables the Compare 0 Interrupt.

e CP1: Compare 1 Interrupt Disable
0: No effect.

1: Disables the Compare 1 Interrupt.

e TXSYN: Tx Sync Interrupt Enable
0: No effect.

1: Disables the Tx Sync Interrupt.

* RXSYN: Rx Sync Interrupt Enable
0: No effect.

1: Disables the Rx Sync Interrupt.

Alm L 377

32054D-AVR32-10/07 I ©

s A T32AP7002

23.9.16 SSC Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | RXSYN | TXSYN | CP1 | CPO |
7 6 5 4 3 2 1 0

| RXBUF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX | TXEMPTY | TXRDY |

» TXRDY: Transmit Ready Interrupt Mask
0: The Transmit Ready Interrupt is disabled.

1: The Transmit Ready Interrupt is enabled.

 TXEMPTY: Transmit Empty Interrupt Mask
0: The Transmit Empty Interrupt is disabled.

1. The Transmit Empty Interrupt is enabled.

* ENDTX: End of Transmission Interrupt Mask
0: The End of Transmission Interrupt is disabled.

1: The End of Transmission Interrupt is enabled.

 TXBUFE: Transmit Buffer Empty Interrupt Mask
0: The Transmit Buffer Empty Interrupt is disabled.

1: The Transmit Buffer Empty Interrupt is enabled.

« RXRDY: Receive Ready Interrupt Mask
0: The Receive Ready Interrupt is disabled.

1: The Receive Ready Interrupt is enabled.

* OVRUN: Receive Overrun Interrupt Mask
0: The Receive Overrun Interrupt is disabled.

1: The Receive Overrun Interrupt is enabled.

* ENDRX: End of Reception Interrupt Mask
0: The End of Reception Interrupt is disabled.

1: The End of Reception Interrupt is enabled.

» RXBUFF: Receive Buffer Full Interrupt Mask
0: The Receive Buffer Full Interrupt is disabled.

1. The Receive Buffer Full Interrupt is enabled.

Alm L 378

32054D-AVR32-10/07 I ©

s A T32AP7002

e CPO: Compare 0 Interrupt Mask
0: The Compare O Interrupt is disabled.

1: The Compare O Interrupt is enabled.

e CP1: Compare 1 Interrupt Mask
0: The Compare 1 Interrupt is disabled.

1: The Compare 1 Interrupt is enabled.

e TXSYN: Tx Sync Interrupt Mask
0: The Tx Sync Interrupt is disabled.

1: The Tx Sync Interrupt is enabled.

* RXSYN: Rx Sync Interrupt Mask
0: The Rx Sync Interrupt is disabled.

1: The Rx Sync Interrupt is enabled.

Alm L 379

32054D-AVR32-10/07 I ©

s A T32AP7002

24. Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

24.1 Features

24.2 Description

32054D-AVR32-10/07

Rev: 3.0.2.1

* Programmable Baud Rate Generator
* 5-to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications
1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode
Parity Generation and Error Detection
Framing Error Detection, Overrun Error Detection
MSB- or LSB-first
Optional Break Generation and Detection
By 8 or by 16 Over-sampling Receiver Frequency
— Optional Hardware Handshaking RTS-CTS
— Receiver Time-out and Transmitter Timeguard
— Optional Multidrop Mode with Address Generation and Detection
* RS485 with Driver Control Signal
* 1SO7816, T=0or T =1 Protocols for Interfacing with Smart Cards
— NACK Handling, Error Counter with Repetition and Iteration Limit
IrDA Modulation and Demodulation
— Communication at up to 115.2 Kbps
* Test Modes
— Remote Loopback, Local Loopback, Automatic Echo
* Supports Connection of Two Peripheral DMA Controller Channels (PDC)
— Offers Buffer Transfer without Processor Intervention

The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full
duplex universal synchronous asynchronous serial link. Data frame format is widely programma-
ble (data length, parity, number of stop bits) to support a maximum of standards. The receiver
implements parity error, framing error and overrun error detection. The receiver time-out enables
handling variable-length frames and the transmitter timeguard facilitates communications with
slow remote devices. Multidrop communications are also supported through address bit han-
dling in reception and transmission.

The USART features three test modes: remote loopback, local loopback and automatic echo.

The USART supports specific operating modes providing interfaces on RS485 buses, with
ISO7816 T =0 or T = 1 smart card slots and infrared transceivers. The hardware handshaking
feature enables an out-of-band flow control by automatic management of the pins RTS and
CTS.

The USART supports the connection to the Peripheral DMA Controller, which enables data
transfers to the transmitter and from the receiver. The PDC provides chained buffer manage-
ment without any intervention of the processor.

AIMEL 380

L ________________(0G]

s A T32AP7002

24.3 Block Diagram

Figure 24-1. USART Block Diagram

Peripheral DMA
Controller
Channel Channel
PIO
USART Controller
A 4
. <—.|:| RXD
Receiver
<—.|:| RTS
Interrupt USART . <—.|:| TXD
Controller Interrupt Transmitter
. <—.|:| cTS
° MCK > Baud Rate > |:| SCK
I Generator
Power MCK/DIV
Manager DV f——
User Interface
SLCK *

Peripheral Bus ‘
<

Alm L 381

32054D-AVR32-10/07 I ©

s A T32AP7002

24.4 Application Block Diagram

Figure 24-2. Application Block Diagram

24.5 1/0 Lines Description

PPP IrLAP
. Field Bus EMV
Serial Driver Driver IrPA
Driver Driver
USART
RS232 RS485 Smart IrDA
Drivers Drivers Card Transceivers
Slot
Serial Differential
Port Bus

Table 24-1. /O Line Description

Name Description Type Active Level
SCK Serial Clock 11O

TXD Transmit Serial Data I/10

RXD Receive Serial Data Input

CTS Clear to Send Input Low

RTS Request to Send Output Low

AIMEL 382

32054D-AVR32-10/07

L ________________(0G]

s A T32AP7002

24.6 Product Dependencies

24.6.1 I/O Lines

The pins used for interfacing the USART may be multiplexed with the PIO lines. The program-
mer must first program the PIO controller to assign the desired USART pins to their peripheral
function. If I/O lines of the USART are not used by the application, they can be used for other
purposes by the PIO Controller.

To prevent the TXD line from falling when the USART is disabled, the use of an internal pull up
is mandatory.

24.6.2 Power Management

24.6.3 Interrupt

32054D-AVR32-10/07

The USART is not continuously clocked. The programmer must ensure that the USART clock is
enabled in the Power Manager (PM) before using the USART. However, if the application does
not require USART operations, the USART clock can be stopped when not needed and be
restarted later. In this case, the USART will resume its operations where it left off. Master Clock
(MCK) in the USART description is the clock for the peripheral bus to which the USART is
connected.

The USART interrupt line is connected on one of the internal sources of the Interrupt Controller.
Using the USART interrupt requires the interrupt controller to be programmed first.

Alm L 383

L ________________(0G]

s A T32AP7002

24.7 Functional Description

The USART is capable of managing several types of serial synchronous or asynchronous
communications.

It supports the following communication modes:

 5- to 9-bit full-duplex asynchronous serial communication
— MSB- or LSB-first
—1, 1.5 or 2 stop bits
— Parity even, odd, marked, space or none
— By 8 or by 16 over-sampling receiver frequency
— Optional hardware handshaking
— Optional break management
— Optional multidrop serial communication
« High-speed 5- to 9-bit full-duplex synchronous serial communication
— MSB- or LSB-first
— 1 or 2 stop bits
— Parity even, odd, marked, space or none
— By 8 or by 16 over-sampling frequency
— Optional hardware handshaking
— Optional break management
— Optional multidrop serial communication
« RS485 with driver control signal
« 1SO7816, TO or T1 protocaols for interfacing with smart cards
— NACK handling, error counter with repetition and iteration limit
« InfraRed IrDA Modulation and Demodulation
* Test modes
— Remote loopback, local loopback, automatic echo
24.7.1 Baud Rate Generator

The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the
receiver and the transmitter.

The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode
Register (MR) between:

* the Master Clock MCK

« a division of the Master Clock, the divider being product dependent, but generally set to 8

« the external clock, available on the SCK pin

The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field
of the Baud Rate Generator Register (BRGR). If CD is programmed at 0, the Baud Rate Gener-
ator does not generate any clock. If CD is programmed at 1, the divider is bypassed and
becomes inactive.

Alm L 384

32054D-AVR32-10/07 I ©

s A T32AP7002

If the external SCK clock is selected, the duration of the low and high levels of the signal pro-
vided on the SCK pin must be longer than a Master Clock (MCK) period. The frequency of the
signal provided on SCK must be at least 4.5 times lower than MCK.

Figure 24-3. Baud Rate Generator

| USCLKS I El

MCK

0 SCK
MCK/DIV 1 I |
16-bit Counter
Reserved
SCK —2 | FIDI |
>1 SYNC
3 1 [oee T Lo]
0— 0 Sampling 0
Divider
Baud Rate
1 > Clock
1
SYNC
Sampling
USCLKS =3 » Clock

24.7.1.1 Baud Rate in Asynchronous Mode
If the USART is programmed to operate in asynchronous mode, the selected clock is first
divided by CD, which is field programmed in the Baud Rate Generator Register (BRGR). The
resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the programming of the OVER bit in MR.
If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is
cleared, the sampling is performed at 16 times the baud rate clock.
The following formula performs the calculation of the Baud Rate.
SelectedClock
B = ===
audrate = o ovencD)
This gives a maximum baud rate of MCK divided by 8, assuming that MCK is the highest possi-
ble clock and that OVER is programmed at 1.
24.7.1.2 Baud Rate Calculation Example
Table 24-2 shows calculations of CD to obtain a baud rate at 38400 bauds for different source
clock frequencies. This table also shows the actual resulting baud rate and the error.
Table 24-2. Baud Rate Example (OVER = 0)
Expected Baud
Source Clock Rate Calculation Result CD Actual Baud Rate Error
MHz Bit/s Bit/s
3686 400 38 400 6.00 6 38 400.00 0.00%
4915 200 38 400 8.00 8 38 400.00 0.00%
5 000 000 38 400 8.14 8 39 062.50 1.70%
ATMEL 385
Y)

32054D-AVR32-10/07

s A T32AP7002

Table 24-2. Baud Rate Example (OVER = 0) (Continued)

Expected Baud
Source Clock Rate Calculation Result CD Actual Baud Rate Error

7 372 800 38 400 12.00 12 38 400.00 0.00%
8 000 000 38 400 13.02 13 38 461.54 0.16%
12 000 000 38 400 19.53 20 37 500.00 2.40%
12 288 000 38 400 20.00 20 38 400.00 0.00%
14 318 180 38 400 23.30 23 38 908.10 1.31%
14 745 600 38 400 24.00 24 38 400.00 0.00%
18 432 000 38 400 30.00 30 38 400.00 0.00%
24 000 000 38 400 39.06 39 38 461.54 0.16%
24 576 000 38 400 40.00 40 38 400.00 0.00%
25 000 000 38 400 40.69 40 38 109.76 0.76%
32 000 000 38 400 52.08 52 38 461.54 0.16%
32 768 000 38 400 53.33 53 38 641.51 0.63%
33 000 000 38 400 53.71 54 38 194.44 0.54%
40 000 000 38 400 65.10 65 38 461.54 0.16%
50 000 000 38 400 81.38 81 38 580.25 0.47%
60 000 000 38 400 97.66 98 38 265.31 0.35%
70 000 000 38 400 113.93 114 38 377.19 0.06%

The baud rate is calculated with the following formula:

BaudRate = MCK/CD x 16
The baud rate error is calculated with the following formula. It is not recommended to work with
an error higher than 5%.
error = 1 (S SauoRae)
24.7.1.3 Fractional Baud Rate in Asynchronous Mode

32054D-AVR32-10/07

The Baud Rate generator previously defined is subject to the following limitation: the output fre-
quency changes by only integer multiples of the reference frequency. An approach to this
problem is to integrate a fractional N clock generator that has a high resolution. The generator
architecture is modified to obtain Baud Rate changes by a fraction of the reference source clock.
This fractional part is programmed with the FP field in the Baud Rate Generator Register
(BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the clock
divider. This feature is only available when using USART normal mode. The fractional Baud
Rate is calculated using the following formula:

SelectedClock
(8(2 - Over)(CD + %D

AIMEL 386

L ________________(0G]

Baudrate =

s A T32AP7002

The modified architecture is presented below:

Figure 24-4. Fractional Baud Rate Generator

.

@l El Modulus

Control

o

MCK CD
—~—o | SCK
MCK/DIV 1 I |
16-bit Count .
gex Reserved |o 1t Lounter glitch-free) | EIDI |
logic > > SYNC
3 i [swe]
1 0
0 —» 0 Sampling 0
Divider
Baud Rate
1 " Clock
1
SYNC Sampling
USCLKS =3 > Clock

24.7.1.4 Baud Rate in Synchronous Mode

If the USART is programmed to operate in synchronous mode, the selected clock is simply
divided by the field CD in BRGR.

SelectedClock

BaudRate =
CD

In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided
directly by the signal on the USART SCK pin. No division is active. The value written in BRGR
has no effect. The external clock frequency must be at least 4.5 times lower than the system
clock.

When either the external clock SCK or the internal clock divided (MCK/DIV) is selected, the
value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on the
SCK pin. If the internal clock MCK is selected, the Baud Rate Generator ensures a 50:50 duty
cycle on the SCK pin, even if the value programmed in CD is odd.

24.7.1.5 Baud Rate in ISO 7816 Mode

The 1ISO7816 specification defines the bit rate with the following formula:

_ Di
B—Fixf

where:
* B is the bit rate
« Di is the bit-rate adjustment factor
* Fiis the clock frequency division factor
« fis the ISO7816 clock frequency (Hz)

Alm L 387

32054D-AVR32-10/07 I ©

s A T32AP7002

Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 24-3.

Table 24-3. Binary and Decimal Values for Di
Dl field 0001 0010 0011 0100 0101 0110 1000 1001
Di (decimal) 1 2 4 8 16 32 12 20
Fi is a binary value encoded on a 4-bit field, named Fl, as represented in Table 24-4.
Table 24-4. Binary and Decimal Values for Fi
Fl field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101
Fi (decimal 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048
Table 24-5 shows the resulting Fi/Di Ratio, which is the ratio between the 1SO7816 clock and the
baud rate clock.
Table 24-5. Possible Values for the Fi/Di Ratio
Fi/Di 372 558 774 1116 1488 1806 512 768 1024 1536 2048
1 372 558 744 1116 1488 1860 512 768 1024 1536 2048
2 186 279 372 558 744 930 256 384 512 768 1024
4 93 139.5 186 279 372 465 128 192 256 384 512
8 46.5 69.75 93 139.5 186 2325 64 96 128 192 256
16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128
32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64
12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6
20 18.6 27.9 37.2 55.8 74.4 93 25.6 384 51.2 76.8 102.4

32054D-AVR32-10/07

If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the
Mode Register (MR) is first divided by the value programmed in the field CD in the Baud Rate
Generator Register (BRGR). The resulting clock can be provided to the SCK pin to feed the
smart card clock inputs. This means that the CLKO bit can be set in MR.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio
register (FIDI). This is performed by the Sampling Divider, which performs a division by up to
2047 in 1ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not supported and the user
must program the FI_DI_RATIO field to a value as close as possible to the expected value.

The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common
divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1).

Figure 24-5 shows the relation between the Elementary Time Unit, corresponding to a bit time,
and the 1SO 7816 clock.

388

ATMEL

L ________________(0G]

AT32AP7002

Figure 24-5. Elementary Time Unit (ETU)

FI_DI_RATIO
1807816 Clock Cycles

1SO7816 Clock Illlllllllllll |||||||||||||
on SCK

ISO7816 1/O Line
on TXD ((
))
X 1ETU .

24.7.2 Receiver and Transmitter Control

After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit
in the Control Register (CR). However, the receiver registers can be programmed before the
receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the
Control Register (CR). However, the transmitter registers can be programmed before being
enabled.

The Receiver and the Transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART by
setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register (CR).
The reset commands have the same effect as a hardware reset on the corresponding logic.
Regardless of what the receiver or the transmitter is performing, the communication is immedi-
ately stopped.

The user can also independently disable the receiver or the transmitter by setting RXDIS and
TXDIS respectively in CR. If the receiver is disabled during a character reception, the USART
waits until the end of reception of the current character, then the reception is stopped. If the
transmitter is disabled while it is operating, the USART waits the end of transmission of both the
current character and character being stored in the Transmit Holding Register (THR). If a time-
guard is programmed, it is handled normally.

24.7.3 Synchronous and Asynchronous Modes
24.7.3.1 Transmitter Operations

The transmitter performs the same in both synchronous and asynchronous operating modes
(SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two
stop bits are successively shifted out on the TXD pin at each falling edge of the programmed
serial clock.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The parity
bit is set according to the PAR field in MR. The even, odd, space, marked or none parity bit can
be configured. The MSBF field in MR configures which data bit is sent first. If written at 1, the
most significant bit is sent first. At 0, the less significant bit is sent first. The number of stop bits is
selected by the NBSTOP field in MR. The 1.5 stop bit is supported in asynchronous mode only.

Alm L 389

32054D-AVR32-10/07 I ©

AT32AP7002

Figure 24-6. Character Transmit

Example: 8-bit, Parity Enabled One Stop

P oo SpEREEEEEEEEEEEEEREN

TXD

‘ Start DO D1 D2 D3 D4 D5 D6 D7 | Parity Stop
Bit Bit Bit

The characters are sent by writing in the Transmit Holding Register (THR). The transmitter
reports two status bits in the Channel Status Register (CSR): TXRDY (Transmitter Ready),
which indicates that THR is empty and TXEMPTY, which indicates that all the characters written
in THR have been processed. When the current character processing is completed, the last

character written in THR is transferred into the Shift Register of the transmitter and THR
becomes empty, thus TXRDY raises.

Both TXRDY and TXEMPTY bits are low since the transmitter is disabled. Writing a character in
THR while TXRDY is active has no effect and the written character is lost.

Figure 24-7. Transmitter Status

Baud Rate

Clock I|IlI|||IlI|||IlI|||IlI|||||||||||||||||||||||||
o | [T T TTTTTTTULTITTTITITIT T

Start Parity Stop Start
Bit DO D1 D2 D3 D4 D5 D6 D7 Bit Bit Bit DO D1 D2 D3 D4 D5 D6 D7

N |

TXRDY —l_l | I
TXEMPTY _| |_

24.7.3.2 Manchester Encoder

Parity Stop
Bit Bit

When the Manchester encoder is in use, characters transmitted through the USART are
encoded based on biphase Manchester Il format. To enable this mode, set the MAN field in the
MR register to 1. Depending on polarity configuration, a logic level (zero or one), is transmitted
as a coded signal one-to-zero or zero-to-one. Thus, a transition always occurs at the midpoint of
each bit time. It consumes more bandwidth than the original NRZ signal (2x) but the receiver has
more error control since the expected input must show a change at the center of a bit cell. An
example of Manchester encoded sequence is: the byte O0xB1 or 10110001 encodes to 10 01 10

10 01 01 01 10, assuming the default polarity of the encoder. Figure 24-8 illustrates this coding
scheme.

Alm L 390

32054D-AVR32-10/07 I ©

AT32AP7002

Figure 24-8. NRZ to Manchester Encoding

NRZ !
encoded

1 o 1 I I
I I I I 1
I | |
data | | | | ;
Manchester L ! L ! L [
encoded Ty(: | ! | : ! : | I

1 0

data

The Manchester encoded character can also be encapsulated by adding both a configurable
preamble and a start frame delimiter pattern. Depending on the configuration, the preamble is a
training sequence, composed of a pre-defined pattern with a programmable length from 1 to 15
bit times. If the preamble length is set to 0, the preamble waveform is not generated prior to any
character. The preamble pattern is chosen among the following sequences: ALL_ONE,
ALL_ZERO, ONE_ZERO or ZERO_ONE, writing the field TX_PP in the MAN register, the field
TX_PL is used to configure the preamble length. Figure 24-9 illustrates and defines the valid
patterns. To improve flexibility, the encoding scheme can be configured using the TX_MPOL
field in the MAN register. If the TX_MPOL field is set to zero (default), a logic zero is encoded
with a zero-to-one transition and a logic one is encoded with a one-to-zero transition. If the
TX_MPOL field is set to one, a logic one is encoded with a one-to-zero transition and a logic
zero is encoded with a zero-to-one transition.

Figure 24-9. Preamble Patterns, Default Polarity Assumed

I
Manchester ! ! ! ! I ! ! ! e e -
]
I

ded
encode Td SFD _D_AIA_ .

data | | | | | | | | |

8 bit width "ALL_ONE" Preamble

Manchester ! ! ! ! ! ! ! ! e e .
encoded SFD DATA
datg txd L L L 1 L1 L1 141 _____.

8 bit width "ALL_ZERO" Preamble

| |
manchester ' _‘t v+ v\ v 1 ..

| | | | | |
| | | | | | | |

encoded | [0 L [L L] 5D | _pATA
| | | | | | | |

data ' — - - Y , === ==--

8 bit width "ZERO_ONE" Preamble

Manchester
encoded
data

n
m
O
)
>
_'
>

Txd

8 bit width "ONE_ZERO" Preamble

A start frame delimiter is to be configured using the ONEBIT field in the MR register. It consists
of a user-defined pattern that indicates the beginning of a valid data. Figure 24-10 illustrates
these patterns. If the start frame delimiter, also known as start bit, is one bit, (ONEBIT at 1), a
logic zero is Manchester encoded and indicates that a new character is being sent serially on the
line. If the start frame delimiter is a synchronization pattern also referred to as sync (ONEBIT at
0), a sequence of 3 bit times is sent serially on the line to indicate the start of a new character.

AIMEL 391

32054D-AVR32-10/07 I ©

s A T32AP7002

The sync waveform is in itself an invalid Manchester waveform as the transition occurs at the
middle of the second bit time. Two distinct sync patterns are used: the command sync and the
data sync. The command sync has a logic one level for one and a half bit times, then a transition
to logic zero for the second one and a half bit times. If the MODSYNC field in the MR register is
set to 1, the next character is a command. If it is set to O, the next character is a data. When
direct memory access is used, the MODSYNC field can be immediately updated with a modified
character located in memory. To enable this mode, VAR_SYNC field in MR register must be set
to 1. In this case, the MODSYNC field in MR is bypassed and the sync configuration is held in
the TXSYNH in the THR register. The USART character format is modified and includes sync
information.

Figure 24-10. Start Frame Delimiter

Preamble Length

issetto 0
—_—
SFD
Manchester : ! o ____
encoded DATA
I | |
data 1 | | Cmmmmm—m -
<«———» One bit start frame delimiter
I I SFD I I I
Manchester | i | e
encoded Txd | | | | | | DATA
data | | | | e
Command Sync
start frame delimiter
SFD
Manchester : ! : : | e m -
encoded DATA
I | | | I | - -
data 1 | e

Data Sync
start frame delimiter

24.7.3.3 Drift Compensation

32054D-AVR32-10/07

Drift compensation is available only in 16X oversampling mode. An hardware recovery system
allows a larger clock drift. To enable the hardware system, the bit in the MAN register must be
set. If the RXD edge is one 16X clock cycle from the expected edge, this is considered as nor-
mal jitter and no corrective actions is taken. If the RXD event is between 4 and 2 clock cycles
before the expected edge, then the current period is shortened by one clock cycle. If the RXD
event is between 2 and 3 clock cycles after the expected edge, then the current period is length-
ened by one clock cycle. These intervals are considered to be drift and so corrective actions are
automatically taken.

AIMEL 392

L ________________(0G]

s A T32AP7002

Figure 24-11. Bit Resynchronization

Oversampling

16x Clock
RXD
| I
Sampling | ! |
point T f , t T
I
I | i | |
| Expected edge |
< >|< Synchro. »L Tolerance 4(Sync >k Synchro. >
Synchro. Jump Jump Error
Error
24.7.3.4 Asynchronous Receiver

32054D-AVR32-10/07

If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver over-
samples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate clock,
depending on the OVER bit in the Mode Register (MR).

The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a start
bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data
bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8
(OVER at 1), a start bit is detected at the fourth sample at 0. Then, data bits, parity bit and stop
bit are sampled on each 8 sampling clock cycle.

The number of data bits, first bit sent and parity mode are selected by the same fields and bits
as the transmitter, i.e. respectively CHRL, MODE9, MSBF and PAR. The number of stop bits
has no effect on the receiver as it considers only one stop bit, regardless of the field NBSTOP,
so that resynchronization between the receiver and the transmitter can occur. Moreover, as
soon as the stop bit is sampled, the receiver starts looking for a new start bit so that resynchroni-
zation can also be accomplished when the transmitter is operating with one stop bit.

Figure 24-12 and Figure 24-13 illustrate start detection and character reception when USART
operates in asynchronous mode.

Alm L 393

L ________________(0G]

s A T32AP7002

Figure 24-12. Asynchronous Start Detection

| | | -
Clock (x16)
@] i
N N |
1 2 3 4 5 6 7 8 0

Start Sampling
Detection

Lrr et
123 456 7 8 910111213 141516
RXD—n
ST I I O O A

2 345 6 7 01 2 3 4

1

Start
Rejection

Figure 24-13. Asynchronous Character Reception

Example: 8-bit, Parity Enabled

P oo JEpEEEEERERE NN,
o) T T T T TTTT]

Start
Detection

16 16 16 16 16 16 16 16 16 16
samples|samples|samples|samples|samples|samples|samples|samples|samples|samples

DO D1 D2 D3 D4 D5 D6 D7 Parity Stop
Bit Bit

24.7.3.5 Manchester Decoder

When the MAN field in MR register is set to 1, the Manchester decoder is enabled. The decoder
performs both preamble and start frame delimiter detection. One input line is dedicated to
Manchester encoded input data.

An optional preamble sequence can be defined, its length is user-defined and totally indepen-
dent of the emitter side. Use RX_PL in MAN register to configure the length of the preamble
sequence. If the length is set to 0, no preamble is detected and the function is disabled. In addi-
tion, the polarity of the input stream is programmable with RX_MPOL field in MAN register.
Depending on the desired application the preamble pattern matching is to be defined via the
RX_PP field in MAN. See Figure 24-9 for available preamble patterns.

Unlike preamble, the start frame delimiter is shared between Manchester Encoder and Decoder.
So, if ONEBIT field is set to 1, only a zero encoded Manchester can be detected as a valid start
frame delimiter. If ONEBIT is set to 0, only a sync pattern is detected as a valid start frame
delimiter. Decoder operates by detecting transition on incoming stream. If RXD is sampled dur-
ing one quarter of a bit time at zero, a start bit is detected. See Figure 24-14. The sample pulse
rejection mechanism applies.

Alm L 394

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 24-14. Asynchronous Start Bit Detection

Sampling

data

Clock ||
(16 x) i
Manchester I
I
encoded T | ||| |
I
I
I

T T T Start
Detection

1 2 3 4

The receiver is activated and starts Preamble and Frame Delimiter detection, sampling the data
at one quarter and then three quarters. If a valid preamble pattern or start frame delimiter is
detected, the receiver continues decoding with the same synchronization. If the stream does not
match a valid pattern or a valid start frame delimiter, the receiver re-synchronizes on the next
valid edge.The minimum time threshold to estimate the bit value is three quarters of a bit time.

If a valid preamble (if used) followed with a valid start frame delimiter is detected, the incoming
stream is decoded into NRZ data and passed to USART for processing. Figure 24-15 illustrates
Manchester pattern mismatch. When incoming data stream is passed to the USART, the
receiver is also able to detect Manchester code violation. A code violation is a lack of transition
in the middle of a bit cell. In this case, MANE flag in CSR register is raised. It is cleared by writing
the Control Register (CR) with the RSTSTA bit at 1. See Figure 24-16 for an example of
Manchester error detection during data phase.

Figure 24-15. Preamble Pattern Mismatch

Manchester

I ! !
[| S
T T I 1 I

|] I]

| 1 1 1

data

Preamble Mismatch Preamble Mismatch
Manchester coding error invalid pattern

//

Preamble Length is set to 8

Figure 24-16. Manchester Error Flag

32054D-AVR32-10/07

Manchester
encoded
data

Preamble Length
is setto 4

Elementary character bit time
I I I SFD | «—— I

1 1
e LT TR
Txd | 1
1 1 1 1 1 1
| | | | |Entering USART character area |
1 T

oo { P QPP PP EYEEEEYELLS
N

Preamble subpacket Manchester

and Start Frame Delimiter Coding Error

were successfully detected
decoded

When the start frame delimiter is a sync pattern (ONEBIT field at 0), both command and data
delimiter are supported. If a valid sync is detected, the received character is written as RXCHR

AIMEL 395

L ________________(0G]

s A T32AP7002

field in the RHR register and the RXSYNH is updated. RXCHR is set to 1 when the received
character is a command, and it is set to O if the received character is a data. This mechanism
alleviates and simplifies the direct memory access as the character contains its own sync field in
the same register.

As the decoder is setup to be used in unipolar mode, the first bit of the frame has to be a zero-to-
one transition.

24.7.3.6 Radio Interface: Manchester Encoded USART Application

This section describes low data rate RF transmission systems and their integration with a
Manchester encoded USART. These systems are based on transmitter and receiver ICs that
support ASK and FSK modulation schemes.

The goal is to perform full duplex radio transmission of characters using two different frequency
carriers. See the configuration in Figure 24-17.

Figure 24-17. Manchester Encoded Characters RF Transmission

Fup frequency Carrier) > > >

Upstream
Emitter

ASK/FSK
Upstream Receiver

LNA

Downstream
Receiver

Fdown frequency Carrier (((

Serial
Configuration
Interface

VCO
RF filter
Demod

Manchester |_| USART
bi-dir decoder Receiver

line

ASK/FSK
downstream transmitter

Manchester |__J USART
encoder Emitter

32054D-AVR32-10/07

PA

RF filter
Mod
VCO

The USART module is configured as a Manchester encoder/decoder. Looking at the down-
stream communication channel, Manchester encoded characters are serially sent to the RF
emitter. This may also include a user defined preamble and a start frame delimiter. Mostly, pre-
amble is used in the RF receiver to distinguish between a valid data from a transmitter and
signals due to noise. The Manchester stream is then modulated. See Figure 24-18 for an exam-
ple of ASK modulation scheme. When a logic one is sent to the ASK modulator, the power
amplifier, referred to as PA, is enabled and transmits an RF signal at downstream frequency.
When a logic zero is transmitted, the RF signal is turned off. If the FSK modulator is activated,
two different frequencies are used to transmit data. When a logic 1 is sent, the modulator out-
puts an RF signal at frequency FO and switches to F1 if the data sent is a 0. See Figure 24-19.

From the receiver side, another carrier frequency is used. The RF receiver performs a bit check
operation examining demodulated data stream. If a valid pattern is detected, the receiver
switches to receiving mode. The demodulated stream is sent to the Manchester decoder.
Because of bit checking inside RF IC, the data transferred to the microcontroller is reduced by a

AIMEL 39

L ________________(0G]

s A T32AP7002

user-defined number of bits. The Manchester preamble length is to be defined in accordance
with the RF IC configuration.

Figure 24-18. ASK Modulator Output

1 1 0

NRZ stream

Manchester
encoded !
data
default polarity Txd
unipolar output

ASK Modulator
Output
Uptstream Frequency FO

Figure 24-19. FSK Modulator Output

1 1 0

NRZ stream

Manchester
encoded
da_ta Txd
default polarity |
unipolar output |

FSK Modulator !
Output
Uptstream Frequencies
[FO, FO+offset]

24.7.3.7 Synchronous Receiver

In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of
the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the parity
bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode
operations provide a high speed transfer capability.

Configuration fields and bits are the same as in asynchronous mode.

Figure 24-20 illustrates a character reception in synchronous mode.
Figure 24-20. Synchronous Mode Character Reception
Example: 8-bit, Parity Enabled 1 Stop

Baud Rate

- JEREREEERERERERE
20 || T T T T T T T T[]

Sampling |)
Start DO D1 D2 D3 D4 D5 D6 D7 Stop Bit

Parity Bit

AIMEL 397

32054D-AVR32-10/07 I ©

s A T32AP7002

24.7.3.8 Receiver Operations

When a character reception is completed, it is transferred to the Receive Holding Register
(RHR) and the RXRDY bit in the Status Register (CSR) rises. If a character is completed while
the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into
RHR and overwrites the previous one. The OVRE bit is cleared by writing the Control Register
(CR) with the RSTSTA (Reset Status) bit at 1.

Figure 24-21. Receiver Status
Baud Rate
Clock Illlllllllllllllllllll
RXD_IIIIIIIIIIIIIIIIIIIIIIJ}
I

St o p1 p2 D3 D4 D5 pe D7 PAMYSPRS@M oy o) by b3 pa D5 D6 D7 Pgri'ttVSt p

Bit Bit Bit Bit it
RSTSTA=1
Write
US_CR
Read 1
US_RHR

RXRDY |
OVRE _| —\—

Alm L 398

32054D-AVR32-10/07 I ©

s A T32AP7002

24739 Parity

32054D-AVR32-10/07

The USART supports five parity modes selected by programming the PAR field in the Mode
Register (MR). The PAR field also enables the Multidrop mode, see "Multidrop Mode” on page
400. Even and odd parity bit generation and error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit at O if a num-
ber of 1s in the character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the
receiver parity checker counts the number of received 1s and reports a parity error if the sam-
pled parity bit does not correspond. If odd parity is selected, the parity generator of the
transmitter drives the parity bit at 1 if a number of 1s in the character data bit is even, and at O if
the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received
1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is
used, the parity generator of the transmitter drives the parity bit at 1 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 0. If the space parity is
used, the parity generator of the transmitter drives the parity bit at 0 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.

Table 24-6 shows an example of the parity bit for the character 0x41 (character ASCII “A”)
depending on the configuration of the USART. Because there are two bits at 1, 1 bit is added
when a parity is odd, or 0 is added when a parity is even.

Table 24-6. Parity Bit Examples

Character Hexa Binary Parity Bit Parity Mode
A 0x41 0100 0001 1 Odd
A 0x41 0100 0001 0 Even
A 0x41 0100 0001 1 Mark
A 0x41 0100 0001 0 Space
A 0x41 0100 0001 None None

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status
Register (CSR). The PARE bit can be cleared by writing the Control Register (CR) with the RST-
STA bit at 1. Figure 24-22 illustrates the parity bit status setting and clearing.

Alm L 399

L ________________(0G]

AT32AP7002

Figure 24-22. Parity Error

24.7.3.10

24.7.3.11

32054D-AVR32-10/07

Baud Rate
Clock Illlllllllllllllllllll |||||||||||||
R0] [TTTTTTTT00

Start Bad Stpp
Bit DO D1 D2 D3 D4 D5 D6 D7 Parity Hit
Bit RSTSTA=1
Write T

US_CR

PARE |_
RXRDY _|

Multidrop Mode

If the PAR field in the Mode Register (MR) is programmed to the value 0x6 or 0x07, the USART
runs in Multidrop Mode. This mode differentiates the data characters and the address charac-
ters. Data is transmitted with the parity bit at 0 and addresses are transmitted with the parity bit
atl.

If the USART is configured in multidrop mode, the receiver sets the PARE parity error bit when
the parity bit is high and the transmitter is able to send a character with the parity bit high when
the Control Register is written with the SENDA bit at 1.

To handle parity error, the PARE bit is cleared when the Control Register is written with the bit
RSTSTA at 1.

The transmitter sends an address byte (parity bit set) when SENDA is written to CR. In this case,
the next byte written to THR is transmitted as an address. Any character written in THR without
having written the command SENDA is transmitted normally with the parity at O.

Transmitter Timeguard

The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between
two characters. This idle state actually acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Regis-
ter (TTGR). When this field is programmed at zero no timeguard is generated. Otherwise, the
transmitter holds a high level on TXD after each transmitted byte during the number of bit peri-
ods programmed in TG in addition to the number of stop bits.

As illustrated in Figure 24-23, the behavior of TXRDY and TXEMPTY status bits is modified by
the programming of a timeguard. TXRDY rises only when the start bit of the next character is
sent, and thus remains at 0 during the timeguard transmission if a character has been written in
THR. TXEMPTY remains low until the timeguard transmission is completed as the timeguard is
part of the current character being transmitted.

Alm L 400

L ________________(0G]

AT32AP7002

Figure 24-23. Timeguard Operations

Baud Rate
Clock

TXD

Write
US_THR

TXRDY

TXEMPTY

24.7.3.12

LT TTTTITTT]

Start
Bit

1

DO D1 D2 D3 D4 D5 D6 D7

Parity Stop IStart

Parity Stop
Bit Bit Bit DO D1 D2 D3 D4 D5 D6 D7

Bit Bit

1

U
—~

Table 24-7 indicates the maximum length of a timeguard period that the transmitter can handle
in relation to the function of the Baud Rate.

Table 24-7. Maximum Timeguard Length Depending on Baud Rate
Baud Rate Bit time Timeguard
Bit/sec us ms
1200 833 212.50
9 600 104 26.56
14400 69.4 17.71
19200 52.1 13.28
28800 34.7 8.85
33400 29.9 7.63
56000 17.9 4.55
57600 17.4 4.43
115200 8.7 2.21

Receiver Time-out

32054D-AVR32-10/07

The Receiver Time-out provides support in handling variable-length frames. This feature detects
an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel
Status Register (CSR) rises and can generate an interrupt, thus indicating to the driver an end of
frame.

The time-out delay period (during which the receiver waits for a new character) is programmed
in the TO field of the Receiver Time-out Register (RTOR). If the TO field is programmed at 0, the
Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in CSR remains at
0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO. This counter
is decremented at each bit period and reloaded each time a new character is received. If the
counter reaches 0, the TIMEOUT bit in the Status Register rises.

The user can either:

AIMEL 401

L ________________(0G]

s A T32AP7002

< Obtain an interrupt when a time-out is detected after having received at least one character.
This is performed by writing the Control Register (CR) with the STTTO (Start Time-out) bit at
1.

» Obtain a periodic interrupt while no character is received. This is performed by writing CR
with the RETTO (Reload and Start Time-out) bit at 1.

If STTTO is performed, the counter clock is stopped until a first character is received. The idle
state on RXD before the start of the frame does not provide a time-out. This prevents having to
obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD is
detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This
enables generation of a periodic interrupt so that a user time-out can be handled, for example
when no key is pressed on a keyboard.

Figure 24-24 shows the block diagram of the Receiver Time-out feature.

Figure 24-24. Receiver Time-out Block Diagram

16-bit Time-out

Baud Rate | TO I
Clock
16-bit
1—D Q Clock Value

Counter
STTT0 S = TIMEOUT

Load

0 —»
Clear

Character
Received

Table 24-8 gives the maximum time-out period for some standard baud rates.

Table 24-8. Maximum Time-out Period
Baud Rate Bit Time Time-out
bit/sec S ms
600 1667 109 225
1200 833 54 613
2 400 417 27 306
4 800 208 13 653
9 600 104 6 827
14400 69 4551
19200 52 3413
28800 35 2276
33400 30 1962
56000 18 1170
57600 17 1138
200000 5 328

32054D-AVR32-10/07

ATMEL

®

402

s A T32AP7002

24.7.3.13

Framing Error

The receiver is capable of detecting framing errors. A framing error happens when the stop bit of
a received character is detected at level 0. This can occur if the receiver and the transmitter are
fully desynchronized.

A framing error is reported on the FRAME bit of the Channel Status Register (CSR). The
FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It is
cleared by writing the Control Register (CR) with the RSTSTA bit at 1.

Figure 24-25. Framing Error Status

24.7.3.14

32054D-AVR32-10/07

Baud Rate
Clock
R0 | [T T T TTTTTO
Sg’}{‘ DO DI D2 D3 D4 D5 D6 D7 PgriiltyS[np RSTSTA < 1
Write T
US_CR

FRAME |_
RXRDY _|

Transmit Break

The user can request the transmitter to generate a break condition on the TXD line. A break con-
dition drives the TXD line low during at least one complete character. It appears the same as a
0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds the
TXD line at least during one character until the user requests the break condition to be removed.

A break is transmitted by writing the Control Register (CR) with the STTBRK bit at 1. This can be
performed at any time, either while the transmitter is empty (no character in either the Shift Reg-
ister or in THR) or when a character is being transmitted. If a break is requested while a
character is being shifted out, the character is first completed before the TXD line is held low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of
the break is completed.

The break condition is removed by writing CR with the STPBRK bit at 1. If the STPBRK is
requested before the end of the minimum break duration (one character, including start, data,
parity and stop bits), the transmitter ensures that the break condition completes.

The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK
commands are taken into account only if the TXRDY bit in CSR is at 1 and the start of the break
condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable result. All
STPBRK commands requested without a previous STTBRK command are ignored. A byte writ-
ten into the Transmit Holding Register while a break is pending, but not started, is ignored.

Alm L 403

L ________________(0G]

s A T32AP7002

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times.
Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the
start of the next character. If the timeguard is programmed with a value higher than 12, the TXD
line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 24-26 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK)
commands on the TXD line.

Figure 24-26. Break Transmission

Baud Rate
Clock

TXD _|

[Uiuyuvuviyirvviduivvyuivviuduuuut
HEEEEEEN

Start
Bit

Write

Parity Stop
Bit Bit
STTBRK =1 STPBRK =1

1

DO D1 D2 D3 D4 D5 D6 D7 Break Transmission End of Break

US_CR

TXRDY

TXEMPTY _|

]

24.7.3.15 Receive Break

The receiver detects a break condition when all data, parity and stop bits are low. This corre-
sponds to detecting a framing error with data at 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in CSR. This bit may be
cleared by writing the Control Register (CR) with the bit RSTSTA at 1.

An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchro-
nous operating mode or one sample at high level in synchronous operating mode. The end of
break detection also asserts the RXBRK bit.

24.7.3.16 Hardware Handshaking

The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins
are used to connect with the remote device, as shown in Figure 24-27.

Figure 24-27. Connection with a Remote Device for Hardware Handshaking

32054D-AVR32-10/07

USART Remote
Device
TXD RXD
RXD |« TXD
CTS |e RTS
RTS CTS

Alm L 404

L ________________(0G]

s A T32AP7002

Setting the USART to operate with hardware handshaking is performed by writing the MODE
field in the Mode Register (MR) to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the PDC channel for reception. The transmitter
can handle hardware handshaking in any case.

Figure 24-28 shows how the receiver operates if hardware handshaking is enabled. The RTS
pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer Full) com-
ing from the PDC channel is high. Normally, the remote device does not start transmitting while
its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls, indicating
to the remote device that it can start transmitting. Defining a new buffer to the PDC clears the
status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 24-28. Receiver Behavior when Operating with Hardware Handshaking

RXD | |

RXEN =1
Write
US CR / I

RXDIS =1

\
RTS _|

\

RXBUFF

A | T
KI (I

Figure 24-29 shows how the transmitter operates if hardware handshaking is enabled. The CTS
pin disables the transmitter. If a character is being processing, the transmitter is disabled only
after the completion of the current character and transmission of the next character happens as
soon as the pin CTS falls.

Figure 24-29. Transmitter Behavior when Operating with Hardware Handshaking

24.7.4

24.7.4

ISO7816 Mode

T——

™0 U | L |

The USART features an ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link.
Both T =0 and T = 1 protocols defined by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the MODE field in the Mode Regis-
ter (MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T = 1.

A1 1SO7816 Mode Overview

32054D-AVR32-10/07

The 1SO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see "Baud Rate Generator”
on page 384).

Alm L 405

L ________________(0G]

s A T32AP7002

The USART connects to a smart card as shown in Figure 24-30. The TXD line becomes bidirec-
tional and the Baud Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD pin
becomes bidirectional, its output remains driven by the output of the transmitter but only when
the transmitter is active while its input is directed to the input of the receiver. The USART is con-
sidered as the master of the communication as it generates the clock.

Figure 24-30. Connection of a Smart Card to the USART

USART
CLK
SCK Smart
Card
1/0
TXD

When operating in 1ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro-
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB
or MSB first. Parity Bit (PAR) can be used to transmit in normal or inverse mode. Refer to
"USART Mode Register” on page 417 and "PAR: Parity Type” on page 418.

The USART cannot operate concurrently in both receiver and transmitter modes as the commu-
nication is unidirectional at a time. It has to be configured according to the required mode by
enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver
and the transmitter at the same time in ISO7816 mode may lead to unpredictable results.

The ISO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the 1/O line at their negative value. The USART does not support this for-
mat and the user has to perform an exclusive OR on the data before writing it in the Transmit
Holding Register (THR) or after reading it in the Receive Holding Register (RHR).

24.7.4.2 Protocol T=0

32054D-AVR32-10/07

In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/0 line during the guard time.

If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in Figure 24-31.

If a parity error is detected by the receiver, it drives the 1/O line at O during the guard time, as
shown in Figure 24-32. This error bit is also named NACK, for Non Acknowledge. In this case,
the character lasts 1 bit time more, as the guard time length is the same and is added to the
error bit time which lasts 1 bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous character
in the Receive Holding Register (RHR). It appropriately sets the PARE bit in the Status Register
(SR) so that the software can handle the error.

Alm L 406

L ________________(0G]

AT32AP7002

Figure 24-31. T = 0 Protocol without Parity Error
Clock
e L [T T T T T T T T T L[1

Start DO D1 D2 D3 D4 D5 D6 D7 Parity Guard Guard Next
Bit Bit Timel Time2 Start
Bit

Figure 24-32. T = 0 Protocol with Parity Error

s I
o [T T T T T T T T 18] [|

Start DO D1 D2 D3 D4 D5 D6 D7 Parity | Guard Guard | Start DO D1
Bit Bit |Time 1 Time 2| Bit

Repetition

24.7.4.3 Receive Error Counter
The USART receiver also records the total number of errors. This can be read in the Number of
Error (NER) register. The NB_ERRORS field can record up to 255 errors. Reading NER auto-
matically clears the NB_ERRORS field.

24.7.4.4 Receive NACK Inhibit
The USART can also be configured to inhibit an error. This can be achieved by setting the
INACK bit in the Mode Register (MR). If INACK is at 1, no error signal is driven on the I/O line
even if a parity bit is detected, but the INACK bit is set in the Status Register (SR). The INACK
bit can be cleared by writing the Control Register (CR) with the RSTNACK bit at 1.

Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding
Register, as if no error occurred. However, the RXRDY bit does not raise.

24.7.4.5 Transmit Character Repetition
When the USART is transmitting a character and gets a NACK, it can automatically repeat the
character before moving on to the next one. Repetition is enabled by writing the
MAX_ITERATION field in the Mode Register (MR) at a value higher than 0. Each character can
be transmitted up to eight times; the first transmission plus seven repetitions.

If MAX_ITERATION does not equal zero, the USART repeats the character as many times as
the value loaded in MAX_ITERATION.

When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the
Channel Status Register (CSR). If the repetition of the character is acknowledged by the
receiver, the repetitions are stopped and the iteration counter is cleared.

The ITERATION bit in CSR can be cleared by writing the Control Register with the RSIT bit at 1.
24.7.4.6 Disable Successive Receive NACK
The receiver can limit the number of successive NACKs sent back to the remote transmitter.

This is programmed by setting the bit DSNACK in the Mode Register (MR). The maximum num-
ber of NACK transmitted is programmed in the MAX_ITERATION field. As soon as

Alm L 407

32054D-AVR32-10/07 I ©

s A T32AP7002

24.7.4.7 Protocol T =

24.7.5 IrDA Mode

MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent on
the line and the ITERATION bit in the Channel Status Register is set.

1

When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous for-
mat with only one stop bit. The parity is generated when transmitting and checked when
receiving. Parity error detection sets the PARE bit in the Channel Status Register (CSR).

The USART features an IrDA mode supplying half-duplex point-to-point wireless communica-
tion. It embeds the modulator and demodulator which allows a glueless connection to the
infrared transceivers, as shown in Figure 24-33. The modulator and demodulator are compliant
with the IrDA specification version 1.1 and support data transfer speeds ranging from 2.4 Kb/s to
115.2 Kb/s.

The USART IrDA mode is enabled by setting the MODE field in the Mode Register (MR) to the
value 0x8. The IrDA Filter Register (IF) allows configuring the demodulator filter. The USART
transmitter and receiver operate in a normal asynchronous mode and all parameters are acces-
sible. Note that the modulator and the demodulator are activated.

Figure 24-33. Connection to IrDA Transceivers

USART IrDA
Transceivers
Receiver Demodulator RXD RX j /V
TX iz Y4
Transmitter Modulator TXD

The receiver and the transmitter must be enabled or disabled according to the direction of the
transmission to be managed.

24751 IrDA Modulation

32054D-AVR32-10/07

For baud rates up to and including 115.2 Kbits/sec, the RZI modulation scheme is used. “0” is
represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are
shown in Table 24-9.

Table 24-9. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)
2.4 Kb/s 78.13 s

9.6 Kb/s 19.53 ps

19.2 Kb/s 9.77 ps

Alm L 408

L ________________(0G]

s A T32AP7002

Table 24-9. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)
38.4 Kb/s 4.88 ps
57.6 Kb/s 3.26 us
115.2 Kb/s 1.63 ps

Figure 24-34 shows an example of character transmission.

Figure 24-34. IrDA Modulation

Start Data Bits |Stop
Bit >| Bit

Tra”(s)muitgiz o[1]o[1]o0o of1 1] of1
o 0l A

-~ H‘H

Bit Period % Bit Period

24.75.2 IrDA Baud Rate

Table 24-10 gives some examples of CD values, baud rate error and pulse duration. Note that
the requirement on the maximum acceptable error of +1.87% must be met.

Table 24-10. IrDA Baud Rate Error

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time
3 686 400 115 200 2 0.00% 1.63
20 000 000 115 200 11 1.38% 1.63
32 768 000 115 200 18 1.25% 1.63
40 000 000 115 200 22 1.38% 1.63
3 686 400 57 600 4 0.00% 3.26
20 000 000 57 600 22 1.38% 3.26
32 768 000 57 600 36 1.25% 3.26
40 000 000 57 600 43 0.93% 3.26
3 686 400 38 400 6 0.00% 4.88
20 000 000 38 400 33 1.38% 4.88
32 768 000 38 400 53 0.63% 4.88
40 000 000 38 400 65 0.16% 4.88
3686 400 19 200 12 0.00% 9.77
20 000 000 19 200 65 0.16% 9.77
32 768 000 19 200 107 0.31% 9.77
40 000 000 19 200 130 0.16% 9.77

N AImEl 409

32054D-AVR32-10/07 I ©

s A T32AP7002

Table 24-10. IrDA Baud Rate Error (Continued)

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time
3 686 400 9 600 24 0.00% 19.53
20 000 000 9 600 130 0.16% 19.53
32 768 000 9 600 213 0.16% 19.53
40 000 000 9 600 260 0.16% 19.53
3 686 400 2400 96 0.00% 78.13
20 000 000 2 400 521 0.03% 78.13
32 768 000 2 400 853 0.04% 78.13

24.7.5.3 IrDA Demodulator

The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is
loaded with the value programmed in IF. When a falling edge is detected on the RXD pin, the Fil-
ter Counter starts counting down at the Master Clock (MCK) speed. If a rising edge is detected
on the RXD pin, the counter stops and is reloaded with IF. If no rising edge is detected when the
counter reaches 0, the input of the receiver is driven low during one bit time.

Figure 24-35 illustrates the operations of the IrDA demodulator.

Figure 24-35. IrDA Demodulator Operations

R] [| | []
e TTULD TTTTUTD

Value 2 6 Accepted
Pulse
. Rejected
Receiver .)
Input | Driven Low During 16 Baud Rate Clock Cycles

As the IrDA mode uses the same logic as the 1ISO7816, note that the FI_DI_RATIO field in FIDI
must be set to a value higher than 0 in order to assure IrDA communications operate correctly.

AIMEL 410

32054D-AVR32-10/07 I ©

s A T32AP7002

24.7.6 RS485 Mode

The USART features the RS485 mode to enable line driver control. While operating in RS485
mode, the USART behaves as though in asynchronous or synchronous mode and configuration
of all the parameters is possible. The difference is that the RTS pin is driven high when the
transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical
connection of the USART to a RS485 bus is shown in Figure 24-36.

Figure 24-36. Typical Connection to a RS485 Bus

USART

RXD %
Differential

TXD Bus

RTS

The USART is set in RS485 mode by programming the MODE field in the Mode Register (MR)
to the value 0x1.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high
when a timeguard is programmed so that the line can remain driven after the last character com-
pletion. Figure 24-37 gives an example of the RTS waveform during a character transmission
when the timeguard is enabled.

Figure 24-37. Example of RTS Drive with Timeguard

32054D-AVR32-10/07

TG=4

d
e JULUUUUUULUUUUTUUUL
vo L [TTTTTTTT]

A
\

Start Parity Stop
Bit DO D1 D2 D3 D4 D5 D6 D7 Bit Bit
Write I
US_THR
TXRDY | I
TXEMPTY |
RTS I

Alm L 411

L ________________(0G]

s A T32AP7002

24.7.7 Test Modes

The USART can be programmed to operate in three different test modes. The internal loopback
capability allows on-board diagnostics. In the loopback mode the USART interface pins are dis-
connected or not and reconfigured for loopback internally or externally.

24.7.7.1 Normal Mode

Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD
pin.

Figure 24-38. Normal Mode Configuration

XD
Receiver

TXD

Transmitter

24.7.7.2 Automatic Echo Mode

Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it
is sent to the TXD pin, as shown in Figure 24-39. Programming the transmitter has no effect on
the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver remains
active.

Figure 24-39. Automatic Echo Mode Configuration

XD
Receiver

TXD

Transmitter — 4’|:|

24.7.7.3 Local Loopback Mode

Local loopback mode connects the output of the transmitter directly to the input of the receiver,
as shown in Figure 24-40. The TXD and RXD pins are not used. The RXD pin has no effect on
the receiver and the TXD pin is continuously driven high, as in idle state.

Figure 24-40. Local Loopback Mode Configuration

XD
Receiver

TXD

Transmitter 1 —D

Alm L 412

32054D-AVR32-10/07 I ©

AT32AP7002

24.7.7.4 Remote Loopback Mode

Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 24-41.
The transmitter and the receiver are disabled and have no effect. This mode allows bit-by-bit
retransmission.

Figure 24-41. Remote Loopback Mode Configuration

XD
Receiver 1

TXD

Transmitter ———— —D

Alm L 413

32054D-AVR32-10/07 I ©

s A T32AP7002

24.8 USART User Interface

Table 24-11. USART Memory Map

Offset Register Name Access Reset State
0x0000 Control Register CR Write-only -
0x0004 Mode Register MR Read/Write -
0x0008 Interrupt Enable Register IER Write-only -
0x000C Interrupt Disable Register IDR Write-only -
0x0010 Interrupt Mask Register IMR Read-only 0x0
0x0014 Channel Status Register CSR Read-only -
0x0018 Receiver Holding Register RHR Read-only 0x0
0x001C Transmitter Holding Register THR Write-only -
0x0020 Baud Rate Generator Register BRGR Read/Write 0x0
0x0024 Receiver Time-out Register RTOR Read/Write 0x0
0x0028 Transmitter Timeguard Register TTGR Read/Write 0x0
0x2C - 0x3C Reserved - - -
0x0040 FI DI Ratio Register FIDI Read/Write 0x174
0x0044 Number of Errors Register NER Read-only -
0x0048 Reserved - - -
0x004C IrDA Filter Register IF Read/Write 0x0
0x0050 Manchester Encoder Decoder Register MAN Read/Write 0x30011004
0x5C - OxF8 Reserved - - -
OXFC Version Register US_VERSION Read-only ox—v
0x100 - 0x128 Reserved for PDC Registers - - -

Note: 1. Values in the Version Register vary with the version of the IP block implementation.

AIMEL 414

32054D-AVR32-10/07 I ©

s A T32AP7002

24.8.1 USART Control Register

Name: CR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | - RTSDIS | RTSEN | - | - |
15 14 13 12 11 10 9 8

| RETTO |RSTNACK| RSTIT | SENDA STTTO | STPBRK | STTBRK | RSTSTA|
7 6 5 4 3 2 1 0

| TXDIS | TXEN | RXDIS | RXEN RSTTX | RSTRX | - | - |

» RSTRX: Reset Receiver
0: No effect.

1: Resets the receiver.

« RSTTX: Reset Transmitter
0: No effect.

1: Resets the transmitter.

« RXEN: Receiver Enable
0: No effect.

1: Enables the receiver, if RXDIS is 0.

 RXDIS: Receiver Disable
0: No effect.

1: Disables the receiver.

 TXEN: Transmitter Enable
0: No effect.

1: Enables the transmitter if TXDIS is 0.

e TXDIS: Transmitter Disable
0: No effect.

1: Disables the transmitter.

» RSTSTA: Reset Status Bits
0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, MANERR and RXBRK in CSR.

« STTBRK: Start Break
0: No effect.

1: Starts transmission of a break after the characters present in THR and the Transmit Shift Register have been transmit-

ted. No effect if a break is already being transmitted.

32054D-AVR32-10/07

ATMEL

®

415

s A T32AP7002

 STPBRK: Stop Break
0: No effect.

1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods.
No effect if no break is being transmitted.

e STTTO: Start Time-out
0: No effect

1: Starts waiting for a character before clocking the time-out counter.

« SENDA: Send Address
0: No effect.

1: In Multidrop Mode only, the next character written to the THR is sent with the address bit set.

* RSTIT: Reset Iterations
0: No effect.

1: Resets ITERATION in CSR. No effect if the ISO7816 is not enabled.

» RSTNACK: Reset Non Acknowledge
0: No effect

1: Resets NACK in CSR.

« RETTO: Rearm Time-out
0: No effect

1: Restart Time-out

» RTSEN: Request to Send Enable
0: No effect.

1: Drives the pin RTS to 0.

» RTSDIS: Request to Send Disable
0: No effect.

1: Drives the pin RTS to 1.

Alm L 416

32054D-AVR32-10/07 I ©

s A T32AP7002

24.8.2 USART Mode Register
Name: MR
Access Type: Read/Write
31 30 29 28 27 26 25 24
| ONEBIT | MODSYNC- | MAN | FILTER | - | MAX_ITERATION |
23 22 21 20 19 18 17 16
| - | VAR_SYNC | DSNACK | INACK | OVER | CLKO MODE9 | MSBF |
15 14 13 12 11 10 9 8
| CHMODE | NBSTOP | PAR | SYNC |
7 6 5 4 3 2 1 0
| CHRL | USCLKS | MODE |
« MODE
MODE Mode of the USART
0 0 0 0 Normal
0 0 0 1 RS485
0 0 1 0 Hardware Handshaking
0 0 1 1 Reserved
0 1 0 0 IS07816 Protocol: T=0
0 1 0 1 Reserved
0 1 1 0 IS07816 Protocol: T=1
0 1 1 1 Reserved
1 0 0 0 IrDA
1 1 X X Reserved
» USCLKS: Clock Selection
USCLKS Selected Clock
0 0 MCK
0 1 MCK / DIV
1 0 Reserved
1 1 SCK
* CHRL: Character Length.
CHRL Character Length
0 0 5 bits
ATMEL a17

32054D-AVR32-10/07

L ________________(0G]

s A T32AP7002

0 1 6 bits
1 0 7 bits
1 1 8 bits

* SYNC: Synchronous Mode Select
0: USART operates in Asynchronous Mode.

1. USART operates in Synchronous Mode.
* PAR: Parity Type

PAR Parity Type
0 0 0 Even parity
0 0 1 Odd parity
0 1 0 Parity forced to 0 (Space)
0 1 1 Parity forced to 1 (Mark)
1 0 X No parity
1 1 X Multidrop mode
* NBSTOP: Number of Stop Bits
NBSTOP Asynchronous (SYNC = 0) Synchronous (SYNC = 1)
0 0 1 stop bit 1 stop bit
0 1 1.5 stop bits Reserved
1 0 2 stop bits 2 stop bits
1 1 Reserved Reserved
+ CHMODE: Channel Mode
CHMODE Mode Description

Normal Mode

Automatic Echo. Receiver input is connected to the TXD pin.

Local Loopback. Transmitter output is connected to the Receiver Input..

P | = | O | O
P | O | | O

Remote Loopback. RXD pin is internally connected to the TXD pin.

 MSBF: Bit Order
0: Least Significant Bit is sent/received first.

1: Most Significant Bit is sent/received first.

* MODED9: 9-bit Character Length
0: CHRL defines character length.

1. 9-bit character length.

» CKLO: Clock Output Select
0: The USART does not drive the SCK pin.

AIMEL 418

32054D-AVR32-10/07 I ©

s A T32AP7002

0:
1:

: The USART drives the SCK pin if USCLKS does not select the external clock SCK.

OVER: Oversampling Mode

: 16x Oversampling.

: 8x Oversampling.

INACK: Inhibit Non Acknowledge

: The NACK is generated.
: The NACK is not generated.

DSNACK: Disable Successive NACK
NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener-

ate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.

0:
1:

VAR_SYNC: Variable synchronization of command/data sync Start Frame Delimiter
User defined configuration of command or data sync field depending on SYNC value.

The sync field is updated when a character is written into THR register.

MAX_ITERATION

Defines the maximum number of iterations in mode ISO7816, protocol T= 0.

0:
1:

0:
1:

FILTER: Infrared Receive Line Filter
The USART does not filter the receive line.

The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).

MAN: Manchester Encoder/Decoder Enable
Manchester Encoder/Decoder are disabled.

Manchester Encoder/Decoder are enabled.

MODSYNC: Manchester Synchronization mode

0:The Manchester Start bit is a 0 to 1 transition

1:

0:

The Manchester Start bit is a 1 to O transition.

ONEBIT: Start Frame Delimiter selector
Start Frame delimiter is COMMAND or DATA SYNC.

1: Start Frame delimiter is One Bit.

Alm L 419

32054D-AVR32-10/07 I ©

s A T32AP7002

24.8.3 USART Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 26 25 24

I - I - I - I - I I - I - I - |
23 22 21 20 18 17 16

I - I - I - | MANE | I - | - -
15 14 13 12 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

RXRDY: RXRDY Interrupt Enable

TXRDY: TXRDY Interrupt Enable

RXBRK: Receiver Break Interrupt Enable

ENDRX: End of Receive Transfer Interrupt Enable
ENDTX: End of Transmit Interrupt Enable

OVRE: Overrun Error Interrupt Enable

FRAME: Framing Error Interrupt Enable

PARE: Parity Error Interrupt Enable

TIMEOUT: Time-out Interrupt Enable

TXEMPTY: TXEMPTY Interrupt Enable
ITERATION: Iteration Interrupt Enable

TXBUFE: Buffer Empty Interrupt Enable

RXBUFF: Buffer Full Interrupt Enable

NACK: Non Acknowledge Interrupt Enable
CTSIC: Clear to Send Input Change Interrupt Enable
MANE: Manchester Error Interrupt Enable

: No effect.

: Enables the corresponding interrupt.

ATMEL

32054D-AVR32-10/07 I ©

420

s A T32AP7002

24.8.4 USART Interrupt Disable Register

Name: IDR

Access Type: Write-only
31 30 29 28 26 25 24

I - I - I - I - I I - I - I - |
23 22 21 20 18 17 16

I - I - I - | MANE | I - | - -
15 14 13 12 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

RXRDY: RXRDY Interrupt Disable

TXRDY: TXRDY Interrupt Disable

RXBRK: Receiver Break Interrupt Disable

ENDRX: End of Receive Transfer Interrupt Disable
ENDTX: End of Transmit Interrupt Disable

OVRE: Overrun Error Interrupt Disable

FRAME: Framing Error Interrupt Disable

PARE: Parity Error Interrupt Disable

TIMEOUT: Time-out Interrupt Disable

TXEMPTY: TXEMPTY Interrupt Disable
ITERATION: Iteration Interrupt Disable

TXBUFE: Buffer Empty Interrupt Disable
RXBUFF: Buffer Full Interrupt Disable

NACK: Non Acknowledge Interrupt Disable
CTSIC: Clear to Send Input Change Interrupt Disable
MANE: Manchester Error Interrupt Disable

: No effect.

: Disables the corresponding interrupt.

ATMEL

32054D-AVR32-10/07 I ©

421

s A T32AP7002

24.8.5 USART Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 26 25 24

I - I - I - I - I I - I - I - |
23 22 21 20 18 17 16

I - I - I - | MANE | I - | - -
15 14 13 12 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

RXRDY: RXRDY Interrupt Mask

TXRDY: TXRDY Interrupt Mask

RXBRK: Receiver Break Interrupt Mask

ENDRX: End of Receive Transfer Interrupt Mask
ENDTX: End of Transmit Interrupt Mask

OVRE: Overrun Error Interrupt Mask

FRAME: Framing Error Interrupt Mask

PARE: Parity Error Interrupt Mask

TIMEOUT: Time-out Interrupt Mask

TXEMPTY: TXEMPTY Interrupt Mask
ITERATION: Iteration Interrupt Mask

TXBUFE: Buffer Empty Interrupt Mask

RXBUFF: Buffer Full Interrupt Mask

NACK: Non Acknowledge Interrupt Mask
CTSIC: Clear to Send Input Change Interrupt Mask
MANE: Manchester Error Interrupt Mask

: The corresponding interrupt is disabled.

: The corresponding interrupt is enabled.

ATMEL

32054D-AVR32-10/07 I ©

422

s A T32AP7002

24.8.6 USART Channel Status Register

Name: CSR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - | MANERR |
23 22 21 20 19 18 17 16

[¢S | - - - | crsic | - - -
15 14 13 12 11 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

RXRDY: Receiver Ready

0: No complete character has been received since the last read of RHR or the receiver is disabled. If characters were being

received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1: At least one complete character has been received and RHR has not yet been read.

TXRDY: Transmitter Ready

0: A character is in the THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been
requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1:

0:

32054D-AVR32-10/07

There is no character in the THR.

RXBRK: Break Received/End of Break
No Break received or End of Break detected since the last RSTSTA.

: Break Received or End of Break detected since the last RSTSTA.

ENDRX: End of Receiver Transfer

: The End of Transfer signal from the Receive PDC channel is inactive.

: The End of Transfer signal from the Receive PDC channel is active.

ENDTX: End of Transmitter Transfer

: The End of Transfer signal from the Transmit PDC channel is inactive.

: The End of Transfer signal from the Transmit PDC channel is active.

OVRE: Overrun Error

: No overrun error has occurred since the last RSTSTA.

: At least one overrun error has occurred since the last RSTSTA.

FRAME: Framing Error

: No stop bit has been detected low since the last RSTSTA.

. At least one stop bit has been detected low since the last RSTSTA.

PARE: Parity Error

: No parity error has been detected since the last RSTSTA.

ATMEL

L ________________(0G]

423

s A T32AP7002

1. At least one parity error has been detected since the last RSTSTA.

TIMEOUT: Receiver Time-out
: There has not been a time-out since the last Start Time-out command or the Time-out Register is 0.

o

: There has been a time-out since the last Start Time-out command.

[N

TXEMPTY: Transmitter Empty
0: There are characters in either THR or the Transmit Shift Register, or the transmitter is disabled.

TXEMPTY == 1 means that the transmit shift register is empty and that there is no data in THR.

* ITERATION: Max number of Repetitions Reached
0: Maximum number of repetitions has not been reached since the last RSIT.

1: Maximum number of repetitions has been reached since the last RSIT.

e TXBUFE: Transmission Buffer Empty
0: The signal Buffer Empty from the Transmit PDC channel is inactive.

1: The signal Buffer Empty from the Transmit PDC channel is active.

 RXBUFF: Reception Buffer Full
0: The signal Buffer Full from the Receive PDC channel is inactive.

1: The signal Buffer Full from the Receive PDC channel is active.

* NACK: Non Acknowledge
0: No Non Acknowledge has not been detected since the last RSTNACK.

1. At least one Non Acknowledge has been detected since the last RSTNACK.

» CTSIC: Clear to Send Input Change Flag
0: No input change has been detected on the CTS pin since the last read of CSR.

1: At least one input change has been detected on the CTS pin since the last read of CSR.

» CTS: Image of CTS Input
0: CTSis atO.

1: CTSis at 1.

* MANERR: Manchester Error
0: No Manchester error has been detected since the last RSTSTA.

1: At least one Manchester error has been detected since the last RSTSTA.

Alm L 424

32054D-AVR32-10/07 I ©

s A T32AP7002

24.8.7 USART Receive Holding Register

Name: RHR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| RXSYNH | - | - | - | - | - | - | RXCHR |
7 6 5 4 3 2 1 0

| RXCHR |

« RXCHR: Received Character
Last character received if RXRDY is set.

*» RXSYNH: Received Sync
0: Last Character received is a Data.

1: Last Character received is a Command.

A mE|,® 425

32054D-AVR32-10/07

s A T32AP7002

24.8.8 USART Transmit Holding Register

Name: THR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| TXSYNH | - | - | - | - | - | - | TXCHR |
7 6 5 4 3 2 1 0

| TXCHR |

 TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.

* TXSYNH: Sync Field to be transmitted
0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC.

1: The next character sent is encoded as a command. Start Frame Delimiter is COMMAND SYNC.

Alm L 426

32054D-AVR32-10/07 I ©

s A T32AP7002

24.8.9 USART Baud Rate Generator Register

Name: BRGR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
T -~ T - T - T —] i |
15 14 13 12 11 10 9 8
| cb |
7 6 5 4 3 2 1 0
| cb |
* CD: Clock Divider
MODE # ISO7816
CD SYNC =0 SYNC =1 MODE = ISO7816
OVER =0 OVER =1
0 Baud Rate Clock Disabled
1 to 65535 Baud Rate = Baud Rate = Baud Rate = Baud Rate = Selected
Selected Clock/16/CD | Selected Clock/8/CD Selected Clock /CD Clock/CD/FI_DI_RATIO

* FP: Fractional Part
0: Fractional divider is disabled.

1 - 7: Baudrate resolution, defined by FP x 1/8.

AIMEL 427

32054D-AVR32-10/07 I ©

s A T32AP7002

24.8.10 USART Receiver Time-out Register

Name: RTOR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I To |
7 6 5 4 3 2 1 0

I To |

e TO: Time-out Value
0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

A mE|,® 428

32054D-AVR32-10/07

s A T32AP7002

24.8.11 USART Transmitter Timeguard Register

Name: TTGR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| TG |

e TG: Timeguard Value
0: The Transmitter Timeguard is disabled.

1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.

A mE|,® 429

32054D-AVR32-10/07

s A T32AP7002

24.8.12 USART FI DI RATIO Register

Name: FIDI

Access Type: Read/Write

Reset Value : 0x174
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | FI_DI_RATIO |
7 6 5 4 3 2 1 0

| FI_DI_RATIO

* FI_DI_RATIO: FI Over DI Ratio Value
0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1-2047: 1f ISO7816 mode is selected, the Baud Rate is the clock provided on SCK divided by FI_DI_RATIO.

ATMEL

32054D-AVR32-10/07

430

s A T32AP7002

24.8.13 USART Number of Errors Register

Name: NER

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| NB_ERRORS |

« NB_ERRORS: Number of Errors
Total number of errors that occurred during an 1ISO7816 transfer. This register automatically clears when read.

A mE|,® 431

32054D-AVR32-10/07

s A T32AP7002

24.8.14 USART Manchester Configuration Register

Name: MAN
Access Type: Read/Write
31 30 29 28 27 26 25 24
| - | DRIFT | - | RX_MPOL | - - RX_PP |
23 22 21 20 19 18 17 16
. - - - [- 1] RX_PL |
15 14 13 12 11 10 9 8
| _ [Z [- [TXMPOL | - — TX_PP |
7 6 5 4 3 2 1 0
. - - - [- 1] TX_PL |
e TX_ PL: Transmitter Preamble Length
0: The Transmitter Preamble pattern generation is disabled
1-15: The Preamble Length is TX_PL x Bit Period
o TX_PP: Transmitter Preamble Pattern
TX_PP Preamble Pattern default polarity assumed (TX_MPOL field not set)
0 0 ALL_ONE
0 1 ALL_ZERO
1 0 ZERO_ONE
1 1 ONE_ZERO

e« TX_MPOL: Transmitter Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

 RX_PL: Receiver Preamble Length
0: The receiver preamble pattern detection is disabled

1 - 15: The detected preamble length is RX_PL x Bit Period

* RX_PP: Receiver Preamble Pattern detected

RX_PP Preamble Pattern default polarity assumed (RX_MPOL field not set)
ALL_ONE

ALL_ZERO

ZERO_ONE

ONE_ZERO

|| O | O
= O | | O

« RX_MPOL: Receiver Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

AIMEL 432

32054D-AVR32-10/07 I ©

s A T32AP7002

1. Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

» DRIFT: Drift compensation
0: The USART can not recover from an important clock drift

1: The USART can recover from clock drift. The 16X clock mode must be enabled.

Alm L 433

32054D-AVR32-10/07 I ©

s A T32AP7002

24.8.15 USART IrDA FILTER Register

Name: IF

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| IRDA_FILTER |

* IRDA_FILTER: IrDA Filter

Sets the filter of the IrDA demodulator.

24.9 USART Version Register

Name: US_VERSION

Access Type: Read-only
31 30 29 28 27 26 25 24

— 1 - 1T - T - T - T - - —]
23 22 21 20 19 18 17 16

I - I - I - I - I - I MFN |
15 14 13 12 11 10 9 8

| - | - | - | - | VERSION |
7 6 5 4 3 2 1 0

| VERSION |

« VERSION

Reserved. Value subject to change. No functionality associated. This is the Atmel internal version of the macrocell.

« MFN
Reserved. Value subject to change. No functionality associated.

A mE|,® 434

32054D-AVR32-10/07

s A T32AP7002

25. AC97 Controller (AC97C)

25.1 Features

25.2 Description

32054D-AVR32-10/07

Rev: 2.1.0.0

* Compliant with AC97 2.2 Component Specification
* 2independent communication channels
— Codec Channel, dedicated to the AC97 Analog Front End Control and Status Monitoring
— 2 channels associated with DMA Controller interface for Isochronous Audio Streaming
Transfer
* Variable Sampling Rate AC97 Codec Interface Support
* One Primary Codec Support
* Independent input and Output Slot to Channel Assignment, Several Slots Can Be Assigned to the
Same Channel.
* Channels Support Mono/Stereo/Multichannel Samples of 10, 16, 18 and 20 Bits.

The AC97 Controller is the hardware implementation of the AC97 digital controller (DC’'97) com-
pliant with AC97 Component Specification 2.2. The AC97 Controller communicates with an
audio codec (AC97) or a modem codec (MC’'97) via the AC-link digital serial interface. All digital
audio, modem and handset data streams, as well as control (command/status) informations are
transferred in accordance to the AC-link protocol.

The AC97 Controller features a DMA Controller interface for audio streaming transfers. It also
supports variable sampling rate and four Pulse Code Modulation (PCM) sample resolutions of
10, 16, 18 and 20 bits.

AIMEL 435

L ________________(0G]

s A T32AP7002

25.3 Block D

iagram

Figure 25-1. Functional Block Diagram

AC97C Interrupt
-—

MCK

Peripheral Bus v

AC97 Tag Controller

AC97 CODEC Channel

| AC97C_COTHR l

| ACQ7C?CORHRi

AC97 Channel A

| AC97C_CATHR i

| AC97C_CARHR I

AC97 Channel B

| AC97C_CBTHR i

| ACQ7C_CBRHF{i

User Interface

<

Bit Clock Domain

1 1 1
1 1 1
: Slot Number | .
1 1
. T AC97 Slot Controller [T >
1 1
1 1 1
1 1 1
. - .
! : Slot Number .
: 1 16/20 bits 1
1 ! 1
1 Slot #0 ! 1
T 1| Transmit Shift Register !
1 ! M 1
L 1
: - .
i L Receive Shift Register !
. Sot#,1 ! U '
. ' .
: " X '
f 1 F——+—>
1 1
i Sot#12 ' | Transmit Shift Register :
: T :
: +— Receive Shift Register 1
. Slot #2 ' '
1 1 1
! 1 1
. - —
1 1
1 ' D 1
! 1| Transmit Shift Register 1
1 1
Slot#3.12 4 |- T T E .
T Receive Shift Register :
1
1 1
1 M PR
1
1
1
1
Transmit Shift Register U
Slot#3..12 |-
Receive Shift Register X

ATMEL

L ________________(0G]

436
32054D-AVR32-10/07

s A T32AP7002

25.4 Pin Name List

Table 25-1. 1/O Lines Description

Pin Name Pin Description Type
SCLK 12.288-MHz bit-rate clock (Referred as BITCLK in AC-link spec) Input
SDI Receiver Data (Referred as SDATA_IN in AC-link spec) Input
SYNC 48-KHz frame indicator and synchronizer Output
SDO Transmitter Data (Referred as SDATA_OUT in AC-link spec) Output

The AC97 reset signal provided to the primary codec can be generated by a PIO.

25.5 Application Block Diagram

Figure 25-2. Application Block diagram

- - - - - - - - - - 1
AC 97 Controller ! AC-link . AC'97 Primary Codec
1
1 AC97_RESET !
PI1Ox >
1
1
I AC97_SYNC !
SYNC .
1
. AC97_BITCLK !
SCLK [* ;
1
| 1
sDoO . AC97_SDATA_OUT |
1
! AC97_SDATA IN
SDI [<
- - - - _ - - _ - |

AIMEL 437

32054D-AVR32-10/07 I ©

s A T32AP7002

25.6 Product Dependencies

25.6.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the AC97 Controller receiver, the P1O controller must be configured in order for the
AC97C receiver I/O lines to be in AC97 Controller peripheral mode.

Before using the AC97 Controller transmitter, the PIO controller must be configured in order for
the AC97C transmitter I/O lines to be in AC97 Controller peripheral mode.

25.6.2 Power Management

25.6.3 Interrupt

32054D-AVR32-10/07

The AC97 clock is generated by the power manager. Before using the AC97, the programmer
must ensure that the AC’97 clock is enabled in the power manager.

In the AC97 description, Master Clock (MCK) is the clock of the peripheral bus to which the
AC97 is connected. It is important that that the MCK clock frequency is higher than the SCLK
(Bit Clock) clock frequancy as signals that cross the two clock domains are re-synchronized.

The AC97 interface has an interrupt line connected to the interrupt controller. In order to handle
interrupts, the interrupt controller must be programmed before configuring the AC97.

All AC97 Controller interrupts can be enabled/disabled by writing to the AC97 Controller Inter-
rupt Enable/Disable Registers. Each pending and unmasked AC97 Controller interrupt will
assert the interrupt line. The AC97 Controller interrupt service routine can get the interrupt
source in two steps:

* Reading and ANDing AC97 Controller Interrupt Mask Register (IMR) and AC97 Controller
Status Register (SR).

« Reading AC97 Controller Channel x Status Register (CxSR).)

Alm L 438

L ________________(0G]

s A T32AP7002

25.7 Functional Description

25.7.1 Protocol overview
AC-link protocol is a bidirectional, fixed clock rate, serial digital stream. AC-link handles multiple
input and output Pulse Code Modulation PCM audio streams, as well as control register
accesses employing a Time Division Multiplexed (TDM) scheme that divides each audio frame
in 12 outgoing and 12 incoming 20-bit wide data slots.

Figure 25-3. Bidirectional AC-link Frame with Slot Assignment

Slot # 0 1 2 3 4 5 6 7 8 9 10 11 12
AC97FS
PoM \/TINE 2\ SET 10
ACO7TX o X X B X

(Controller Output)

STATUN /STATUN PCM FCM\/TINE T\/FCM TINE 2\ FSET ©
AC97RX @ ADDR DATA/\LEFT RIGHT ”_DAC MIC XRSVEDX RSVED><RSVED>< ADC ADC TATU
(Codec output)

Table 25-2. AC-link Output Slots Transmitted from the AC97C Controller

Slot # Pin Description

0 TAG

1 Command Address Port

2 Command Data Port

34 PCM playback Left/Right Channel
5 Modem Line 1 Output Channel
6,7,8 PCM Center/Left Surround/Right Surround
9 PCM LFE DAC

10 Modem Line 2 Output Channel

11 Modem Handset Output Channel
12 Modem GPIO Control Channel

Table 25-3. AC-link Input Slots Transmitted from the AC97C Controller

Slot # Pin Description

0 TAG

1 Status Address Port

2 Status Data Port

3,4 PCM playback Left/Right Channel
5 Modem Line 1 ADC

6 Dedicated Microphone ADC
7,8,9 Vendor Reserved

10 Modem Line 2 ADC

11 Modem Handset Input ADC
12 Modem IO Status

AIMEL 439

32054D-AVR32-10/07 I ©

s A T32AP7002

25.7.2 Slot Description

25.7.2.1 Tag Slot

25.7.2.2 Codec Slot 1

25.7.2.3 Codec Slot 2

The tag slot, or slot 0, is a 16-bit wide slot that always goes at the beginning of an outgoing or
incoming frame. Within tag slot, the first bit is a global bit that flags the entire frame validity. The
next 12 bit positions sampled by the AC97 Controller indicate which of the corresponding 12
time slots contain valid data. The slot’s last two bits (combined) called Codec ID, are used to dis-
tinguish primary and secondary codec.

The 16-bit wide tag slot of the output frame is automatically generated by the AC97 Controller
according to the transmit request of each channel and to the SLOTREQ from the previous input
frame, sent by the AC97 Codec, in Variable Sample Rate mode.

The command/status slot is a 20-bit wide slot used to control features, and monitors status for
AC97 Codec functions.

The control interface architecture supports up to sixty-four 16-bit wide read/write registers. Only
the even registers are currently defined and addressed.

Slot 1's bitmap is the following:
« Bit 19 is for read/write command, 1= read, 0 = write.

« Bits [18:12] are for control register index.
* Bits [11:0] are reserved.

Slot 2 is a 20-bit wide slot used to carry 16-bit wide AC97 Codec control register data. If the cur-
rent command port operation is a read, the entire slot time is stuffed with zeros. Its bitmap is the
following:

* Bits [19:4] are the control register data

« Bits [3:0] are reserved and stuffed with zeros.

25.7.2.4 Data Slots [3:12]

32054D-AVR32-10/07

Slots [3:12] are 20-bit wide data slots, they usually carry audio PCM or/and modem 1/O data.

Alm L 440

L ________________(0G]

s A T32AP7002

25.7.3 AC97 Controller Channel Organization

The AC97 Controller features a Codec channel and 2 logical channels; Channel A and Channel
B.

The Codec channel controls AC97 Codec registers, it enables write and read configuration val-
ues in order to bring the AC97 Codec to an operating state. The Codec channel always runs slot
1 and slot 2 exclusively, in both input and output directions.

Channel A and Channel B transfer data to/from AC97 codec. All audio samples and modem
data must transit by these two channels.

Each slot of the input or the output frame that belongs to this range [3 to 12] can be operated by
either Channel A or Channel B. The slot to channel assignment is configured by two registers:

« AC97 Controller Input Channel Assignment Register (ICA)

* AC97 Controller Output Channel Assignment Register (OCA)

The AC97 Controller Input Channel Assignment Register (ICA) configures the input slot to chan-
nel assignment. The AC97 Controller Output Channel Assignment Register (OCA) configures
the output slot to channel assignment.

A slot can be left unassigned to a channel by the AC97 Controller. Slots 0, 1,and 2 cannot be
assigned to Channel A or to Channel B through the OCA and ICA Registers.

The width of sample data, that transit via Channel A and Channel B varies and can take one of
these values; 10, 16, 18 or 20 bits.

Figure 25-4. Logical Channel Assignment

Slot #

AC97FS

AC97TX
(Controller Output)

AC97RX
(Codec output)

32054D-AVR32-10/07

0

J_I

AC97C_{

AC97C_|

1 2 3 4 5 6 7 8 9 10 11 12
CMD CMD PCM PCM LINE 1 PCM PCM PCM PCM LINE 2 HSET 10
ADDR DATA L Fron R Fron DAC Center/\ L SUR R SUR LFE DAC DAC CTRL
Codec Channel Channel A

OCA = 0x0000_0209

LINE 2\ HSET 10
RSVEL>< RSVEI:><RSVED X DG X Jr X STAT ;>

Codec Channel Channel A

ICA = 0x0000_0009

A “'lEl,® 441

s A T32AP7002

25.7.3.1 AC97 Controller Setup

The following operations must be performed in order to bring the AC97 Controller into an operat-
ing state:

1.
2.
3.

Enable the AC97 Controller clock in the power manager.
Turn on AC97 function by enabling the ENA bit in AC97 Controller Mode Register (MR).

Configure the input channel assignment by controlling the AC97 Controller Input
Assignment Register (ICA).

Configure the output channel assignment by controlling the AC97 Controller Input
Assignment Register (OCA).

Configure sample width for Channel A and Channel B by writing the SIZE bit field in
AC97C Channel A Mode Register (CAMR) and AC97C Channel B Mode Register
(CBMR). The application can write 10, 16, 18,0r 20-bit wide PCM samples through the
AC97 interface and they will be transferred into 20-bit wide slots.

Configure data Endianness for Channel A and Channel B by writing CEM bit field in
CAMR and CBMR registers. Data on the AC-link are shifted MSB first. The application
can write little- or big-endian data to the AC97 Controller interface.

Configure the PI1O controller to drive the RESET signal of the external Codec. The
RESET signal must fulfill external AC97 Codec timing requirements.

Enable Channel A and/or Channel B by writing CEN bit field in CAMR and CBMR
registers.

25.7.3.2 Transmit Operation

The application must perform the following steps in order to send data via a channel to the AC97
Codec:

» Check if previous data has been sent by polling TXRDY flag in the AC97C Channel x Status

Register (CxSR). x being one of the 2 channels.

« Write data to the AC97 Controller Channel x Transmit Holding Register (CXxTHR).

Once data has been transferred to the Channel x Shift Register, the TXRDY flag is automatically
set by the AC97 Controller which allows the application to start a new write action. The applica-
tion can also wait for an interrupt notice associated with TXRDY in order to send data. The
interrupt remains active until TXRDY flag is cleared..

32054D-AVR32-10/07

Alm L 442

L ________________(0G]

AT32AP7002

Figure 25-5. Audio Transfer (PCM L Front, PCM R Front) on Channel x

Slot #
AC97FS

AC97TX
(Controller Output)

TXRDYCx
(AC97C_SR)

TXEMPTY
(AC97C_SR)

Write access to
AC97C_THRx

0

.
I .

1 2 3 4 5 6 7 8 9 10 11 12

| |
| | | |
| !
@ CMD>< CMD : PCM I PCM x LINE 1>< PCM PCM PCM PCM >< LINE 2 HSET>< 10 >
ADDR, DATA L Fron R Fron DAC Center, L SUR R SUR LFE DAC DAC CTRL

Pt

PCM L Front

|
|
T
|
|
transfered to the shift register |

PCM R Front
transfered to the shift register
The TXEMPTY flag in the AC97 Controller Channel x Status Register (CxSR) is set when all
requested transmissions for a channel have been shifted on the AC-link. The application can
either poll TXEMPTY flag in CxSR or wait for an interrupt notice associated with the same flag.

In most cases, the AC97 Controller is embedded in chips that target audio player devices. In
such cases, the AC97 Controller is exposed to heavy audio transfers. Using the polling tech-
nique increases processor overhead and may fail to keep the required pace under an operating
system.

In order to avoid these polling drawbacks, the application can perform audio streams by using a
DMA controller (DMAC) connected to both channels, which reduces processor overhead and
increases performance especially under an operating system.

The DMAC transmit counter values must be equal to the number of PCM samples to be trans-
mitted, each sample goes in one slot.

25.7.3.3 AC97 Output Frame

32054D-AVR32-10/07

The AC97 Controller outputs a thirteen-slot frame on the AC-Link. The first slot (tag slot or slot 0)
flags the validity of the entire frame and the validity of each slot; whether a slot carries valid data
or not. Slots 1 and 2 are used if the application performs control and status monitoring actions
on AC97 Codec control/status registers. Slots [3:12] are used according to the content of the
AC97 Controller Output Channel Assignment Register (OCA). If the application performs many
transmit requests on a channel, some of the slots associated to this channel or all of them will
carry valid data.

AIMEL 443

L ________________(0G]

s A T32AP7002

25.7.3.4 Receive Operation
The AC97 Controller can also receive data from AC97 Codec. Data is received in the channel's
shift register and then transferred to the AC97 Controller Channel x Read Holding Register. To
read the newly received data, the application must perform the following steps:

* Poll RXRDY flag in AC97 Controller Channel x Status Register (CxSR). x being one of the 2
channels.
* Read data from AC97 Controller Channel x Read Holding Register.
The application can also wait for an interrupt notice in order to read data from CxRHR. The inter-
rupt remains active until RXRDY is cleared by reading CxSR.

The RXRDY flag in CxSR is set automatically when data is received in the Channel x shift regis-
ter. Data is then shifted to CxRHR.

Figure 25-6. Audio Transfer (PCM L Front, PCM R Front) on Channel x

Slot # 0 1 2 3 4 5 6 7 8 9 10 11 12

AC97FS | |
STATUN/STATUSN /~ PCM PCM \/TINE T\ /"~ PCM TINE 2 \/HSET 10
ACI7RX ADDR%DATA LEFT>< RIGHT_DAC MIC XRSVEDXRSVEDXRSVEDX ADC ADC TATUS

(Codec output)
RXRDYCx | | | I
(AC97C_SR)

Read access to T T
AC97C_RHRx

If the previously received data has not been read by the application, the new data overwrites the
data already waiting in CxRHR, therefore the OVRUN flag in CxSR is raised. The application
can either poll the OVRUN flag in CxSR or wait for an interrupt notice. The interrupt remains
active until the OVRUN flag in CxSR is set.

The AC97 Controller can also be used in sound recording devices in association with an AC97
Codec. The AC97 Controller may also be exposed to heavy PCM transfers.

The application can use the DMAC connected to both channels in order to reduce processor
overhead and increase performance especially under an operating system.

The DMAC receive counter values must be equal to the number of PCM samples to be received.
When more than one timeslot is assigned to a channel using DMA, the different timeslot sam-
ples will be interleaved.

25.7.3.5 AC97 Input Frame
The AC97 Controller receives a thirteen slot frame on the AC-Link sent by the AC97 Codec. The
first slot (tag slot or slot 0) flags the validity of the entire frame and the validity of each slot;
whether a slot carries valid data or not. Slots 1 and 2 are used if the application requires status
informations from AC97 Codec. Slots [3:12] are used according to AC97 Controller Output
Channel Assignment Register (ICA) content. The AC97 Controller will not receive any data from
any slot if ICA is not assigned to a channel in input.

Alm L 444

32054D-AVR32-10/07 I ©

s A T32AP7002

25.7.3.6 Configuring and Using Interrupts
Instead of polling flags in AC97 Controller Global Status Register (SR) and in AC97 Controller
Channel x Status Register (CxSR), the application can wait for an interrupt notice. The following
steps show how to configure and use interrupts correctly:
* Set the interruptible flag in AC97 Controller Channel x Mode Register (CxMR).
« Set the interruptible event and channel event in AC97 Controller Interrupt Enable Register
(IER).
The interrupt handler must read both AC97 Controller Global Status Register (SR) and AC97
Controller Interrupt Mask Register (IMR) and AND them to get the real interrupt source. Further-
more, to get which event was activated, the interrupt handler has to read AC97 Controller
Channel x Status Register (CxSR), x being the channel whose event triggers the interrupt.
The application can disable event interrupts by writing in AC97 Controller Interrupt Disable Reg-
ister (IDR). The AC97 Controller Interrupt Mask Register (IMR) shows which event can trigger
an interrupt and which one cannot.
25.7.3.7 Endianness
Endianness can be managed automatically for each channel, except for the Codec channel, by
writing to Channel Endianness Mode (CEM) in CxMR. This enables transferring data on AC-link
in Little Endian format without any additional operation.
25.7.3.8 To Transmit a Word Stored in Little Endian Format on AC-link
Word to be written in AC97 Controller Channel x Transmit Holding Register (CxTHR) (as it is
stored in memory or microprocessor register).
31 24 23 16 15 8 7 0
Byte3[7:0] | Byte2[7:0] | Bytel[7:0] | Byte0[7:0] |
Word stored in Channel x Transmit Holding Register (AC97C_CxTHR) (data to transmit).
31 24 23 20 19 16 15 8 7 0
- | - | Bytel[3:0] | Byte2[7:0] | Byte3[7:0] |
Data transmitted on appropriate slot: data[19:0] = {Byte1[3:0], Byte2[7:0], Byte3[7:0]}.
25.7.3.9 To Transmit A Halfword Stored in Little Endian Format on AC-link
Halfword to be written in AC97 Controller Channel x Transmit Holding Register (CxTHR).
31 24 23 16 15 8 7 0
- | - | Byte0[7:0] | Bytel[7:0] |
Halfword stored in AC97 Controller Channel x Transmit Holding Register (CxTHR) (data to
transmit).
31 24 23 16 15 8 7 0

- | Z [Byte1[7:0] | ByteO[7:0]

Data emitted on related slot: data[19:0] = {Byte1[7:0], ByteO[7:0], 0x0}.

Alm L 445

32054D-AVR32-10/07 I ©

s A T32AP7002

25.7.3.10 To Transmit al0-bit Sample Stored in Little Endian Format on AC-link
Halfword to be written in AC97 Controller Channel x Transmit Holding Register (CxTHR).

31 24 23 16 15 8 7 0
- | - | Byte0[7:0] | {0x00, Byte1[1:0]} |

Halfword stored in AC97 Controller Channel x Transmit Holding Register (CxTHR) (data to
transmit).

31 24 23 16 15 10 9 8 7 0

- Ef)lltg]l ByteQ[7:0]

Data emitted on related slot: data[19:0] = {Byte1[1:0], ByteO[7:0], 0x000}.
25.7.3.11 To Receive Word transfers
Data received on appropriate slot: data[19:0] = {Byte2[3:0], Bytel[7:0], Byte0[7:0]}.
Word stored in AC97 Controller Channel x Receive Holding Register (CxRHR) (Received Data).

31 24 23 20 19 16 15 8 7 0
- | - | Byte2[3:0] | Bytel[7:0] | Byte0[7:0] |

Data is read from AC97 Controller Channel x Receive Holding Register (CxXRHR) when Channel
X data size is greater than 16 bits and when little endian mode is enabled (data written to
memory).

31 24 23 16 15 8 7 0
| Byte0[7:0] | Bytel[7:0] | {0x0, Byte2[3:0]} | 0x00

25.7.3.12 To Receive Halfword Transfers
Data received on appropriate slot: data[19:0] = {Byte1[7:0], Byte0Q[7:0], Ox0 }.

Halfword stored in AC97 Controller Channel x Receive Holding Register (CxRHR) (Received
Data).

31 24 23 16 15 8 7 0
- | — | Bytel1[7:0] | Byte0[7:0] |

Data is read from AC97 Controller Channel x Receive Holding Register (CxRHR) when data size
is equal to 16 bits and when little endian mode is enabled.

31 24 23 16 15 8 7 0
- | - | ByteQ[7:0] | Bytel[7:0]

25.7.3.13 To Receive 10-bit Samples
Data received on appropriate slot: data[19:0] = {Byte1[1:0], Byte0Q[7:0], 0x000}. Halfword stored
in AC97 Controller Channel x Receive Holding Register (CxRHR) (Received Data)

31 24 23 16 15 100 9 8 7 0
Bytel

_ - - [1:0] Byte0[7:0]

Alm L 446

32054D-AVR32-10/07 I ©

s A T32AP7002

31

Data read from AC97 Controller Channel x Receive Holding Register (CxRHR) when data size is
equal to 10 bits and when little endian mode is enabled.

24 23 16 15 8 7 3 1 0

Bytel

- Byte0[7:0] 0x00 [1:0]

25.7.4 Variable Sample Rate

The problem of variable sample rate can be summarized by a simple example. When passing a
44.1 kHz stream across the AC-link, for every 480 audio output frames that are sent across, 441
of them must contain valid sample data. The new AC97 standard approach calls for the addition
of “on-demand” slot request flags. The AC97 Codec examines its sample rate control register,
the state of its FIFOs, and the incoming SDATA_OUT tag bits (slot 0) of each output frame and
then determines which SLOTREQ bits to set active (low). These bits are passed from the AC97
Codec to the AC97 Controller in slot 1/SLOTREQ in every audio input frame. Each time the
AC97 controller sees one or more of the newly defined slot request flags set active (low) in a
given audio input frame, it must pass along the next PCM sample for the corresponding slot(s) in
the AC-link output frame that immediately follows.

The variable Sample Rate mode is enabled by performing the following steps:

« Setting the VRA bit in the AC97 Controller Mode Register (MR).

» Enable Variable Rate mode in the AC97 Codec by performing a transfer on the Codec
channel.

Slot 1 of the input frame is automatically interpreted as SLOTREQ signaling bits. The AC97 Con-
troller will automatically fill the active slots according to both SLOTREQ and OCA register in the
next transmitted frame.

25.7.5 Power Management

25.75.1 Powering Down the AC-Link

32054D-AVR32-10/07

The AC97 Codecs can be placed in low power mode. The application can bring AC97 Codec to
a power down state by performing sequential writes to AC97 Codec powerdown register . Both
the bit clock (clock delivered by AC97 Codec, SCLK) and the input line (SDI) are held at a logic
low voltage level. This puts AC97 Codec in power down state while all its registers are still hold-
ing current values. Without the bit clock, the AC-link is completely in a power down state.

The AC97 Controller should not attempt to play or capture audio data until it has awakened
AC97 Codec.

To set the AC97 Codec in low power mode, the PR4 bit in the AC97 Codec powerdown register
(Codec address 0x26) must be set to 1. Then the primary Codec drives both BITCLK and SDI to
a low logic voltage level.

The following operations must be done to put AC97 Codec in low power mode:
« Disable Channel A clearing CEN in the CAMR register.
* Disable Channel B clearing CEN field in the CBMR register.
» Write 0x2680 value in the COTHR register.

 Poll the TXEMPTY flag in CxSR registers for the 2 channels.
At this point AC97 Codec is in low power mode.

Alm L 447

L ________________(0G]

s A T32AP7002

25.7.5.2 Waking up the AC-link

There are two methods to bring the AC-link out of low power mode. Regardless of the method, it
is always the AC97 Controller that performs the wake-up.

25.7.5.3 Wake-up Tiggered by the AC97 Controller

The AC97 Controller can wake up the AC97 Codec by issuing either a cold or a warm reset.

The AC97 Controller can also wake up the AC97 Codec by asserting SYNC signal, however this
action should not be performed for a minimum period of four audio frames following the frame in
which the powerdown was issued.

25.7.5.4 Wake-up Triggered by the AC97 Codec

This feature is implemented in AC97 modem codecs that need to report events such as Caller-
ID and wake-up on ring.

The AC97 Codec can drive SDI signal from low to high level and holding it high until the control-
ler issues either a cold or a warm reset. The SDI rising edge is asynchronously (regarding
SYNC) detected by the AC97 Controller. If WKUP bit is enabled in IMR register, an interrupt is
triggered that wakes up the AC97 Controller which should then immediately issue a cold or a
warm reset.

If the processor needs to be awakened by an external event, the SDI signal must be externally
connected to the WAKEUP entry of the system controller.

Figure 25-7. AC97 Power-Down/Up Sequence

AC97CK

AC97FS

AC97TX

AC97RX

32054D-AVR32-10/07

Wake Event
Power Down Frame Sleep State Warm Reset New Audio Frame
|

T

!

PN S

I
I
I
L
I |
I
I
T P
I I !
I

1
rite to' Data \ | | |
, PR4 L \ [/ TAG Slotl Slot2

T
| | P |

| |] |
rite to Data \ | '_:—El |
@ PR4 X TAG Slotl Slot2

Alm L 448

L ________________(0G]

s A T32AP7002

25.7.5.5 AC97 Codec Reset

There are three ways to reset an AC97 Codec.

25.7.5.6 Cold AC97 Reset

A cold reset is generated by asserting the RESET signal low for the minimum specified time
(depending on the AC97 Codec) and then by de-asserting RESET high. BITCLK and SYNC is
reactivated and all AC97 Codec registers are set to their default power-on values. Transfers on
AC-link can resume.

The RESET signal will be controlled via a P1O line. This is how an application should perform a
cold reset:

« Clear and set ENA flag in the MR register to reset the AC97 Controller

« Clear PIO line output controlling the AC97 RESET signal

« Wait for the minimum specified time

* Set PIO line output controlling the AC97 RESET signal
BITCLK, the clock provided by AC97 Codec, is detected by the controller.

25.7.5.7 Warm AC97 Reset

32054D-AVR32-10/07

A warm reset reactivates the AC-link without altering AC97 Codec registers. A warm reset is sig-
naled by driving AC97FX signal high for a minimum of 1us in the absence of BITCLK. In the
absence of BITCLK, AC97FX is treated as an asynchronous (regarding AC97FX) input used to
signal a warm reset to AC97 Codec.

This is the right way to perform a warm reset:

* Set WRST in the MR register.
» Wait for at least 1us
 Clear WRST in the MR register.

The application can check that operations have resumed by checking SOF flag in the SR regis-
ter or wait for an interrupt notice if SOF is enabled in IMR.

Alm L 449

L ________________(0G]

s A T32AP7002

25.8 AC97 Controller (AC97C) User Interface

Table 25-4. Register Mapping

Offset Register Register Name Access Reset
0x0-0x4 Reserved - - -
0x8 Mode Register MR Read/Write 0x0
0xC Reserved - - -
0x10 Input Channel Assignment Register ICA Read/Write 0x0
0x14 Output Channel Assignment Register OCA Read/Write 0x0
0x18-0x1C Reserved - - -
0x20 Channel A Receive Holding Register CARHR Read 0x0
0x24 Channel A Transmit Holding Register CATHR Write -
0x28 Channel A Status Register CASR Read 0x0
0x2C Channel A Mode Register CAMR Read/Write 0x0
0x30 Channel B Receive Holding Register CBRHR Read 0x0
0x34 Channel B Transmit Holding Register CBTHR Write -
0x38 Channel B Status Register CBSR Read 0x0
0x3C Channel B Mode Register CBMR Read/Write 0x0
0x40 Codec Receive Holding Register CORHR Read 0x0
0x44 Codec Transmit Holding Register COTHR Write -
0x48 Codec Status Register COSR Read 0x0
0x4C Codec Mode Register COMR Read/Write 0x0
0x50 Status Register SR Read 0x0
0x54 Interrupt Enable Register IER Write -
0x58 Interrupt Disable Register IDR Write -
0x5C Interrupt Mask Register IMR Read 0x0
0x60-0xFB Reserved - - -

AIMEL 450

32054D-AVR32-10/07 I ©

s A T32AP7002

25.8.1 AC97 Controller Mode Register

Name: MR

Access Type: Read-Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | VRA | WRST | ENA |

VRA: Variable Rate (for Data Slots 3-12)
: Variable Rate is inactive. (48 KHz only)
: Variable Rate is active.
WRST: Warm Reset
: Warm Reset is inactive.
: Warm Reset is active.
» ENA: AC97 Controller Global Enable
0: No effect. AC97 function as well as access to other AC97 Controller registers are disabled.
1: Activates the AC97 function.

. L O .

= O

A mE|,® 451

32054D-AVR32-10/07

s A T32AP7002

25.8.2 AC97 Controller Input Channel Assignment Register

Register Name: ICA

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - | CHID12 CHID11 |
23 22 21 20 19 18 17 16

| CHID10 CHID9 CHIDS8 |
15 14 13 12 11 10 9 8

| CHIDS8 CHID7 CHID6 CHID5 |
7 6 5 4 3 2 1 0

| CHID4 CHID3 |

| CHID5

« CHIDx: Channel ID for the input slot x

CHIDx Selected Receive Channel
0x0 None. No data will be received during this Slot x
0x1 Channel A data will be received during this slot time.
0x2 Channel B data will be received during this slot time

32054D-AVR32-10/07

ATMEL

L ________________(0G]

452

s A T32AP7002

25.8.3 AC97 Controller Output Channel Assignment Register

Register Name: OCA

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - | CHID12 CHID11 |
23 22 21 20 19 18 17 16

| CHID10 CHID9 CHIDS8 |
15 14 13 12 11 10 9 8

| CHIDS8 CHID7 CHID6 CHID5 |
7 6 5 4 3 2 1 0

| CHID4 CHID3 |

| CHID5

« CHIDx: Channel ID for the output slot x

CHIDx Selected Transmit Channel
0x0 None. No data will be transmitted during this Slot x
0x1 Channel A data will be transferred during this slot time.
0x2 Channel B data will be transferred during this slot time

32054D-AVR32-10/07

ATMEL

L ________________(0G]

453

s A T32AP7002

25.8.4 AC97 Controller Codec Channel Receive Holding Register

Register Name: CORHR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - r - - [- [- | S
23 22 21 20 19 18 17 16

. - r - - - [- [- | N
15 14 13 12 11 10 9 8

| SDATA |
7 6 5 4 3 2 1 0

| SDATA |

» SDATA: Status Data
Data sent by the CODEC in the third AC97 input frame slot (Slot 2).

A mE|,® 454

32054D-AVR32-10/07

s A T32AP7002

25.8.5 AC97 Controller Codec Channel Transmit Holding Register

Register Name: COTHR

Access Type: Write-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| READ | CADDR |
15 14 13 12 11 10 9 8

| CDATA |
7 6 5 4 3 2 1 0

| CDATA |

* READ: Read/Write command

0: Write operation to the CODEC register indexed by the CADDR address.
1. Read operation to the CODEC register indexed by the CADDR address.
This flag is sent during the second AC97 frame slot

 CADDR: CODEC control register index

Data sent to the CODEC in the second AC97 frame slot.

» CDATA: Command Data

Data sent to the CODEC in the third AC97 frame slot (Slot 2).

Alm L 455

32054D-AVR32-10/07 I ©

s A T32AP7002

25.8.6 AC97 Controller Channel A, Channel B Receive Holding Register

Register Name:

CARHR, CBRHR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - S - - - —]
23 22 21 20 19 18 17 16

| - | - - - | RDATA |
15 14 13 12 11 10 9 8

| RDATA |
7 6 5 4 3 2 1 0

| RDATA |

 RDATA: Receive Data
Received Data on channel x.

32054D-AVR32-10/07

ATMEL

456

s A T32AP7002

25.8.7 AC97 Controller Channel A, channel B Transmit Holding Register

Register Name: CATHR, CBTHR

Access Type: Write-only
31 30 29 28 27 26 25 24

1 - 1T -— T - T - - - —]
23 22 21 20 19 18 17 16

. - r - ¢ - [- 1] TDATA |
15 14 13 12 11 10 9 8

| TDATA |
7 6 5 4 3 2 1 0

| TDATA |

* TDATA: Transmit Data
Data to be sent on channel x.

A mE|,® 457

32054D-AVR32-10/07

s A T32AP7002

25.8.8 AC97 Controller Channel A Status Register

Register Name: CASR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - r - - [- [- | S
23 22 21 20 19 18 17 16

. - r - - - [- [- | N
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- | - [-]
7 6 5 4 3 2 1 0

| - | - | OVRUN | RXRDY | - | UNRUN | TXEMPTY | TXRDY |

25.8.9 AC97 Controller Channel B Status Register

Register Name: CBSR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - - - [- [- | S
23 22 21 20 19 18 17 16

. - r - - - [- [- | i
15 14 13 12 11 10 9 8

r - r -t - ¢+ - ¢ - ; - | - -]
7 6 5 4 3 2 1 0

| - | - | OVRUN | RXRDY | - | UNRUN | TXEMPTY | TXRDY |

25.8.10 AC97 Controller Codec Channel Status Register

Register Name: COSR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - r - - - [- [- | S
23 22 21 20 19 18 17 16

r - r -t - ¢+ - *r - [- | - [-]
15 14 13 12 11 10 9 8

. - r - - - [- [- | N
7 6 5 4 3 2 1 0

| - | - | OVRUN | RXRDY | - | - | TXEMPTY | TXRDY |

= O

B o e

0: Channel Receive Holding Register is empty.
: Data has been received and loaded in Channel Receive Holding Register.

32054D-AVR32-10/07

TXRDY: Channel Transmit Ready

TXEMPTY: Channel Transmit Empty

RXRDY: Channel Receive Ready

ATMEL

: Data remains in the Channel Transmit Register or is currently transmitted from the Channel Transmit Shift Register.
: Data in the Channel Transmit Register have been loaded in the Channel Transmit Shift Register and sent to the codec.

: Data has been loaded in Channel Transmit Register and is waiting to be loaded in the Channel Transmit Shift Register.
: Channel Transmit Register is empty.

458

s A T32AP7002

* OVRUN: Receive Overrun
Automatically cleared by a processor read operation.

0: No data has been loaded in the Channel Receive Holding Register while previous data has not been read since the last
read of the Status Register.

1: Data has been loaded in the Channel Receive Holding Register while previous data has not yet been read since the last
read of the Status Register.

Alm L 459

32054D-AVR32-10/07 I ©

s A T32AP7002

25.8.11 AC97 Controller Channel A Mode Register

Register Name: CAMR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - - r - - [- [- | - - |
23 22 21 20 19 18 17 16

| - | DMAEN | CEN | - | - | CEM | SIZE |
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- | - [-]
7 6 5 4 3 2 1 0

| - | - | OVRUN | RXRDY | - | UNRUN | TXEMPTY | TXRDY |

DMAEN: DMA Enable
: Disable DMA transfers for this channel.
: Enable DMA transfers for this channel using DMAC.
CEM: Channel A Endian Mode
0: Transferring Data through Channel A is straight forward (Big Endian).
1: Transferring Data through Channel A from/to a memory is performed with from/to Little Endian format translation.
* SIZE: Channel A Data Size
SIZE Encoding

= O

SIZE Selected Channel
0x0 20 bits
0x1 18bits
0x2 16 bits
0x3 10 bits

Note: Each time slot in the data phase is 20 bit long. For example, if a 16-bit sample stream is being played to an AC 97 DAC, the first
16 bit positions are presented to the DAC MSB-justified. They are followed by the next four bit positions that the AC97 Controller
fills with zeroes. This process ensures that the least significant bits do not introduce any DC biasing, regardless of the imple-
mented DAC's resolution (16-, 18-, or 20-bit).

 CEN: Channel A Enable
0: Data transfer is disabled on Channel A.
1: Data transfer is enabled on Channel A.

AIMEL 460

32054D-AVR32-10/07 I ©

s A T32AP7002

25.8.12 AC97 Controller Channel B Mode Register

Register Name: CBMR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - - r - - [- [- | - - |
23 22 21 20 19 18 17 16

| - | DMAEN | CEN | - | - | CEM | SIZE |
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- | - [-]
7 6 5 4 3 2 1 0

| - | - | OVRUN | RXRDY | - | UNRUN | TXEMPTY | TXRDY |

DMAEN: DMA Enable
: Disable DMA transfers for this channel.
: Enable DMA transfers for this channel using DMAC.
CEM: Channel B Endian Mode
0: Transferring Data through Channel B is straight forward (Big Endian).
1: Transferring Data through Channel B from/to a memory is performed with from/to Little Endian format translation.
» SIZE: Channel B Data Size
SIZE Encoding

= O

SIZE Selected Channel
0x0 20 bits
0x1 18bits
0x2 16 bits
0x3 10 bits

Note: Each time slot in the data phase is 20 bit long. For example, if a 16-bit sample stream is being played to an AC 97 DAC, the first
16 bit positions are presented to the DAC MSB-justified. They are followed by the next four bit positions that the AC97 Controller
fills with zeroes. This process ensures that the least significant bits do not introduce any DC biasing, regardless of the imple-
mented DAC's resolution (16-, 18-, or 20-bit).

 CEN: Channel B Enable
0: Data transfer is disabled on Channel B.
1: Data transfer is enabled on Channel B.

AIMEL 461

32054D-AVR32-10/07 I ©

s A T32AP7002

25.8.13 AC97 Controller Codec Channel Mode Register

Register Name: COMR
Access Type: Read/Write

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
| - | - | OVRUN | RXRDY | - - | TXEMPTY | TXRDY |
e TXRDY: Channel Transmit Ready Interrupt Enable
 TXEMPTY: Channel Transmit Empty Interrupt Enable
« RXRDY: Channel Receive Ready Interrupt Enable
» OVRUN: Receive Overrun Interrupt Enable
0: Read: the corresponding interrupt is disabled. Write: disables the corresponding interrupt.
1: Read: the corresponding interrupt is enabled. Write: enables the corresponding interrupt.

ATMEL 462

32054D-AVR32-10/07

L ________________(0G]

s A T32AP7002

25.8.14 AC97 Controller Status Register

Register Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - | - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I . I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| - | - | - | CBEVT | CAEVT | COEVT | WKUP | SOF |

WKUP and SOF flags in SR register are automatically cleared by a processor read operation.
* SOF: Start Of Frame

0: No Start of Frame has been detected since the last read of the Status Register.

1: At least one Start of frame has been detected since the last read of the Status Register.
 WKUP: Wake Up detection

0: No Wake-up has been detected.

1: At least one rising edge on SDATA_IN has been asynchronously detected. That means AC97 Codec has notified a
wake-up.

« COEVT: CODEC Channel Event

A Codec channel event occurs when COSR AND COMR is not 0. COEVT flag is automatically cleared when the channel
event condition is cleared.

0: No event on the CODEC channel has been detected since the last read of the Status Register.
1. At least one event on the CODEC channel is active.
» CAEVT: Channel A Event

A channel A event occurs when CASR AND CAMR is not 0. CAEVT flag is automatically cleared when the channel event
condition is cleared.

0: No event on the channel A has been detected since the last read of the Status Register.
1: At least one event on the channel A is active.
 CBEVT: Channel B Event

A channel B event occurs when CBSR AND CBMR is not 0. CBEVT flag is automatically cleared when the channel event
condition is cleared.

0: No event on the channel B has been detected since the last read of the Status Register.
1: At least one event on the channel B is active.

Alm L 463

32054D-AVR32-10/07 I ©

s A T32AP7002

25.8.15 AC97 Controller Interrupt Enable Register

Register Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

. - - r - - [- [- | S
23 22 21 20 19 18 17 16

. - r - - - [- [- | N
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- | - [-]
7 6 5 4 3 2 1 0

| - | - | - | CBEVT | CAEVT | COEVT | WKUP | SOF |

* SOF: Start Of Frame

* WKUP: Wake Up

* COEVT: Codec Event

e CAEVT: Channel A Event

* CBEVT: Channel B Event

0: No Effect.

1. Enables the corresponding interrupt.

A mE|,® 464

32054D-AVR32-10/07

s A T32AP7002

25.8.16 AC97 Controller Interrupt Disable Register

Register Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

. - - r - - [- [- | S
23 22 21 20 19 18 17 16

. - r - - - [- [- | N
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- | - [-]
7 6 5 4 3 2 1 0

| - | - | - | CBEVT | CAEVT | COEVT | WKUP | SOF |

* SOF: Start Of Frame

* WKUP: Wake Up

* COEVT: Codec Event

e CAEVT: Channel A Event

* CBEVT: Channel B Event

0: No Effect.

1. Disables the corresponding interrupt.

A mE|,® 465

32054D-AVR32-10/07

s A T32AP7002

25.8.17 AC97 Controller Interrupt Mask Register

Register Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - r - - [- [- | S
23 22 21 20 19 18 17 16

. - r - - - [- [- | N
15 14 13 12 11 10 9 8

. - r - ¢ - - [- [- | - [-]
7 6 5 4 3 2 1 0

| - | - | - | CBEVT | CAEVT | COEVT | WKUP | SOF |

* SOF: Start Of Frame

* WKUP: Wake Up

* COEVT: Codec Event

» CAEVT: Channel A Event

* CBEVT: Channel B Event

0: The corresponding interrupt is disabled.
1. The corresponding interrupt is enabled.

A mE|,® 466

32054D-AVR32-10/07

s A T32AP7002

26. Audio Bitstream DAC (ABDAC)

Rev: 1.0.1.1
26.1 Features

* Digital Stereo DAC
* Oversampled D/A conversion architecture
— Oversampling ratio fixed 128x
— FIR equalization filter
— Digital interpolation filter: Comb4
— 3rd Order Sigma-Delta D/A converters
* Digital bitstream outputs
* Parallel interface
* Connected to DMA Controller for background transfer without CPU intervention

26.2 Description

The Audio Bitstream DAC converts a 16-bit sample value to a digital bitstream with an average
value proportional to the sample value. Two channels are supported, making the Audio Bit-
stream DAC particularly suitable for stereo audio. Each channel has a pair of complementary
digital outputs, DACn and DACn_N, which can be connected to an external high input imped-
ance amplifier.

The Audio Bitstream DAC is compromised of two 3rd order Sigma Delta D/A converter with an
oversampling ratio of 128. The samples are upsampled with a 4th order Sinc interpolation filter
(Comb4) before being input to the Sigmal Delta Modulator. In order to compensate for the pass
band frequency response of the interpolation filter and flatten the overall frequency response,
the input to the interpolation filter is first filtered with a simple 3-tap FIR filter.The total frequency
response of the Equalization FIR filter and the interpolation filter is given in Figure 26-2 on page
479. The digital output bitstreams from the Sigma Delta Modulators should be low-pass filtered
to remove high frequency noise inserted by the Modulation process.

The output DACn and DACn_N should be as ideal as possible before filtering, to achieve the
best SNR quality. The output can be connected to a class D amplifier output stage, or it can be
low pass filtered and connected to a high input impedance amplifier. A simple 1st order or higher
low pass filter that filters all the frequencies above 50 kHz should be adequate.

Alm L 467

32054D-AVR32-10/07 I ©

s A T32AP7002

26.3 Block Diagram

Figure 26-1. Functional Block Diagram

Audio Bitstream DAC
clk ————»
Clock Generator » bit_clk
sample_clk <
. — COmMB Sigma-Delta: :
O —» —> —> -
din1[15:0] Equalization FIR (INT=128) A DA-MOD bit_outl
. . COMB Sigma-Delta .
O —» —> —> -
din2[15:0] Equalization FIR (INT=128) A DAMOD bit_out2
26.4 Pin Name List
Table 26-1. 1/O Lines Description
Pin Name Pin Description Type
DATAO Output from Audio Bitstream DAC Channel 0 Output
DATA1 Output from Audio Bitstream DAC Channel 1 Output
DATANO Inverted output from Audio Bitstream DAC Channel 0 Output
DATAN1 Inverted output from Audio Bitstream DAC Channel 1 Output

26.5 Product Dependencies

26.5.1 I/O Lines

The output pins used for the output bitstream from the Audio Bitstream DAC may be multiplexed
with PIO lines.

Audio Bitstream DAC I/O lines to be in Audio Bitstream DAC peripheral mode.

26.5.2 Power Management
The PB-bus clock to the Audio Bitstream DAC is generated by the power manager. Before using
the Audio Bitstream DAC, the programmer must ensure that the Audio Bitstream DAC clock is
enabled in the power manager.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

Before using the Audio Bitstream DAC, the PIO controller must be configured in order for the

468

s A T32AP7002

26.5.3

26.5.4

26.5.5

Clock Management

Interrupts

DMA

The Audio Bitstream DAC needs a separate clock for the D/A conversion operation. This clock
should be set up in the generic clock register in the power manager. The frequency of this clock
must be 256 times the frequency of the desired samplerate (f;). For f;:=48kHz this means that the
clock must have a frequency of 12.288MHz.

The Audio Bitstream DAC interface has an interrupt line connected to the interrupt controller. In
order to handle interrupts, the interrupt controller must be programmed before configuring the
Audio Bitstream DAC.

All Audio Bitstream DAC interrupts can be enabled/disabled by writing to the Audio Bitstream
DAC Interrupt Enable/Disable Registers. Each pending and unmasked Audio Bitstream DAC
interrupt will assert the interrupt line. The Audio Bitstream DAC interrupt service routine can get
the interrupt source by reading the Interrupt Status Register.

The Audio Bitstream DAC is connected to the DMA controller. The DMA controller can be pro-
grammed to automatically transfer samples to the Audio Bitstream DAC Sample Data Register
(SDR) when the Audio Bitstream DAC is ready for new samples. This enables the Audio Bit-
stream DAC to operate without any CPU intervention such as polling the Interrupt Status
Register (ISR) or using interrupts. See the DMA controller documentation for details on how to
setup DMA transfers.

26.6 Functional Description

26.6.1

In order to use the Audio Bitstream DAC the product dependencies given in Section 26.5 on
page 468 must be resolved. Particular attention should be given to the configuration of clocks
and /O lines in order to ensure correct operation of the Audio Bitstream DAC.

The Audio Bitstream DAC is enabled by writing the ENABLE bit in the Audio Bitstream DAC
Control Register (CR). The two 16-bit sample values for channel 0 and 1 can then be written to
the least and most significant halfword of the Sample Data Register (SDR), respectively. The
TX_READY bit in the Interrupt Status Register (ISR) will be set whenever the DAC is ready to
receive a new sample. A new sample value should be written to SDR before 256 DAC clock
cycles, or an underrun will occur, as indicated by the UNDERRUN status flags in ISR. ISR is
cleared when read, or when writing one to the corresponding bits in the Interrupt Clear Register
(ICR).

For interrupt-based operation, the relevant interrupts must be enabled by writing one to the cor-
responding bits in the Interrupt Enable Register (IER). Interrupts can be disabled by the Interrupt
Disable Register (IDR), and active interrupts are indicated in the read-only Interrupt Mask Regis-
ter (IMR).

The Audio Bitstream DAC can also be configured for peripheral DMA access, in which case only
the enable bit in the control register needs to be set in the Audio Bitstream DAC module.

Equalization Filter

32054D-AVR32-10/07

The equalization filter is a simple 3-tap FIR filter. The purpose of this filter is to compensate for
the pass band frequency response of the sinc interpolation filter. The equalization filter makes
the pass band response more flat and moves the -3dB corner a little higher.

Alm L 469

L ________________(0G]

s A T32AP7002

26.6.2 Interpolation filter
The interpolation filter interpolates from f to 128f. This filter is a 4th order Cascaded Integrator-
Comb filter, and the basic building blocks of this filter is a comb part and an integrator part.
26.6.3 Sigma Delta Modulator
This part is a 3rd order Sigma Delta Modulator consisting of three differentiators (delta blocks),
three integrators (sigma blocks) and a one bit quantizer. The purpose of the integrators is to

shape the noise, so that the noise is reduces in the band of interest and increased at the higher
frequencies, where it can be filtered.

26.6.4 Data Format

Input data is on two’s complement format.

Alm L 470

32054D-AVR32-10/07 I ©

s A T32AP7002

26.7 Audio Bitstream DAC User Interface

Table 26-2. Register Mapping

Offset Register Register Name Access Reset
0x0 Sample Data Register SDR Read/Write 0x0
0x4 Reserved - - -
0x8 Control Register CR Read/Write 0x0
Oxc Interrupt Mask Register IMR Read 0x0
0x10 Interrupt Enable Register IER Write -
0x14 Interrupt Disable Register IDR Write -
0x18 Interrupt Clear Register ICR Write -

0x1C Interrupt Status Register ISR Read 0x0

AIMEL 471

32054D-AVR32-10/07 I ©

s A T32AP7002

26.7.1 Audio Bitstream DAC Sample Data Register

Name: SDR

Access Type: Read-Write
31 30 29 28 27 26 25 24

| CHANNEL1 |
23 22 21 20 19 18 17 16

| CHANNEL1 |
15 14 13 12 11 10 9 8

| CHANNELO |
7 6 5 4 3 2 1 0

| CHANNELO |

* CHANNELO: Sample Data for Channel 0

Signed 16-bit Sample Data for channel 0. When the SWAP bit in the DAC Control Register (CR) is set writing to the Sample
Data Register (SDR) will cause the values written to CHANNELO and CHANNEL1 to be swapped.

* CHANNELZ1: Sample Data for Channel 1

Signed 16-bit Sample Data for channel 1. When the SWAP bit in the DAC Control Register (CR) is set writing to the Sample
Data Register (SDR) will cause the values written to CHANNELO and CHANNELL1 to be swapped.

Alm L 472

32054D-AVR32-10/07 I ©

s A T32AP7002

26.7.2 Audio Bitstream DAC Control Register

Name: CR

Access Type: Read-Write
31 30 29 28 27 26 25 24

[EN [SwAP | : I : I : I - I : I : |
23 22 21 20 19 18 17 16

I : I - I : I : I : I - I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

I : I - I : I : I : I - I : I : |
 SWAP: Swap Channels

0: The CHANNELO and CHANNEL1 samples will not be swapped when writing the Audio Bitstream DAC Sample Data
Register (SDR).

1: The CHANNELO and CHANNEL1 samples will be swapped when writing the Audio Bitstream DAC Sample Data Regis-
ter (SDR).

 EN: Enable Audio Bitstream DAC
0: Audio Bitstream DAC is disabled.

1: Audio Bitstream DAC is enabled.

A mE|,® 473

32054D-AVR32-10/07

s A T32AP7002

26.7.3 Audio Bitstream DAC Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

| - | - | TX_READY | UNDERRUN | - | - | - | - |
23 22 21 20 19 18 17 16

I : I - I : I : I : I - I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

I : I - I : I : I : I - I : I : |
* UNDERRUN: Underrun Interrupt Mask
0: The Audio Bitstream DAC Underrun interrupt is disabled.

1. The Audio Bitstream DAC Underrun interrupt is enabled.

» TX_READY: TX Ready Interrupt Mask
0: The Audio Bitstream DAC TX Ready interrupt is disabled.

1: The Audio Bitstream DAC TX Ready interrupt is enabled.

A mE|,® 474

32054D-AVR32-10/07

s A T32AP7002

26.7.4 Audio Bitstream DAC Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - | TX_READY | UNDERRUN | - | - | - | - |
23 22 21 20 19 18 17 16

I : I - I : I : I : I - I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

I : I - I : I : I : I - I : I : |
UNDERRUN: Underrun Interrupt Enable
: No effect.

= O

: Enables the Audio Bitstream DAC Underrun interrupt.

TX_READY: TX Ready Interrupt Enable
: No effect.

= O

: Enables the Audio Bitstream DAC TX Ready interrupt.

A mE|,® 475

32054D-AVR32-10/07

s A T32AP7002

26.7.5 Audio Bitstream DAC Interrupt Disable Register

Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - | TX_READY | UNDERRUN | - | - | - | - |
23 22 21 20 19 18 17 16

I : I - I : I : I : I - I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

I : I - I : I : I : I - I : I : |
UNDERRUN: Underrun Interrupt Disable
: No effect.

= O

: Disable the Audio Bitstream DAC Underrun interrupt.

TX_READY: TX Ready Interrupt Disable
: No effect.

= O

: Disable the Audio Bitstream DAC TX Ready interrupt.

A mE|,® 476

32054D-AVR32-10/07

s A T32AP7002

26.7.6 Audio Bitstream DAC Interrupt Clear Register

Name: ICR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - | TX_READY | UNDERRUN | - | - | - | - |
23 22 21 20 19 18 17 16

I : I - I : I : I : I - I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

I : I - I : I : I : I - I : I : |
UNDERRUN: Underrun Interrupt Clear
: No effect.

= O

: Clear the Audio Bitstream DAC Underrun interrupt.

TX_READY: TX Ready Interrupt Clear
: No effect.

= O

: Clear the Audio Bitstream DAC TX Ready interrupt.

A mE|,® 477

32054D-AVR32-10/07

s A T32AP7002

26.7.7 Audio Bitstream DAC Interrupt Status Register

Name: ISR

Access Type: Read-only
31 30 29 28 27 26 25 24

| - | - | TX_READY | UNDERRUN | - | - | - | - |
23 22 21 20 19 18 17 16

I : I - I : I : I : I - I : I : |
15 14 13 12 11 10 9 8

I : I - I : I : I : I - I : I : |
7 6 5 4 3 2 1 0

UNDERRUN: Underrun Interrupt Status
: No Audio Bitstream DAC Underrun has occured since the last time ISR was read or since reset.

o

1: At least one Audio Bitstream DAC Underrun has occured since the last time ISR was read or since reset.

TX_READY: TX Ready Interrupt Status
: No Audio Bitstream DAC TX Ready has occuredt since the last time ISR was read.

o

1: At least one Audio Bitstream DAC TX Ready has occuredt since the last time ISR was read.

Alm L 478

32054D-AVR32-10/07 I ©

s A T32AP7002

26.8 Frequency Response

Figure 26-2. Frequecy response, EQ-FIR+COMB*

A mE|,® 479

32054D-AVR32-10/07

s A T32AP7002

27. Static Memory Controller (SMC)

Rev: 1.0.4.2

27.1 Features
* 6 Chip Selects Available
* 64-Mbyte Address Space per Chip Select
e 8-, 16- or 32-bit Data Bus
* Word, Halfword, Byte Transfers
* Byte Write or Byte Select Lines
* Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
* Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
* Programmable Data Float Time per Chip Select
e Compliant with LCD Module
* External Wait Request
e Automatic Switch to Slow Clock Mode
e Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes

27.2 Description

The Static Memory Controller (SMC) generates the signals that control the access to the exter-
nal memory devices or peripheral devices. It has 6 Chip Selects and a 26-bit address bus. The
32-bit data bus can be configured to interface with 8-, 16-, or 32-bit external devices. Separate
read and write control signals allow for direct memory and peripheral interfacing. Read and write
signal waveforms are fully parametrizable.

The SMC can manage wait requests from external devices to extend the current access. The
SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from user-
programmed waveforms to slow-rate specific waveforms on read and write signals. The SMC
supports asynchronous burst read in page mode access for page size up to 32 bytes.

AIMEL 480

32054D-AVR32-10/07 I ©

AT32AP7002

27.3 Block Diagram

Figure 27-1. SMC Block Diagram

PIO
Controlle

_.|:| NCS[5:0]
Bus SMmc NRD
Matrix Chip Select =
N —.D NWRO/NWE

—D AO/NBSO
SMC

. —.| | NWR1/NBS1
pMC MCK ——{ | AunwrNes2
—D NWR3/NBS3
—D A[25:2]
4—’|:| D[31:0]
‘—D NWAIT

User Interface

A

Peripheral Bus

a
«

\ 4

A “'lEl,® 481

32054D-AVR32-10/07

s A T32AP7002

27.4 1/0 Lines Description

Table 27-1. 1/O Line Description
Name Description Type Active Level
NCS[5:0] Static Memory Controller Chip Select Lines Output Low
NRD Read Signal Output Low
NWRO/NWE Write 0/Write Enable Signal Output Low
AO/NBSO Address Bit 0/Byte 0 Select Signal Output Low
NWR1/NBS1 Write 1/Byte 1 Select Signal Output Low
A1/NWR2/NBS2 Address Bit 1/Write 2/Byte 2 Select Signal Output Low
NWR3/NBS3 Write 3/Byte 3 Select Signal Output Low
A[25:2] Address Bus Output
D[31:0] Data Bus 1/0
NWAIT External Wait Signal Input Low

27.5 Multiplexed Signals

Table 27-2. Static Memory Controller (SMC) Multiplexed Signals
Multiplexed Signals Related Function

NWRO NWE Eé/ﬁle-wrlte or byte-select access, see "BAT - Byte Write or Byte Select Access” on page

A0 NBSO 8-bit or 16-/32-bit data bus, see "Data Bus Width” on page 484

NWR1 NBS1 E%/Ze-wrlte or byte-select access see "BAT - Byte Write or Byte Select Access” on page
8-/16-bit or 32-bit data bus, see "Data Bus Width” on page 484.

Al NWR2 NBS2 Byte-write or byte-select access, see "BAT - Byte Write or Byte Select Access” on page
484

NWR3 NBS3 E%/Ze-wrlte or byte-select access see "BAT - Byte Write or Byte Select Access” on page

32054D-AVR32-10/07

AIMEL 482

L ________________(0G]

AT32AP7002

27.6 Application Example
27.6.1 Hardware Interface

Figure 27-2. SMC Connections to Static Memory Devices

D0-D31)
N
AOINBSO
NWRONWE N\ 128K x 8 128K x 8
NWR1/NBS1 D0 D7 SRAM D8-D15 SRAM
AUNWR2INBS2 [——— DO-D7 DO-D7
NWR3/NBS3 f———
cs cs
A0- Al6 |A2-A18 A0 - Alg |_A2-A18
NCSO0 NRD NRD
OE OE
NCS1
NCS2 NWRO/NWE {\e NWRLNBSI | e
NCS3 Y
NCS4
NCS5 \
NCS6 /
NCS7
@ ®
/
128K x 8 128K x 8
A2 - A5 D16 - D23 SRAM D24-D31 SRAM
—\ D0-D7 DO-D7
cs cs
A2-A18
AO - AL6 M< AO-AlGH
NRD NRD
— | oE OE
_ AUNWR2/NBS2 | |\ e Nwifa/nBss ||, o
Static Memory
Controller
\ / /

27.7 Product Dependencies

27.7.1 I/O Lines
The pins used for interfacing the Static Memory Controller may be multiplexed with the PIO
lines. The programmer must first program the PIO controller to assign the Static Memory Con-
troller pins to their peripheral function. If I/O Lines of the SMC are not used by the application,
they can be used for other purposes by the PIO Controller.

AIMEL 483

32054D-AVR32-10/07 I ©

s A T32AP7002

27.8 External Memory Mapping

The SMC provides up to 26 address lines, A[25:0]. This allows each chip select line to address
up to 64 Mbytes of memory.

If the physical memory device connected on one chip select is smaller than 64 Mbytes, it wraps
around and appears to be repeated within this space. The SMC correctly handles any valid
access to the memory device within the page (see Figure 27-1).

A[25:0] is only significant for 8-bit memory, A[25:1] is used for 16-bit memory, A[25:2] is used for
32-bit memory.

Figure 27-3. Memory Connections for Eight External Devices

NCS[0] - NCS[5]

SMC

NRD
NV_/E NCSS Memory Enable
giizi NCS4 I Memory Enable
' NCS3 I Memory Enable
NCS2 I Memory Enable
NCS1 I Memory Enable
NCSO0
Memory Enable —
Output Enable —
Write Enable _—
A[25:0] [
8or160r32 | hys1.4) or D[15:0] or|
D[7:0]

27.9 Connection to External Devices

27.9.1 Data Bus Width

A data bus width of 8, 16, or 32 bits can be selected for each chip select. This option is con-
trolled by the field DBW in MODE (Mode Register) for the corresponding chip select.

Figure 27-4 shows how to connect a 512K x 8-bit memory on NCS2. Figure 27-5 shows how to
connect a 512K x 16-bit memory on NCS2. Figure 27-6 shows two 16-bit memories connected
as a single 32-bit memory

27.9.2 BAT - Byte Write or Byte Select Access

32054D-AVR32-10/07

Each chip select with a 16-bit or 32-bit data bus can operate with one of two different types of
write access: byte write or byte select access. This is controlled by the BAT (BAT = Byte Select
Access) field of the MODE register for the corresponding chip select.

Alm L 484

L ________________(0G]

s A T32AP7002

Figure 27-4. Memory Connection for an 8-bit Data Bus

D[7:0] D[7:0]
Al18:2] A[18:2]
A0 A0
SMC Al Al
NWE Write Enable
NRD Output Enable
NCS[2] Memory Enable

Figure 27-5. Memory Connection for a 16-bit Data Bus

D[15:0] D[15:0]
A[19:2] A[18:1]
Al A[0]
sSMC NBSO Low Byte Enable

NBS1 High Byte Enable
NWE Write Enable
NRD Output Enable

NCSI[2] Memory Enable

Figure 27-6. Memory Connection for a 32-bit Data Bus

D[31:16] D[31:16]
D[15:0] D[15:0]
A[20:2] A[18:0]
SMC NBSO Byte 0 Enable
NBS1 Byte 1 Enable
NBS2 Byte 2 Enable
NBS3 Byte 3 Enable
NWE Write Enable
NRD Output Enable
NCS[2] Memory Enable

Alm L 485

32054D-AVR32-10/07 I ©

s A T32AP7002

27.9.2.1 Byte Write Access

Byte write access supports one byte write signal per byte of the data bus and a single read
signal.

« For 16-bit devices: the SMC provides NWR0 and NWR1 write signals for respectively byte0
(lower byte) and bytel (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.

Byte Write Access is used to connect 2 x 8-bit devices as a 16-bit memory.

« For 32-bit devices: NWRO, NWR1, NWR2 and NWR3, are the write signals of byte0 (lower

byte), bytel, byte2 and byte 3 (upper byte) respectively. One single read signal (NRD) is
provided.

Byte Write Access is used to connect 4 x 8-bit devices as a 32-bit memory.

Byte Write option is illustrated on Figure 27-7 on page 486.

27.9.2.2 Byte Select Access
In this mode, read/write operations can be enabled/disabled at a byte level. One byte-select line
per byte of the data bus is provided. One NRD and one NWE signal control read and write.
« For 16-bit devices: the SMC provides NBS0O and NBS1 selection signals for respectively
byteO (lower byte) and bytel (upper byte) of a 16-bit bus.
Byte Select Access is used to connect one 16-bit device.

« For 32-bit devices: NBSO, NBS1, NBS2 and NBS3, are the selection signals of byte0 (lower

byte), bytel, byte2 and byte 3 (upper byte) respectively. Byte Select Access is used to
connect two 16-bit devices.

Figure 27-8 on page 487 shows how to connect two 16-bit devices on a 32-bit data bus in Byte
Select Access mode, on NCS3.

Figure 27-7. Connection of 2 x 8-bit Devices on a 16-bit Bus: Byte Write Option

D[7:0] D[7:0]
D[15:8] —
A[24:2] A[23:1]
SMC Al A[0]
NWRO Write Enable
NWR1
NRD Read Enable
NCSI[3] Memory Enable
D[15:8]
A[23:1]
A[0]
Write Enable
Read Enable
L] Memory Enable

Alm L 486

32054D-AVR32-10/07 I ©

s A T32AP7002

27.9.2.3 Signal Multiplexing
Depending on the BAT, only the write signals or the byte select signals are used. To save |Os at
the external bus interface, control signals at the SMC interface are multiplexed. Table 27-3 on
page 487 shows signal multiplexing depending on the data bus width and the byte access type.

For 32-bit devices, bits A0 and Al are unused. For 16-bit devices, bit A0 of address is unused.
When Byte Select Option is selected, NWR1 to NWR3 are unused. When Byte Write option is
selected, NBSO to NBS3 are unused.

Figure 27-8. Connection of 2x16-bit Data Bus on a 32-bit Data Bus (Byte Select Option)

D[15:0] D[15:0]
D[31:16] |—
A[25:2] A[23:0]
NWE Write Enable
NBSO Low Byte Enable
NBS1 High Byte Enable
SMC NBS2
NBS3
NRD Read Enable
NCSI[3] Memory Enable
D[31:16]
A[23:0]
Write Enable
Low Byte Enable
High Byte Enable
Read Enable
L] Memory Enable

Table 27-3. SMC Multiplexed Signal Translation

Signal Name 32-bit Bus 16-bit Bus 8-bit Bus
Device Type 1x32-bit 2x16-bit 4 x 8-bit 1x16-bit 2 x 8-bit 1 x 8-bit
Byte Access Type (BAT) Byte Select Byte Select Byte Write Byte Select Byte Write

NBSO_AO NBSO NBSO NBSO A0
NWE_NWRO NWE NWE NWRO NWE NWRO NWE
NBS1_NWR1 NBS1 NBS1 NWR1 NBS1 NWR1

NBS2_NWR2_A1 NBS2 NBS2 NWR2 Al Al Al
NBS3_NWRS3 NBS3 NBS3 NWR3

AIMEL 487

32054D-AVR32-10/07 I ©

s A T32AP7002

27.10 Standard Read and Write Protocols

In the following sections, the byte access type is not considered. Byte select lines (NBSO to
NBS3) always have the same timing as the A address bus. NWE represents either the NWE sig-
nal in byte select access type or one of the byte write lines (NWRO to NWR3) in byte write
access type. NWRO to NWR3 have the same timings and protocol as NWE. In the same way,
NCS represents one of the NCS[0..NB_CS-1] chip select lines.

27.10.1 Read Waveforms
The read cycle is shown on Figure 27-9 on page 488.
The read cycle starts with the address setting on the memory address bus, i.e.:
{A[25:2], A1, AO} for 8-bit devices
{A[25:2], A1} for 16-bit devices
A[25:2] for 32-bit devices.

Figure 27-9. Standard Read Cycle

MCK ! | |
! : | | | I |
! | | | | I |
! | | | | I |
Al25:2] : : ! : ! ! Nl
| T T T T t t
! | | | | I |
! | | | | I |
NBSO,NBS1, 3(| T T T - " >C
NBS2,NBS3, | | : : : : :
A0, A1 | : | | | | |
! | | | | I |
| | t +
NRD : : AN | | | |
| |
| : | : | 1
! | | | I |
| | | 4
NCS | 1\ | | | :
| ; .
| : | | | |
| | | | | 1
! | I S\ | |
D[31:0] . | X .
' | | — I
| | |
| NRDJSETUP | NRD_PULSE | NRD_HOLD I
1. N | ;l
! ; I 1 |
| | |
NCS_RD_SETUP | NCS_RD_PULSE | NCS_RD_HOLD
| -
! - g
! NRD_CYCLE :
|

< >

27.10.1.1 NRD Waveform
The NRD signal is characterized by a setup timing, a pulse width and a hold timing.

1. NRD_SETUP: the NRD setup time is defined as the setup of address before the NRD

falling edge;

2. NRD_PULSE: the NRD pulse length is the time between NRD falling edge and NRD
rising edge;

3. NRD_HOLD: the NRD hold time is defined as the hold time of address after the NRD
rising edge.

Alm L 488

32054D-AVR32-10/07 I ©

s A T32AP7002

27.10.1.2 NCS Waveform
Similarly, the NCS signal can be divided into a setup time, pulse length and hold time:
1. NCS_RD_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.

2. NCS_RD_PULSE: the NCS pulse length is the time between NCS falling edge and
NCS rising edge;

3. NCS_RD_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.

27.10.1.3 Read Cycle

The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where
address is set on the address bus to the point where address may change. The total read cycle
time is equal to:

NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD
=NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of
Master Clock cycles. To ensure that the NRD and NCS timings are coherent, user must define
the total read cycle instead of the hold timing. NRD_CYCLE implicitly defines the NRD hold time
and NCS hold time as:

NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE
NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE

27.10.1.4 Null Delay Setup and Hold

If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain
active continuously in case of consecutive read cycles in the same memory (see Figure 27-10).

Alm L 489

32054D-AVR32-10/07 I ©

Read Mode

AT32AP7002

Figure 27-10. No Setup, No Hold On NRD and NCS Read Signals

MCK

A[25:2]

A0, A1

NRD

NCS

|
|
|
|
X
l
D 4
|
|
~
|
|
~
|
|
|

e

D[31:0] < gé

NRD_PULSE

R

NRD_PULSE

NRD_PULSE

NCS_RD_PULSE NCS_RD_PULSE NCS_RD_PULSE

NRD_CYCLE NRD_CYCLE NRD_CYCLE

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to
unpredictable behavior.

As NCS and NRD waveforms are defined independently of one other, the SMC needs to know
when the read data is available on the data bus. The SMC does not compare NCS and NRD tim-
ings to know which signal rises first. The READ_MODE parameter indicates which signal (NCS
or NRD) controls the read operation. This parameter resides in the MODE register of the corre-
sponding chip select.

Read is Controlled by NRD (READ_MODE = 1):

32054D-AVR32-10/07

Figure 27-11 on page 491 shows the waveforms of a read operation of a typical asynchronous
RAM. The read data is available tppc after the falling edge of NRD, and turns to ‘Z’ after the ris-
ing edge of NRD. In this case, the READ_MODE must be setto 1 (read is controlled by NRD), to
indicate that data is available with the rising edge of NRD. The SMC samples the read data
internally on the rising edge of Master Clock that generates the rising edge of NRD, whatever
the programmed waveform of NCS may be.

Alm L 490

L ________________(0G]

AT32AP7002

Figure 27-11. READ_MODE = 1: Data is sampled by SMC before the rising edge of NRD

MCK ! L] | | |
! : | | | | |
| | | | | | |
| | | | | | |
A[25:2] ' [' ' T ' '
. : | | | | X
! | | | | : :
| | | | |
NBSO,NBS1, T r
NBS2,NBS3, X | : ! | | | >C
ho. A A
| | | | | | |
I | | t t
NRD : : E\ | : : :
| : | \] | |
| | | | | |
| | | 4
NCS | 1\ | | | |
| | +) |
| | | | | |
Ly
N + ! 1 1
D[31:0] . ; . . : :
|
| | |

I I
< tpacc >
Data Sampling

27.10.2.2 Read is Controlled by NCS (READ_MODE = 0)
Figure 27-12 on page 491 shows the typical read cycle of an LCD module. The read data is valid
tracc after the falling edge of the NCS signal and remains valid until the rising edge of NCS. Data
must be sampled when NCS is raised. In that case, the READ_MODE must be set to 0 (read is
controlled by NCS): the SMC internally samples the data on the rising edge of Master Clock that
generates the rising edge of NCS, whatever the programmed waveform of NRD may be.

Figure 27-12. READ_MODE = 0: Data is sampled by SMC before the rising edge of NCS

oo T
|
|
|

X
X

NBSO,NBST, }<
NBS2,NBS3,

A0, A1 |

|

:

|

A[25:2] >{I |
|

: !
|

|

|

|

|

|
|
|
I
|
|
|
]
|
I
:
_I—I\ |
NRD | ! '
| |
! |
NCS | : |
| : |
| | | A
D[31:0] ! ! !]
|
|

Data Sampling

Alm L 491

32054D-AVR32-10/07 I ©

s A T32AP7002

27.10.3 Write Waveforms
The write protocol is similar to the read protocol. It is depicted in Figure 27-13 on page 492. The
write cycle starts with the address setting on the memory address bus.

27.10.3.1 NWE Waveforms
The NWE signal is characterized by a setup timing, a pulse width and a hold timing.
1. NWE_SETUP: the NWE setup time is defined as the setup of address and data before
the NWE falling edge;
2. NWE_PULSE: The NWE pulse length is the time between NWE falling edge and NWE
rising edge;
3. NWE_HOLD: The NWE hold time is defined as the hold time of address and data after
the NWE rising edge.
The NWE waveforms apply to all byte-write lines in Byte Write access mode: NWRO to NWR3.

27.10.3.2 NCS Waveforms
The NCS signal waveforms in write operation are not the same that those applied in read opera-
tions, but are separately defined:

1. NCS_WR_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.

2. NCS_WR_PULSE: the NCS pulse length is the time between NCS falling edge and
NCS rising edge;

3. NCS_WR_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.

Figure 27-13. Write Cycle

ok ||

A[25:2] D{

X
X

NBSO, NBST, ><
NBS2, NBS3,

A0, A1

|
|
|
I
NWE |
|
|
|

=z
=
m
(%)
___E______
c
T

|
|
|
|
|
|
|
|
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
H

|
I
|
-~ NWE_PULSE | NWE_HOLD
I
| : !
NCS_WR_SETUP NCS_WR_PULSE | NCS_WR_ JOLD
[——t T > <—>I
| NWE cYCLE ' |

Alm L 492

32054D-AVR32-10/07 I ©

s A T32AP7002

27.10.3.3 Write Cycle

The write_cycle time is defined as the total duration of the write cycle, that is, from the time
where address is set on the address bus to the point where address may change. The total write
cycle time is equal to:

NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD
=NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer num-
ber of Master Clock cycles. To ensure that the NWE and NCS timings are coherent, the user
must define the total write cycle instead of the hold timing. This implicitly defines the NWE hold
time and NCS (write) hold times as:

NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE
NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE

27.10.34 Null Delay Setup and Hold

27.10.35 Null Pulse

32054D-AVR32-10/07

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active
continuously in case of consecutive write cycles in the same memory (see Figure 27-14 on page
493). However, for devices that perform write operations on the rising edge of NWE or NCS,
such as SRAM, either a setup or a hold must be programmed.

Figure 27-14. Null Setup and Hold Values of NCS and NWE in Write Cycle

oo [LT L LT L LT
|
|

|
X
X

A[25:2] }(
|
|

NBS0, NBS1, —!
NBS2, NBS3,
A0, A1 |

NWE, !

NWRO, NWR1, |\

NWR2, NWR3

g

R e

>

D[31:0] _._<

NWE_PULSE

X

NWE_PULSE

>_

NWE_PULSE

NCS_WR_PULSE

NCS_WR_PULSE

NWE_CYCLE NWE_CYCLE

|
|
1
|
|
|
|
|
I
|
|
|
|
I
|
1
|
|
I
|
|
|
|
|
I
NWE_CYCLE
|

|
|
|
|
I
| NCS_WR_PULSE
|
|
|
I
|
|

s o R B e

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to

unpredictable behavior.
Alm L 493

L ________________(0G]

s A T32AP7002

27.10.4 Write Mode
The WRITE_MODE parameter in the MODE register of the corresponding chip select indicates
which signal controls the write operation.

27.10.4.1 Write is Controlled by NWE (WRITE_MODE = 1):
Figure 27-15 on page 494 shows the waveforms of a write operation with WRITE_MODE set to
1. The data is put on the bus during the pulse and hold steps of the NWE signal. The internal
data buffers are turned out after the NWE_SETUP time, and until the end of the write cycle,
regardless of the programmed waveform on NCS.

Figure 27-15. WRITE_MODE = 1. The write operation is controlled by NWE

MCK ! |
|
I
A[25:2] '
I

NBSO0, NBS1, ><
NBS2, NBS3,

A0, A1

NWE,
NWRO0, NWR1,
NWR2, NWR3

NCS | \

D[31:0]

N\

— | -

27.10.4.2 Write is Controlled by NCS (WRITE_MODE = 0)
Figure 27-16 on page 495 shows the waveforms of a write operation with WRITE_MODE set to
0. The data is put on the bus during the pulse and hold steps of the NCS signal. The internal
data buffers are turned out after the NCS_WR_SETUP time, and until the end of the write cycle,
regardless of the programmed waveform on NWE.

Alm L 494

32054D-AVR32-10/07 I ©

AT32AP7002

Figure 27-16. WRITE_MODE = 0. The write operation is controlled by NCS

MCK ! |
:
|
A[25:2])
|

NBSO, NBS1, :

NBS2, NBS3, X

A0, A1 !
NWE, '

NWRO0, NWR1, | \
|

NWR2, NWR3

NCS

/

D[31:0] — ' —

27.10.5 Coding Timing Parameters
All timing parameters are defined for one chip select and are grouped together in one
SMC_REGISTER according to their type.

The SETUP register groups the definition of all setup parameters:

« NRD_SETUP, NCS_RD_SETUP, NWE_SETUP, NCS_WR_SETUP
The PULSE register groups the definition of all pulse parameters:

« NRD_PULSE, NCS_RD_PULSE, NWE_PULSE, NCS_WR_PULSE
The CYCLE register groups the definition of all cycle parameters:

« NRD_CYCLE, NWE_CYCLE

Section 27-4 on page 495 shows how the timing parameters are coded and their permitted
range.

Table 27-4. Coding and Range of Timing Parameters

Permitted Range

Coded Value Number of Bits Effective Value Coded Value Effective Value
setup [5:0] 6 128 x setup[5] + setup[4:0] 0<<31 128 <<128+31
pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 0<<63 256 < < 256+63

256 < < 256+127
cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0<<127 512 <<512+127
768 < < 768+127

Alm L 495

32054D-AVR32-10/07 I ©

s A T32AP7002

27.10.6 Reset Values of Timing Parameters
Section 27-5 on page 496 gives the default value of timing parameters at reset.

Table 27-5. Reset Values of Timing Parameters

Register Reset Value

SETUP 0x01010101 All setup timings are setto 1
PULSE 0x01010101 All pulse timings are setto 1
WRITE_MODE 1 Write is controlled with NWE
READ_MODE 1 Read is controlled with NRD

27.10.7 Usage Restriction

The SMC does not check the validity of the user-programmed parameters. If the sum of
SETUP and PULSE parameters is larger than the corresponding CYCLE parameter, this
leads to unpredictable behavior of the SMC.

For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the
memory interface because of the propagation delay of theses signals through external logic and
pads. If positive setup and hold values must be verified, then it is strictly recommended to pro-
gram non-null values so as to cover possible skews between address, NCS and NRD signals.

For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address,
byte select lines, and NCS signal after the rising edge of NWE. This is true for WRITE_MODE =
1 only. See "Early Read Wait State” on page 497.

For read and write operations: a null value for pulse parameters is forbidden and may lead to
unpredictable behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the
address bus. For external devices that require setup and hold time between NCS and NRD sig-
nals (read), or between NCS and NWE signals (write), these setup and hold times must be
converted into setup and hold times in reference to the address bus.

27.11 Automatic Wait States

Under certain circumstances, the SMC automatically inserts idle cycles between accesses to
avoid bus contention or operation conflict.

27.11.1 Chip Select Wait States
The SMC always inserts an idle cycle between 2 transfers on separate chip selects. This idle
cycle ensures that there is no bus contention between the de-activation of one device and the
activation of the next one.

During chip select wait state, all control lines are turned inactive: NBSO to NBS3, NWRO to
NWR3, NCS[0..NB_CS-1], NRD lines are all setto 1.

Figure 27-17 on page 497 illustrates a chip select wait state between access on Chip Select 0

and Chip Select 2.
Alm L 496

32054D-AVR32-10/07 I ©

AT32AP7002

Figure 27-17. Chip Select Wait State between a Read Access on NCS0 and a Write Access on

NBSO, NBS1,
NBS2, NBS3,
AO0,A1 |

NCS2

MCK ! |
|
|
|
)

|
X X X
X X

~ ! ! !

| |
NRD !

NWE

NCS0

NRD_CYCLE

|
|
|
)
|
|
|
I
|
NCS2 |
|

N

| _ NWE _CYCLE
|

‘ C —
, .

|

e e L E—

Read to Writg Chip Select
Wait State | Wait State

t
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|

27.11.2 Early Read Wait State

In some cases, the SMC inserts a wait state cycle between a write access and a read access to
allow time for the write cycle to end before the subsequent read cycle begins. This wait state is
not generated in addition to a chip select wait state. The early read cycle thus only occurs
between a write and read access to the same memory device (same chip select).

32054D-AVR32-10/07

An early read wait state is automatically inserted if at least one of the following conditions is
valid:

if the write controlling signal has no hold time and the read controlling signal has no setup
time (Figure 27-18 on page 498).

in NCS write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS
signal and the NCS_RD_SETUP parameter is set to 0, regardless of the read mode (Figure
27-19 on page 498). The write operation must end with a NCS rising edge. Without an Early
Read Wait State, the write operation could not complete properly.

in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD =
0), the feedback of the write control signal is used to control address, data, chip select and
byte select lines. If the external write control signal is not inactivated as expected due to load
capacitances, an Early Read Wait State is inserted and address, data and control signals are
maintained one more cycle. See Figure 27-20 on page 499.

Alm L 497

L ________________(0G]

AT32AP7002

Figure 27-18. Early Read Wait State: Write with No Hold Followed by Read with No Setup

1
wok | L | I L[] L
1 : 1 ! I 1
P : : | |
|
I T ! T T
A[25:2] D{ : :>< X : :>
1 | 1 ! | 1
1 | 1 : | 1
NBSO0, NBS1,) T T T T
NBS2, NBS3, \ ! :><).’< [!)
A0, A1 1 | 1 ! I 1
1 | 1 ! | 1
1 L ' !
NWE i | ! i |
I 1
N A S o
1 I
NRD 1 |
: ! l I k\
! no hold ! ' \
1 1 : no setup
D[31:0]

1
1 1
1 1
1 1
»le)< >
. T T o
write cycle 1 Early Read read cycle

I wait state'

-——p----

|

Figure 27-19. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read

MCK L] I L[] |

1 : 1 : I :

: : : | I :
AR52] X ! 54):»(: B

1 | T T T

1 | 1 : I 1

S0, st | : ' | 1
“gs(z), Hgs;, | :><).’(| i)

A0,A1 X | i I } i

! ! | ' ! !

NCS : | !

: l .

. |

NRD o

1
no hold

1
1
1
1
1
1
:
1
1

T
no setup

- - 1---

I
I
1
I
1

. -
o -t oo

_——g---
2 -y

write cycle 1 Early Rea read cycle '
- (WmTE_MéDE o) ot ctato! (READ_MODE =0 or READ_MODE = 1)

with No NCS Setup

Alm L 498

32054D-AVR32-10/07 I ©

AT32AP7002

Figure 27-20. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read

MCK

NBSO, NBST,
NBS2, NBS3,
A0, A1

internal write controlling signal

|

I

|

A[25:2] D{(!
i |
;

|

]

|

|

]

|

|

external write controlling signal

| |
| |
| |
(NWE) l | | l
1 | | |
1 | 1 | | |
! no hold 1 | read setup!= 1 !
NRD ! ! I — !
] I I |
1 I | I
1 I | /
D[31:0]

p-- == ---

I

I

I

|
>
L

1

»
>

L
A

: ! d cycle
write cycle Early Read rea
(WRITE_MODE = 1) * wait state’ ~(READ_MODE =0 or READ_MODE = 1)

-——m----

with one Set-up Cycle

27.11.3 Reload User Configuration Wait State
The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC
inserts a wait state before starting the next access. The so called “Reload User Configuration
Wait State” is used by the SMC to load the new set of parameters to apply to next accesses.

The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If
accesses before and after re-programming the user interface are made to different devices
(Chip Selects), then one single Chip Select Wait State is applied.

On the other hand, if accesses before and after writing the user interface are made to the same
device, a Reload Configuration Wait State is inserted, even if the change does not concern the
current Chip Select.

27.11.3.1 User Procedure

To insert a Reload Configuration Wait State, the SMC detects a write access to any MODE reg-
ister of the user interface. If the user only modifies timing registers (SETUP, PULSE, CYCLE
registers) in the user interface, he must validate the modification by writing the MODE, even if no
change was made on the mode parameters.

27.11.3.2 Slow Clock Mode Transition

A Reload Configuration Wait State is also inserted when the Slow Clock Mode is entered or
exited, after the end of the current transfer (see "Slow Clock Mode” on page 511).

Alm L 499

32054D-AVR32-10/07 I ©

s A T32AP7002

27.11.4 Read to Write Wait State
Due to an internal mechanism, a wait cycle is always inserted between consecutive read and

write SMC accesses.
This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See Figure 27-17 on page 497.

Alm L 500

32054D-AVR32-10/07 I ©

s A T32AP7002

27.12 Data Float Wait States

27.12.1 READ_MODE

32054D-AVR32-10/07

Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:

« before starting a read access to a different external memory
« before starting a write access to the same device or to a different external one.

The Data Float Output Time (tpg) for each external memory device is programmed in the
TDF_CYCLES field of the MODE register for the corresponding chip select. The value of
TDF_CYCLES indicates the number of data float wait cycles (between 0 and 15) before the
external device releases the bus, and represents the time allowed for the data output to go to
high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tye will not slow down the execution of a program from internal
memory.

The data float wait states management depends on the READ_MODE and the TDF_MODE
fields of the MODE register for the corresponding chip select.

Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turn-
ing off the tri-state buffers of the external memory device. The Data Float Period then begins
after the rising edge of the NRD signal and lasts TDF_CYCLES MCK cycles.

When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives
the number of MCK cycles during which the data bus remains busy after the rising edge of NCS.

Figure 27-21 on page 502 illustrates the Data Float Period in NRD-controlled mode
(READ_MODE =1), assuming a data float period of 2 cycles (TDF_CYCLES = 2). Figure 27-22
on page 502 shows the read operation when controlled by NCS (READ_MODE = 0) and the
TDF_CYCLES parameter equals 3.

Alm L 501

L ________________(0G]

2)

I
——-k———A -———-1 -
[%2]
o 3
g ©
) =)
X
3] 1 S
o o
o ™
I 1]
LL L
[a) [a)
= =
v_-. s} © b _ __L-_ bbb =-—-—_Jd_-___N___1_1__32 gr

Figure 27-21. TDF Period in NRD Controlled Read Access (TDF

s A T32AP7002

NRD controlled read operation
NCS controlled read operation

- T r-r--rr-———"17""~""~° wlﬁlﬁ. ||||| T rOTrrT T 1 \«./Iﬁllll
\ Q S
[&] — [$]
g g
=Xy ﬂ B e o B e ;
X ~ - [a) 92} IS} N4 ~ = [a) 9] >
o 5 Q0 i 8] b o 85 29 4 Q 2
= Q| o m = z o, = ol oo = =z ™
< zz _ a < zz a
o S AT —
an< 3N
Omg =y
ZZ<Z zZZz<

Figure 27-22. TDF Period in NCS Controlled Read Operation (TDF

502

L ________________(0G]

AlMEL

32054D-AVR32-10/07

s A T32AP7002

27.12.2 TDF Optimization Enabled (TDF_MODE = 1)
When the TDF_MODE of the MODE register is set to 1 (TDF optimization is enabled), the SMC
takes advantage of the setup period of the next access to optimize the number of wait states
cycle to insert.

Figure 27-23 on page 503 shows a read access controlled by NRD, followed by a write access
controlled by NWE, on Chip Select 0. Chip Select 0 has been programmed with:

NRD_HOLD = 4; READ_MODE = 1 (NRD controlled)
NWE_SETUP = 3; WRITE_MODE = 1 (NWE controlled)
TDF_CYCLES = 6; TDF_MODE = 1 (optimization enabled).

Figure 27-23. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins

V= S [I

: FiiON
|
NWE I i ' _‘_/_:_

| I I 1
| I I I |
| I I I 1
| I I — 1
! : | ' ! NWE_SETPP=3 | !
| I I 1 | I I 1

NCS0 4 : | : N\ |

1

! l .
| 1
|

TDF_CYCLES £ 6

~ : : : . _ >
ot R DY < -
1 ' ' . | | 1 1 |
read access on NCSO (NRD controlled) Read to Write write access on NCS0 (NWE controlled)
Wait State

27.12.3 TDF Optimization Disabled (TDF_MODE = 0)
When optimization is disabled, tdf wait states are inserted at the end of the read transfer, so that
the data float period is ended when the second access begins. If the hold period of the readl
controlling signal overlaps the data float period, no additional tdf wait states will be inserted.

Figure 27-24 on page 504, Figure 27-25 on page 504 and Figure 27-26 on page 505 illustrate
the cases:

« read access followed by a read access on another chip select,

« read access followed by a write access on another chip select,

« read access followed by a write access on the same chip select,
with no TDF optimization.

Alm L 503

32054D-AVR32-10/07 I ©

AT32AP7002

Figure 27-24. TDF Optimization Disabled (TDF Mode = 0). TDF wait states between 2 read accesses on different chip

selects
MCK | | | L[| | | I | |
A[25:2] i>< >E<

NBSO, NBS1,

t

AW

<

t

Nelalt

|
I
I
]
[}
I
T
I
I
T
I
I
I
I I

| read2 setup = 1
I

I

|

1
|
|
|
T
|
|
|
|
I
|
|
|
|
|
|
I

. | !
1

read1 controlling signal : .
(NRD) Wm hold = 1 :

1

1

1
|
|
|
T
|
t
|
|
I
|
1
|
|
|
|
|
|
!

read2 controlling signal

(NRD) TDF_CYCLES =6

1
|
|
|
T
|
I
I
|
!
I
I
I
I
I
I
I
|

533353333

5 TDF WAIT STATES

D[31:0] _,—<

1
I
I
I
T
I
I
I
I
1
1
1
I
I
I
I
I
1
1
1
t
1
1
1
1
ol

e

1
1
1
¢

A

>

- —-—-

read 2 cycle
TDF_MODE =0
(optimization disabled)

read1 cycle
TDF_CYCLES =6

|

Chip Select Wait State

Figure 27-25. TDF Mode = 0: TDF wait states between a read and a write access on different chip selects

wew | L | | I I
: : | 1 ! 1 ! | ! 1 1
1 | | 1 I 1 | 1 | | 1
1 | | 1 | 1 | 1 | | 1
A[25:2] >{ : : :>< | : X : : : : 1 X
i | | | ! | | i | | i
1 | | 1 | 1 | 1 | | 1
NBSO, NBS1, 1 + t L + : L + + -
NBS2,NBS3, __ X ' ! X X : : ! X
oA L
read1 controlling signal I I | : : 1 I 1 I I I
| 1] 1]] 1
(NRD) m1 holdI =1 : 1 | write2 setup = 1 | 1
| [} | 1 | | 1
: : ﬂ—’lf I 1 l — | 1
I
write2 controlling signal : : : : ; : : : : : :
(NWE) 1 | TDR_CYCLES =4 1 1 1\ | V4
1 < t + ' > 1 |
I 1 1 I I 1
: : : I 1 1 | | 1
1 1 I | 1 1 | 1 1
D[31:0 1 \ 1 \/] |
100 X |)))A))))AIININIIID . \ . —
[
: ! . | | |
| L | |
1 1
<t »” I 1 > b
read1 cycle ! | | 2 TDF WAIT STATES write2 cycle
TDF_CYCLES =4 -~ TDF_MODE =0
Read to Write Chip Select (optimization disabled)

Wait State Wait State

A “'lEl,® 504

32054D-AVR32-10/07

AT32AP7002

Figure 27-26. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select

MCK

A25:2]

NBSO, NBST1,
NBS2, NBS3,
A0, A1

| 1
read1 controlling signal :
(NRD) _:—U \

! | readi holdI =1

—

XX

X

-#-t--F---4-4- - - L—

rite2 setup
<

|

|
|
L
]
1 |
|
|
|
I

)

write2 controlling signal
(NWE)

D[31:0] _:_< > > >

27.13 External Wait

27.13.1 Restriction

32054D-AVR32-10/07

—»

D

Wi
1
1
1
1
1
1
1
1
1

5 O R R
N1
N1
N1
N1
P
N1
N1
N1
N1
N1
N T
N1
N
N1
N1

H

1
1
1

1

n
1

1
1
1
1
< LIA
< >
1
1

" 4 TDF WAIT STATES
' readi cycle !
TDF_CYCLES =5 o~ .
Read to Write write2 cycle
Wait State TDF_MODE =0

(optimization disabled)

Any access can be extended by an external device using the NWAIT input signal of the SMC.
The EXNW_MODE field of the MODE register on the corresponding chip select must be set to
either to “10” (frozen mode) or “11” (ready mode). When the EXNW_MODE is set to “00” (dis-
abled), the NWAIT signal is simply ignored on the corresponding chip select. The NWAIT signal
delays the read or write operation in regards to the read or write controlling signal, depending on
the read and write modes of the corresponding chip select.

When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold cycle
for the read/write controlling signal. For that reason, the NWAIT signal cannot be used in Page
Mode ("Asynchronous Page Mode” on page 514), or in Slow Clock Mode ("Slow Clock Mode” on
page 511).

The NWAIT signal is assumed to be a response of the external device to the read/write request
of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write
controlling signal. The assertion of the NWAIT signal outside the expected period has no impact
on SMC behavior.

Alm L 505

L ________________(0G]

s A T32AP7002

27.13.2 Frozen Mode

When the external device asserts the NWAIT signal (active low), and after internal synchroniza-
tion of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control
signals remain unchanged. When the resynchronized NWAIT signal is deasserted, the SMC
completes the access, resuming the access from the point where it was stopped. See Figure 27-
27 on page 506. This mode must be selected when the external device uses the NWAIT signal
to delay the access and to freeze the SMC.

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure
27-28 on page 507.

Figure 27-27. Write Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

Al25:2]

NBSO, NBS1,
NBS2, NBS3,
AO,A1

NWE

NCS

D[31:0]

NWAIT

internally synchronized
NWAIT signal

2

| |
| |
| |
L 1
| 1
1 |
| |
| |
| |
| [
| |
| [
| |
| |
| |
| 1
| 1
| !
1 !
| !
| !
| |
' '
| |
| |
| |
t y
| 1

|
|
|
1
1
1
|
|
|
|
|
[
|
|
1
1
!
!
!
!
|
'
|
|
|
y
1

|
|
|
L
|
1
|
|
|
|
|
! ;
FROZEN STATE
|
|
|
|
1
|
|
|
|
|
|
|

|
|
|

F

t t t
| | !
| | |
| | !
] | !
| | |
| T T
I I |
! ! |
| | |
’ ; A

t
!
|
|
T
|
|
|
|
|
1
1

Write cycle

EXNW_MODE = 10 (Frozen)
WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE =5
NCS_WR_PULSE =7

N AImEl 506

32054D-AVR32-10/07

L ________________(0G]

10)

s A T32AP7002

Figure 27-28. Read Access with NWAIT Assertion in Frozen Mode (EXNW_MODE

507

Read cycle

™ o
< -

o NN ___ L __ \\\\\\\\\\\\\\\\\\‘\f
= s 1% fa) = =
N - M = ©
5 n o (6] o c
Y] b4 zZ AWn k)
< z=z z °

Solm E
DN < <
nmo =
zZz< Z

internally synchronized

Assertion is ignored

3

)

6

NCS_RD_HOLD

NCS_controlled

NRD_HOLD
5,

=10 (Frozen)
0 (
2,

NCS_RD_PULSE

READ_MODE

NRD_PULSE

EXNW_MODE
Y ©

AlMEL

32054D-AVR32-10/07

s A T32AP7002

27.13.3 Ready Mode

In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins
the access by down counting the setup and pulse counters of the read/write controlling signal. In
the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 27-29 on page 508 and Figure
27-30 on page 509. After deassertion, the access is completed: the hold step of the access is
performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to
indicate its ability to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the
pulse of the controlling read/write signal, it has no impact on the access length as shown in Fig-
ure 27-30 on page 509.

Figure 27-29. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11)

Al25:2]

NBSO, NBSH,
NBS2, NBS3,
A0,A1

NWE

NCS

D[31:0]

NWAIT

internally synchronized
NWAIT signal

32054D-AVR32-10/07

-

I

! +

I
N 6 ' 5 1V 4 v 3 1 2 1 fr 1 9
N | | | | |

I

I

I

I

-k} e&p-}F-}F--

B R e B e EEEEE I Sl S SEEL

Write cycle

i = St B B

EXNW_MODE = 11 (Ready mode)
WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE =5
NCS_WR_PULSE =7

Alm L 508

L ________________(0G]

11)

W_MODE

s A T32AP7002

Figure 27-30. NWAIT Assertion in Read Access: Ready Mode (EXN

509

Assertion is ignored

)

0 (
7
=7

NCS_RD_PULSE

NRD_PULSE

L ________________(0G]

AlMEL

el
o d_d__ 3
3%
O +=
E 5
> O
e)
g0
(.
o| Ww
R N 1 9o
o M_M
Bl 2o
0| &5
0| i
[Te] ©
©
_H\\\\K\\\V\\\\\\\\\\\\\\\\\ b)Y
x ~ = » a = F
Q P & & o o = c
= 2 m A b4 =z = o
< zZ=z z °
- =
P =< <
NMo =
ZZ< Z

internally synchronized

Assertion is ignored

32054D-AVR32-10/07

s A T32AP7002

27.13.4 NWAIT Latency and Read/write Timings

There may be a latency between the assertion of the read/write controlling signal and the asser-
tion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the 2 cycles of resynchronization + 1
cycle. Otherwise, the SMC may enter the hold state of the access without detecting the NWAIT
signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated on Fig-
ure 27-31 on page 510.

When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the
read and write controlling signal of at least:

minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle

Figure 27-31. NWAIT Latency

MCK

Al25:2] :<

NBSO, NBST,
NBS2, NBS3,
AO,A1

NRD

NWAIT

intenally synchronized
NWAIT signal

32054D-AVR32-10/07

WAI

I
|
|
|
I
|
I
:
STATE

2 1

|
L
I
I
I
I
|
T
I
T
T
I
|
3 I
I

L4

I
|
I
I
I
l
I
minimal pL?Ise length

/

-—-t--a--J---F-F--

»)
>

A

NW'AIT latency | 2 cycle resynchronizatibn

N

Read cycle

EXNW_MODE < 10 or 11
READ_MODE =1 (NRD_coptrolled)
I I I
NRD_PULSE =5 :

————_—_ v b - - — - — —

Alm L 510

L ________________(0G]

s A T32AP7002

27.14 Slow Clock Mode

The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when
an internal signal driven by the Power Management Controller is asserted because MCK has
been turned to a slow clock rate (typically 32 kHz clock rate). In this mode, the user-programmed
waveforms are ignored and the slow clock mode waveforms are applied. This mode is provided
so as to avoid reprogramming the User Interface with appropriate waveforms at very slow clock
rate. When activated, the slow mode is active on all chip selects.

27.14.1 Slow Clock Mode Waveforms
Figure 27-32 on page 511 illustrates the read and write operations in slow clock mode. They are
valid on all chip selects. Section 27-6 on page 511 indicates the value of read and write parame-

ters in slow clock mode.

Figure 27-32. Read/write Cycles in Slow Clock Mode

MCK|||| |

AO0,A1 |

AO,A1 . |
| I
|
|

NRD ™N\ /
I 1 !
| T
1/ NCS |
|
I I I
| | NRD_CYCLE=2 |

ol

wee | L] |
I | ! |
S R N A
| | | | [| !
| | | | | | |
NBSO0, NBS1, ! T X | NBSO, NBS1,
NBS2, NBS3, d : NBS2, NBS3,
|
|
| |

|

NWE_CYCLE =3

< Ll

SLOW CLOCK MODE WRITE I

-
i

SLOW CLOCK MODE READ

32054D-AVR32-10/07

Table 27-6. Read and Write Timing Parameters in Slow Clock Mode
Read Parameters Duration (cycles) Write Parameters Duration (cycles)
NRD_SETUP 1 NWE_SETUP 1
NRD_PULSE 1 NWE_PULSE 1
NCS_RD_SETUP 0 NCS_WR_SETUP 0
NCS_RD PULSE 2 NCS _WR_PULSE 3
NRD_CYCLE 2 NWE_CYCLE 3

ATMEL

L ________________(0G]

511

s A T32AP7002

27.14.2 Switching from (to) Slow Clock Mode to (from) Normal Mode

When switching from slow clock mode to the normal mode, the current slow clock mode transfer
is completed at high clock rate, with the set of slow clock mode parameters.See Figure 27-33 on
page 512. The external device may not be fast enough to support such timings.

Figure 27-34 on page 513 illustrates the recommended procedure to properly switch from one
mode to the other.

Figure 27-33. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

Slow Clock Mode |

internal signal from PMC

AO,A1

|
A[25:2] }([
i

NBSO, NBST, : =
NBS2, NBS3, -x !

ww | L[L1 L Uy yyyL
|
:

e
o

Lt

o
R B 1 1,1 13
1 ! | o " o 1
. e \
NCS 1 : 1 :
P\ o\ {
. : 1 1
NWE_CYCLE =3 1 : : NWE_CYCLE =7
- plst > - >
1
SLOW CLOCK MODE WRITE SLOW CLOCK MODE V\}RITE NORMAL MODE WRITE
1
b
1 1
[
This write cycle finishes with the slow clock mode set Slow clock mode transition is detected:
of parameters after the clock rate transition Reload Configuration Wait State

32054D-AVR32-10/07

AIMEL 512

L ________________(0G]

AT32AP7002

Figure 27-34. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow
Clock Mode

Slow Clock Mode
internal signal from PMC |

MCK

A[25:2]

|
|
-
NBSO, NBS1, jx

NBS2, NBS3,

A0,A1
NWE \ /

! | 1

NCS 1\ ! [I
1 : + :/

IDLE STATE

<
<

Reload Configuration
Wait State

Alm L 513

32054D-AVR32-10/07 I ©

s A T32AP7002

27.15 Asynchronous Page Mode

The SMC supports asynchronous burst reads in page mode, providing that the page mode is
enabled in the MODE register (PMEN field). The page size must be configured in the MODE
register (PS field) to 4, 8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte
page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The
MSB of data address defines the address of the page in memory, the LSB of address define the
address of the data in the page as detailed in Table 27-7 on page 514.

With page mode memory devices, the first access to one page (t,,) takes longer than the subse-
guent accesses to the page (t;,) as shown in Figure 27-35 on page 514. When in page mode,
the SMC enables the user to define different read timings for the first access within one page,
and next accesses within the page.

Table 27-7. Page Address and Data Address within a Page

Page Size Page Address® Data Address in the Page®
4 bytes A[25:2] A[1:0]
8 bytes A[25:3] A[2:0]
16 bytes A[25:4] A[3:0]
32 bytes A[25:5] A[4:0]

Notes: 1. A denotes the address bus of the memory device
2. For 16-bit devices, the bit 0 of address is ignored. For 32-bit devices, bits [1:0] are ignored.

27.15.1 Protocol and Timings in Page Mode
Figure 27-35 on page 514 shows the NRD and NCS timings in page mode access.

Figure 27-35. Page Mode Read Protocol (Address MSB and LSB are defined in Table 27-7 on page 514)

w1 L L L L L L |

A[MSB]

>

A[LSB] D;(
R

N

|
X
X X X

NRD

NCS tpa tsa tsa

D[31:0]

LKL 2 XX 2) XXKS

|
|
|
|
|
|
|
I
1
I
|
|
! |
! |
! |
| NRD_PULSE |

NCS_RD_PULSE NRD_PULSE

e - >

The NRD and NCS signals are held low during all read transfers, whatever the programmed val-
ues of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS
timings are identical. The pulse length of the first access to the page is defined with the

Alm L 514

32054D-AVR32-10/07 I ©

s A T32AP7002

NCS_RD_PULSE field of the PULSE register. The pulse length of subsequent accesses within
the page are defined using the NRD_PULSE parameter.

In page mode, the programming of the read timings is described in Table 27-8 on page 515:

Table 27-8. Programming of Read Timings in Page Mode

Parameter Value Definition

READ_MODE X' No impact

NCS_RD_SETUP X’ No impact

NCS_RD_PULSE toa Access time of first access to the page
NRD_SETUP X’ No impact

NRD_PULSE tsa Access time of subsequent accesses in the page
NRD_CYCLE X' No impact

The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE
timings as page access timing (t,,) and the NRD_PULSE for accesses to the page (ts,), even if
the programmed value for t,, is shorter than the programmed value for tg,.

27.15.2 Byte Access Type in Page Mode
The Byte Access Type configuration remains active in page mode. For 16-bit or 32-bit page
mode devices that require byte selection signals, configure the BAT field of the
SMC_REGISTER to 0 (byte select access type).

27.15.3 Page Mode Restriction
The page mode is not compatible with the use of the NWAIT signal. Using the page mode and
the NWAIT signal may lead to unpredictable behavior.

27.15.4 Sequential and Non-sequential Accesses
If the chip select and the MSB of addresses as defined in Table 27-7 on page 514 are identical,
then the current access lies in the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed
with a minimum access time (tg,). Figure 27-36 on page 516 illustrates access to an 8-bit mem-
ory device in page mode, with 8-byte pages. Access to D1 causes a page access with a long
access time (t,,). Accesses to D3 and D7, though they are not sequential accesses, only require
a short access time (t,).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same
way, if the chip select is different from the previous access, a page break occurs. If two sequen-
tial accesses are made to the page mode memory, but separated by an other internal or external
peripheral access, a page break occurs on the second access because the chip select of the
device was deasserted between both accesses.

Alm L 515

32054D-AVR32-10/07 I ©

AT32AP7002

Figure 27-36. Access to Non-sequential Data within the Same Page

wex | L L L | [I O
I
I
I
I
I

|
|
|
A[25:3] >< P%Ilge address |
! |
|
1LA1LA0 K A1 X a3 X A7 X
|
|
|
|
|
|
|
|
|
|
|

|
|
|
T
NRD |
|
|
|

NCS —*\\

D[7:0]

SR & 3 Y XKL o7

|
|
NRD_PULSE | NRD_PULSE
> <
|

LK D1

|

|

|

|

|

| NCS_RD_PULSE
.‘

A “'lEl,® 516

32054D-AVR32-10/07

s A T32AP7002

27.16 Static Memory Controller (SMC) User Interface

The SMC is programmed using the registers listed in Table 27-9 on page 517. For each chip select, a set of 4 registers is
used to program the parameters of the external device connected on it. In Table 27-9 on page 517, “CS_number” denotes
the chip select number. 16 bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing any one of the MODE registers.

Table 27-9. SMC Register Mapping

Offset Register Name Access Reset State
0x10 x CS_number + 0x00 SMC Setup Register SETUP Read/Write 0x00010001
0x10 x CS_number + 0x04 SMC Pulse Register PULSE Read/Write 0x04030402
0x10 x CS_number + 0x08 SMC Cycle Register CYCLE Read/Write 0x00050005
0x10 x CS_number + 0x0C SMC Mode Register MODE Read/Write 0x10011103

AIMEL 517

32054D-AVR32-10/07 I ©

s A T32AP7002

27.16.1 SMC Setup Register

Register Name: SETUP[O ..NB_CS-1]

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - | NCS_RD_SETUP |
23 22 21 20 19 18 17 16

| — | - | NRD_SETUP |
15 14 13 12 11 10 9 8

| - | - [NCS_WR_SETUP |
7 6 5 4 3 2 1 0

| - | - | NWE_SETUP |

« NWE_SETUP: NWE Setup Length
The NWE signal setup length is defined as:

NWE setup length = (128* NWE_SETUP[5] + NWE_SETUP[4:0]) clock cycles

* NCS_WR_SETUP: NCS Setup Length in WRITE Access
In write access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_WR_SETUP[5] + NCS_WR_SETUPJ[4:0]) clock cycles

 NRD_SETUP: NRD Setup Length
The NRD signal setup length is defined in clock cycles as:

NRD setup length = (128* NRD_SETUP[5] + NRD_SETUP[4:0]) clock cycles

* NCS_RD_SETUP: NCS Setup Length in READ Access
In read access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_RD_SETUP[5] + NCS_RD_SETUP[4:0]) clock cycles

Alm L 518

32054D-AVR32-10/07 I ©

s A T32AP7002

27.16.2 SMC Pulse Register

Register Name: PULSE[0..NB_CS-1]

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | NCS_RD_PULSE |
23 22 21 20 19 18 17 16

| — | NRD_PULSE |
15 14 13 12 11 10 9 8

| - [NCS_WR_PULSE |
7 6 5 4 3 2 1 0

| - | NWE_PULSE |

* NWE_PULSE: NWE Pulse Length
The NWE signal pulse length is defined as:

NWE pulse length = (256* NWE_PULSE[6] + NWE_PULSE[5:0]) clock cycles
The NWE pulse length must be at least 1 clock cycle.

* NCS_WR_PULSE: NCS Pulse Length in WRITE Access
In write access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.

* NRD_PULSE: NRD Pulse Length
In standard read access, the NRD signal pulse length is defined in clock cycles as:

NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles
The NRD pulse length must be at least 1 clock cycle.

In page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.

* NCS_RD_PULSE: NCS Pulse Length in READ Access
In standard read access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_RD_PULSE][6] + NCS_RD_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.

In page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.

Alm L 519

32054D-AVR32-10/07 I ©

s A T32AP7002

27.16.3 SMC Cycle Register

Register Name: CYCLEJ0..NB_CS-1]

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - - - - - - - NRD_CYCLE |
23 22 21 20 19 18 17 16

| NRD_CYCLE |
15 14 13 12 11 10 9 8

| - - - - - - - NWE_CYCLE |
7 6 5 4 3 2 1 0

| NWE_CYCLE |

* NWE_CYCLE: Total Write Cycle Length

The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse
and hold steps of the NWE and NCS signals. It is defined as:

Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE[6:0]) clock cycles

* NRD_CYCLE: Total Read Cycle Length

The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse
and hold steps of the NRD and NCS signals. It is defined as:

Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles

Alm L 520

32054D-AVR32-10/07 I ©

s A T32AP7002

27.16.4 SMC MODE Register
MODE[0..NB_CS-1]

Register Name:

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - [PS | - - - PMEN |
23 22 21 20 19 18 17 16

| - | - | - TDF_MODE | TDF_CYCLES |
15 14 13 12 11 10 9 8

| — | - | DBW | - - - BAT |
7 6 5 4 3 2 1 0
- - EXNW_MODE - - WR'TEE—MOD READ_MODE

« READ_MODE:

=Y

: The read operation is controlled by the NRD signal.

— If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NRD.
: The read operation is controlled by the NCS signal.

o

— If TDF cycles are programmed, the external bus is marked busy after the rising edge of NCS.

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NCS.

WRITE_MODE

1: The write operation is controlled by the NWE signal.

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NWE.

o

: The write operation is controlled by the NCS signal.

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NCS.

« EXNW_MODE: NWAIT Mode
The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of
the read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be pro-
grammed for the read and write controlling signal.

EXNW_MODE

NWAIT Mode

Disabled

Reserved

Frozen Mode

0
0
1
1

0
1
0
1

Ready Mode

* Disabled Mode: The NWAIT input signal is ignored on the corresponding Chip Select.

» Frozen Mode: If asserted, the NWAIT signal freezes the current read or write cycle. After deassertion, the read/write
cycle is resumed from the point where it was stopped.

32054D-AVR32-10/07

ATMEL

L ________________(0G]

521

s A T32AP7002

» Ready Mode: The NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling
read or write signal, to complete the access. If high, the access normally completes. If low, the access is extended until
NWAIT returns high.

 BAT. Byte Access Type
This field is used only if DBW defines a 16- or 32-bit data bus.
* 1: Byte write access type:
— Write operation is controlled using NCS, NWRO, NWR1, NWR2, NWR3.
— Read operation is controlled using NCS and NRD.
* 0: Byte select access type:
— Write operation is controlled using NCS, NWE, NBSO, NBS1, NBS2 and NBS3
— Read operation is controlled using NCS, NRD, NBSO, NBS1, NBS2 and NBS3

« DBW: Data Bus Width
DBW Data Bus Width

8-bit bus

16-bit bus

32-bit bus

0
0
1
1

| O |k | O

Reserved

« TDF_CYCLES: Data Float Time

This field gives the integer number of clock cycles required by the external device to release the data after the rising edge
of the read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDF_CYCLES period. The
external bus cannot be used by another chip select during TDF_CYCLES + 1 cycles. From 0 up to 15 TDF_CYCLES can
be set.

« TDF_MODE: TDF Optimization
1. TDF optimization is enabled.

— The number of TDF wait states is optimized using the setup period of the next read/write access.
0: TDF optimization is disabled.

— The number of TDF wait states is inserted before the next access begins.

« PMEN: Page Mode Enabled
1. Asynchronous burst read in page mode is applied on the corresponding chip select.

0: Standard read is applied.

* PS: Page Size
If page mode is enabled, this field indicates the size of the page in bytes.

PS Page Size

4-byte page

8-byte page

16-byte page

P || O| O
P | O || O

32-byte page

Alm L 522

32054D-AVR32-10/07 I ©

s A T32AP7002

28. SDRAM Controller (SDRAMC)

Rev: 2.0.0.2
28.1 Features

* Numerous Configurations Supported
— 2K, 4K, 8K Row Address Memory Parts
— SDRAM with Two or Four Internal Banks
— SDRAM with 16- or 32-bit Data Path
* Programming Facilities
— Word, Half-word, Byte Access
— Automatic Page Break When Memory Boundary Has Been Reached
— Multibank Ping-pong Access
— Timing Parameters Specified by Software
— Automatic Refresh Operation, Refresh Rate is Programmable
— Automatic Update of DS, TCR and PASR Parameters (Mobile SDRAM Devices)
* Energy-saving Capabilities
— Self-refresh, Power-down and Deep Power Modes Supported
— Supports Mobile SDRAM Devices
e Error Detection
— Refresh Error Interrupt
* SDRAM Power-up Initialization by Software
e CAS Latency of 1, 2, 3 Supported
¢ Auto Precharge Command Not Used

28.2 Description

The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing the
interface to an external 16-bit or 32-bit SDRAM device. The page size supports ranges from
2048 to 8192 and the number of columns from 256 to 2048. It supports byte (8-bit), half-word
(16-bit) and word (32-bit) accesses.

The SDRAM Controller supports a read or write burst length of one location. It keeps track of the
active row in each bank, thus maximizing SDRAM performance, e.g., the application may be
placed in one bank and data in the other banks. So as to optimize performance, it is advisable to
avoid accessing different rows in the same bank.

The SDRAM controller supports a CAS latency of 1, 2 or 3 and optimizes the read access
depending on the frequency.

The different modes available - self-refresh, power-down and deep power-down modes - mini-
mize power consumption on the SDRAM device.

AIMEL 523

32054D-AVR32-10/07 I ©

28.3 Block Diagram

Figure 28-1. SDRAM Controller Block Diagram

Memory
Controller

SDRAMC
Chip Select

SDRAMC
Interrupt

PMC

MCK

SDRAMC

User Interface

1

Peripheral Bus l

<

28.4 1/0 Lines Description

32054D-AVR32-10/07

Table 28-1. 1/O Line Description

PIO
Controller]

SDCK
SDCKE
SDCS
BA[1:0]
RAS
CAS
SDWE

NBS[3:0]

D[31:0]

R uTu a a{aTaa

AT32AP7002

SDRAMC_A[12:0]

Name Description Type Active Level
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Controller Chip Select Output Low
BA[1:0] Bank Select Signals Output
RAS Row Signal Output Low
CAS Column Signal Output Low
SDWE SDRAM Write Enable Output Low
NBS[3:0] Data Mask Enable Signals Output Low
SDRAMC_A[12:0] Address Bus Output
D[31:0] Data Bus 1/0
AIMEL 524
L ________________(0G]

s A T32AP7002

28.5 Application Example

28.5.1 Hardware Interface

Figure 28-2 shows an example of SDRAM device connection to the SDRAM Controller using a
32-bit data bus width. Figure 28-3 shows an example of SDRAM device connection using a 16-
bit data bus width. It is important to note that these examples are given for a direct connection of
the devices to the SDRAM Controller, without External Bus Interface or PIO Controller
multiplexing.

Figure 28-2. SDRAM Controller Connections to SDRAM Devices: 32-bit Data Bus Width

DO-D31 N
RAS|
CAS N\, 2M x 8 2M x 8
SDCK N
SDCKE \] D0-D7 SDRAM p8.D15) DormSDRAM
P D0-D7
NBSO ﬁ\ cs cs
NBS1 LK
Nes2 [\ CKE A0-A9, A11|.SDRAMC_A[0.9], SDRAMC_A11 gk’é A0-A9, A11].SDRAMC_A[0-9], SDRAMC_A11
nBs3 [T\ SDWE| WE NT E SDWE] \ve T E
RAS BAO RAS BAO
CAs BAL cAs BAL
DQM Do
NBSO NBSL
SDRAMC_A[0-12) AN
BAO N\ /
BAL \ /
— N
2M x 8 2M x 8
D16-D23 D07D7SDRAM D24-D31 SDRAM
sbcs D0-D7
cs cs
ax A0-A9, ALL||SDRAMC A[0-9], SDRAMC_AL1 oK A0-A9, AL J-SDRAMC A[0-], SDRAMC_AL1
WE AL0|= SOWEY e A10
RAS BAO RAS BAO
BAL cAs BAL
DQM
SDRAM Ness o2
Controller
\ / /
Figure 28-3. SDRAM Controller Connections to SDRAM Devices: 16-bit Data Bus Width
DO-D31
RAS
CAS 2Mx 8 2M x 8
SDCK
SDCKE DO-D7 SDRAM 08.D15) SDRAM
SDWE po-b7 bo-b7
NBSO cs cs
NBS1 CLK
CKE A0-A9, AL1| SDRAMC_A[0-9], SDRAMC_A11 gt’é A0-A9, A11] SDRAMC A[0-9], SDRAMC_A11
DWE| WE AL0 SOWE] vy AL0[
RAS BAO RAS BAO
CcAS BAL ons BAL
DQM Do
NBSO NEST
Y/
SDRAMC_A[0-12]
BAO
BAL
SDRAM spes| /
Controller

Alm L 525

32054D-AVR32-10/07 I ©

s A T32AP7002

28.5.2 Software Interface

The SDRAM address space is organized into banks, rows, and columns. The SDRAM controller
allows mapping different memory types according to the values set in the SDRAMC configura-
tion register.

The SDRAM Controller’s function is to make the SDRAM device access protocol transparent to
the user. Table 28-2 to Table 28-7 illustrate the SDRAM device memory mapping seen by the
user in correlation with the device structure. Various configurations are illustrated.

28.5.2.1 32-bit Memory Data Bus Width

Table 28-2. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
Bk[1:0] Row[10:0] Column[7:0] M[1:0]
Bk[1:0] ‘ Row[10:0] ‘ Column(8:0] MI[1:0]
Bk[1:0] ‘ Row[10:0] ‘ Column[9:0] M[1:0]
BK[1:0] ‘ Row[10:0] ‘ Column[10:0] M[1:0]

Table 28-3. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns

CPU Address Line
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
Bk[1:0] Row[11:0] Column[7:0] M[1:0]
Bk[1:0] ‘ Row[11:0] ‘ Column[8:0] MI[1:0]
Bk[1:0] ‘ Row[11:0] ‘ Column[9:0] M[1:0]
Bk[1:0] ‘ Row[11:0] ‘ Column[10:0] M[1:0]

Table 28-4. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns

CPU Address Line
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
BK[1:0] Row[12:0] Column[7:0] M[1:0]
Bk[1:0] ‘ Row[12:0] ‘ Column[8:0] M[1:0]
Bk[1:0] ‘ Row[12:0] ‘ Column([9:0] M[1:0]
Bk[1:0] ‘ Row[12:0] ‘ Column[10:0] M[1:0]

Notes: 1. MI[1:0]is the byte address inside a 32-bit word.
2. BK[1] = BA1, BK[0] = BAO.

AIMEL 526

32054D-AVR32-10/07 I ©

s A T32AP7002

28.5.2.2 16-bit Memory Data Bus Width

Table 28-5. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 7 6 5 4 0
Bk[1:0] Row[10:0] Column([7:0] M
0
Bk[1:0] Row[10:0] Column[8:0] M
0
BKk[1:0] Row[10:0] Column[9:0] M
0
Bk[1:0] Row[10:0] Column[10:0] M
0
Table 28-6. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns
CPU Address Line
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 7 6 5 4 0
Bk[1:0] Row[11:0] Column[7:0] M
0
Bk[1:0] Row[11:0] Column[8:0] M
0
Bk[1:0] Row[11:0] Column([9:0] M
0
Bk[1:0] Row[11:0] Column[10:0] M
0
Table 28-7. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns
CPU Address Line
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 7 6 5 4 0
BKk[1:0] Row[12:0] Column([7:0] M
0
Bk[1:0] Row[12:0] Column([8:0] M
0
Bk[1:0] Row[12:0] Column[9:0] M
0
BKk[1:0] Row[12:0] Column[10:0] M
0
Notes: 1. MO is the byte address inside a 16-bit half-word.
2. BK[1] = BA1, BK[0] = BAO.
AIMEL 527

32054D-AVR32-10/07

L ________________(0G]

s A T32AP7002

28.6 Product Dependencies

28.6.1 SDRAM Device Initialization

The initialization sequence is generated by software. The SDRAM devices are initialized by the
following sequence:

1.

10.

32054D-AVR32-10/07

SDRAM features must be set in the configuration register: asynchronous timings (TRC,
TRAS, ...), number of column, rows, CAS latency, and the data bus width.

For mobile SDRAM, temperature-compensated self refresh (TCSR), drive strength (DS)
and partial array self refresh (PASR) must be set in the Low Power Register.

The SDRAM memory type must be set in the Memory Device Register.
A minimum pause of 200 ps is provided to precede any signal toggle.

An All Banks Precharge command must be issued to the SDRAM devices. The applica-
tion must set Mode to 2 in the Mode Register and perform a write access to any SDRAM
address.

Eight auto-refresh (CBR) cycles are provided. The application must set the Mode to 4 in
the Mode Register and performs a write access to any SDRAM location eight times.

A Mode Register set (MRS) cycle must be issued to program the parameters of the
SDRAM devices, in particular CAS latency and burst length. The application must set
Mode to 3 in the Mode Register and perform a write access to the SDRAM. The write
address must be chosen so that BA[1:0] are set to 0. For example, with a 16-bit 128 MB
SDRAM (12 rows, 9 columns, 4 banks) bank address, the SDRAM write access should
be done at the address 0x20000000.

For mobile SDRAM initialization, an Extended Mode Register set (EMRS) cycle must be
issued to program the SDRAM parameters (TCSR, PASR, DS). The application must set
Mode to 5 in the Mode Register and perform a write access to the SDRAM. The write
address must be chosen so that BA[1] or BA[O] are set to 1. For example, with a 16-bit
128 MB SDRAM, (12 rows, 9 columns, 4 banks) bank address the SDRAM write access
should be done at the address 0x20800000 or 0x20400000.

The application must go into Normal Mode, setting Mode to 0 in the Mode Register and
performing a write access at any location in the SDRAM.

Write the refresh rate into the count field in the SDRAMC Refresh Timer register.
(Refresh rate = delay between refresh cycles). The SDRAM device requires a refresh
every 15.625 us or 7.81 us. With a 100 MHz frequency, the Refresh Timer Counter Reg-

ister must be set with the value 1562 (15.625 ps x 100 MHz) or 781 (7.81 ps x 100 MHz).
After initialization, the SDRAM devices are fully functional.

ATMEL

L ________________(0G]

528

AT32AP7002

Figure 28-4. SDRAM Device Initialization Sequence

SDCKE

=
Y
O

|
:
:
é
:
:

\ \ \ [\ [\ [\ \ [\

| | | | | i | ; ; ; ; i I
oeesed) O N T T XX XX
[[[[[[\ \ \ \ \ \ [[\ \
AT } } f f T S g T T g S T T 1 /T
1 1 1 S S 4R % ; X ? : ; ; / ; AN % |
[[[[[[\ \ \ \ \ \ [[\ \
SDRAMC_A[12:11] | f f Sg f f [S & >< [[s S [[/ [\ /1 \
T T T | T T T [[[[T T I]
[[[\ [[\ \ \ \ \ \ \ \ \ \
sbcs | | \ %_ /] \ SL/_S%__/\ | ss\ I\ | N | \
[[[\ [[\ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ [\
RAS | \ \ %\ /1 RN /1 SS\ N | 88\ N\ Y I\ /| \
[[[\ [[[\ [[\ [[[[\

t t t - } t | Lt t t f t t
QR S— %/ NN NIAT L N
[[[[\ \ \ \ \ \ \ \ \ \ \ \
SowWE T 1 1 SS T T I S% (7 \ SS\ \ \ / \
; ; ; \ ANV : - / — Y T T [T /1 T AN w 1
nes | [[[\ \ \ \ \ \ \ \ \ \ \ \
T T T T T T T T T T T T T T T]

Inputs Stable for Precharge All Banks 1st Auto-refresh 8th Auto-refresh MRS Command Valid Command

200 usec

28.6.2 I/O Lines

28.6.3 Interrupt

32054D-AVR32-10/07

The pins used for interfacing the SDRAM Controller may be multiplexed with the PIO lines. The
programmer must first program the PIO controller to assign the SDRAM Controller pins to their
peripheral function. If /O lines of the SDRAM Controller are not used by the application, they
can be used for other purposes by the PIO Controller.

The SDRAM Controller has an interrupt line connected to the interrupt controller. In order to han-
dle interrupts, the interrupt controller must be programmed before configuring the SDRAM
Controller.

Using the SDRAM Controller interrupt requires the IC to be programmed first.)

Alm L 529

L ________________(0G]

s A T32AP7002

28.7 Functional Description

28.7.1 SDRAM Controller Write Cycle

The SDRAM Controller allows burst access or single access. In both cases, the SDRAM control-
ler keeps track of the active row in each bank, thus maximizing performance. To initiate a burst
access, the SDRAM Controller uses the transfer type signal provided by the master requesting
the access. If the next access is a sequential write access, writing to the SDRAM device is car-
ried out. If the next access is a write-sequential access, but the current access is to a boundary
page, or if the next access is in another row, then the SDRAM Controller generates a precharge
command, activates the new row and initiates a write command. To comply with SDRAM timing
parameters, additional clock cycles are inserted between precharge/active (tzp) commands and
active/write (tzcp) commands. For definition of these timing parameters, refer to the "SDRAMC
Configuration Register” on page 540. This is described in Figure 28-5 below.

Figure 28-5. Write Burst, 32-bit SDRAM Access

trep =3

=

1
I
1
sDCS | |
1
1

I I
I I
SDRAMC_A[12:0] X E Row n X col a,: Xcol choI cXcoI choI eX col fX col choI hX col iX col choI kX col IX:
E |
RAS X X
. :
I I
1 I
cAS | | | [
: :
1 I
SDWE E | E |_
I I
I I
D[31:0] i (Dina X Dan DncX Dnd X DneX Dnf X Dng X Dnh X Dni X Dnj X anX Dnl>—
I

28.7.2 SDRAM Controller Read Cycle

32054D-AVR32-10/07

The SDRAM Controller allows burst access, incremental burst of unspecified length or single
access. In all cases, the SDRAM Controller keeps track of the active row in each bank, thus
maximizing performance of the SDRAM. If row and bank addresses do not match the previous
row/bank address, then the SDRAM controller automatically generates a precharge command,
activates the new row and starts the read command. To comply with the SDRAM timing param-
eters, additional clock cycles on SDCK are inserted between precharge and active commands
(tzp) and between active and read command (tzcp). These two parameters are set in the config-
uration register of the SDRAM Controller. After a read command, additional wait states are
generated to comply with the CAS latency (1, 2 or 3 clock delays specified in the configuration

register).
Alm L 530

L ________________(0G]

s A T32AP7002

For a single access or an incremented burst of unspecified length, the SDRAM Controller antici-
pates the next access. While the last value of the column is returned by the SDRAM Controller
on the bus, the SDRAM Controller anticipates the read to the next column and thus anticipates
the CAS latency. This reduces the effect of the CAS latency on the internal bus.

For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads
to the best performance. If the burst is broken (border, busy mode, etc.), the next access is han-
dled as an incrementing burst of unspecified length.

Figure 28-6. Read Burst, 32-bit SDRAM Access

SDCS

SDCK

SDRAMC_A[12:0]

RAS

CAS

SDWE

D[31:0]
(Input)

trep =3 CAS=2

>
-

Y

- -
Spipipipipipipipipipipinliy

Xi Row n X col a
L]

Xcol bX céol CX col choI eX col fX

« Dn);X Dnb»(Dnc»(Dnd»(Dne»(an>7

1

1

L

1
| |

1
! |
! |
L |
! |
! |
! T
! |
! |
1 L
! 1
! 1
! 1
1 T
. a
1 L
! 1
! 1
! 1

28.7.3 Border Management

32054D-AVR32-10/07

When the memory row boundary has been reached, an automatic page break is inserted. In this
case, the SDRAM controller generates a precharge command, activates the new row and ini-
tiates a read or write command. To comply with SDRAM timing parameters, an additional clock
cycle is inserted between the precharge/active (tzp) command and the active/read (tgcp) cOm-
mand. This is described in Figure 28-7 below.

Alm L 531

L ________________(0G]

s A T32AP7002

Figure 28-7. Read Burst with Boundary Row Access

Trp=3

SDCS

|
L
|
|
|
|
|
1

Xcol chf)I cXcoI choI eX

Row n

| |

| |

SDRAMC_A[12:0] Xcol aXcoI choI cXcoI dX i X i Row m X col a

| |

| |
RAS | |

CAS |

S

D[31:0]);E(>§(Dna>§<Dnb)§< Dnc)XDnd>

|
|
1
T
1
1
1
|
|
|
|
1
|
|
1
1
1
1
|
|
|
T
|
|
|

SDWE !
% «D m a‘X(D m bX(D m C)XD m dX(D m e>—

28.7.4 SDRAM Controller Refresh Cycles

An auto-refresh command is used to refresh the SDRAM device. Refresh addresses are gener-
ated internally by the SDRAM device and incremented after each auto-refresh automatically.
The SDRAM Controller generates these auto-refresh commands periodically. An internal timer is
loaded with the value in the register TR that indicates the number of clock cycles between
refresh cycles.

A refresh error interrupt is generated when the previous auto-refresh command did not perform.
It is acknowledged by reading the Interrupt Status Register (ISR).

When the SDRAM Controller initiates a refresh of the SDRAM device, internal memory accesses
are not delayed. However, if the CPU tries to access the SDRAM, the slave indicates that the
device is busy and the master is held by a wait signal. See Figure 28-8.

Alm L 532

32054D-AVR32-10/07 I ©

AT32AP7002

Figure 28-8. Refresh Cycle Followed by a Read Access

trp =3 trc=8

Row n

| |
| |
1 |
1 1
1 1
| |
T T
1 1
1 1

SDRAMC_A[12:0] Xcol cXcoI dX

XX

RAS

L]

CAS

SDWE

D[31:0] — N N\
350 Yo Y oncYons

L]

28.7.5 Power Management

Three low-power modes are available:

« Self-refresh Mode: The SDRAM executes its own Auto-refresh cycle without control of the
SDRAM Controller. Current drained by the SDRAM is very low.

« Power-down Mode: Auto-refresh cycles are controlled by the SDRAM Controller. Between
auto-refresh cycles, the SDRAM is in power-down. Current drained in Power-down mode is
higher than in Self-refresh Mode.

* Deep Power-down Mode: (Only available with Mobile SDRAM) The SDRAM contents are lost,
but the SDRAM does not drain any current.

The SDRAM Controller activates one low-power mode as soon as the SDRAM device is not
selected. It is possible to delay the entry in self-refresh and power-down mode after the last
access by programming a timeout value in the Low Power Register.

28.7.5.1 Self-refresh Mode

32054D-AVR32-10/07

This mode is selected by programming the LPCB field to 1 in the SDRAMC Low Power Register.
In self-refresh mode, the SDRAM device retains data without external clocking and provides its
own internal clocking, thus performing its own auto-refresh cycles. All the inputs to the SDRAM
device become “don’t care” except SDCKE, which remains low. As soon as the SDRAM device
is selected, the SDRAM Controller provides a sequence of commands and exits self-refresh
mode.

Some low-power SDRAMSs (e.g., mobile SDRAM) can refresh only one quarter or a half quarter
or all banks of the SDRAM array. This feature reduces the self-refresh current. To configure this
feature, Temperature Compensated Self Refresh (TCSR), Partial Array Self Refresh (PASR)
and Drive Strength (DS) parameters must be set in the Low Power Register and transmitted to
the low-power SDRAM during initialization.

Alm L 533

L ________________(0G]

s A T32AP7002

After initialization, as soon as PASR/DS/TCSR fields are modified and self-refresh mode is acti-
vated, the Extended Mode Register is accessed automatically and PASR/DS/TCSR bits are
updated before entry into self-refresh mode.

The SDRAM device must remain in self-refresh mode for a minimum period of tz,5 and may
remain in self-refresh mode for an indefinite period. This is described in Figure 28-9.
Figure 28-9. Self-refresh Mode Behavior

Self Refresh Mode

SRCB=1

Write T
SDRAMC_SRR

SDRAMC_A[12:0]

5

SDCK

SDCKE

SDCS

L L

RAS

CAS

L L

SDWE >

Access Request
to the SDRAM Controller

28.7.5.2 Low-power Mode

This mode is selected by programming the LPCB field to 2 in the SDRAMC Low Power Register.
Power consumption is greater than in self-refresh mode. All the input and output buffers of the
SDRAM device are deactivated except SDCKE, which remains low. In contrast to self-refresh
mode, the SDRAM device cannot remain in low-power mode longer than the refresh period (64
ms for a whole device refresh operation). As no auto-refresh operations are performed by the
SDRAM itself, the SDRAM Controller carries out the refresh operation. The exit procedure is
faster than in self-refresh mode.

This is described in Figure 28-10.

Alm L 534

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 28-10. Low-power Mode Behavior

SDCS i i
Xcol bXC. | cXcoI dXCO| eX col fX

1
|
o
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
|
1
1
1

Trep =3 CAS =2 iLow Power Mode
e

SDRAMC_A[12:0] X 'Rown X cola

RAS

CAS

SDCKE J

D[31:0]
(input)

I

«Dnai >§<Dnb>§<Dnc)§<Dnd)§< DneX(an>
1

28.7.5.3 Deep Power-down Mode

This mode is selected by programming the LPCB field to 3 in the SDRAMC Low Power Register.
When this mode is activated, all internal voltage generators inside the SDRAM are stopped and
all data is lost.

When this mode is enabled, the application must not access to the SDRAM until a new initializa-
tion sequence is done (See "SDRAM Device Initialization” on page 528).

This is described in Figure 28-11.

Alm L 535

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 28-11. Deep Power-down Mode Behavior

trp =3

\/

I
I
I
SleS !
]
I
I

1
Row n :
SDRAMC_A[12:0] Xcol cX col dX X X

RAS | |

I

CAS I .

1

1

I

SDWE | | |

CKE

D(l[r?;u(g »(Dn b)« Dnc)« D nd?

A “'lEl,® 536

32054D-AVR32-10/07

s A T32AP7002

28.8 SDRAM Controller User Interface

Table 28-8. SDRAM Controller Memory Map

Offset Register Name Access Reset State
0x00 SDRAMC Mode Register MR Read/Write 0x00000000
0x04 SDRAMC Refresh Timer Register TR Read/Write 0x00000000
0x08 SDRAMC Configuration Register CR Read/Write 0x852372C0
0x0C SDRAMC High Speed Register HSR Read/Write 0x00
0x10 SDRAMC Low Power Register LPR Read/Write 0x0
0x14 SDRAMC Interrupt Enable Register IER Write-only -
0x18 SDRAMC Interrupt Disable Register IDR Write-only -
0x1C SDRAMC Interrupt Mask Register IMR Read-only 0x0
0x20 SDRAMC Interrupt Status Register ISR Read-only 0x0
0x24 SDRAMC Memory Device Register MDR Read/Write 0x0
0x28 - OXFC | Reserved - - -

AIMEL 537

32054D-AVR32-10/07 I ©

s A T32AP7002

28.8.1 SDRAMC Mode Register

Register Name: MR

Access Type: Read/Write

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - ¢ - - r - rr - ¢ - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - r - ¢ - - r - rr - ¢ - [-]
7 6 5 4 3 2 1 0

r - r - r - 1 - [- /] MODE |

* MODE: SDRAMC Command Mode
This field defines the command issued by the SDRAM Controller when the SDRAM device is accessed.

Table 28-9.
MODE Description
0 0 0 Normal mode. Any access to the SDRAM is decoded normally.
0 0 1 The SDRAM Controller issues a NOP command when the SDRAM device is accessed regardless of the cycle.
0 1 0 The SDRAM Controller issues an “All Banks Precharge” command when the SDRAM device is accessed

regardless of the cycle.

The SDRAM Controller issues a “Load Mode Register” command when the SDRAM device is accessed
0 1 1 regardless of the cycle. The command will load the CAS latency from the Configuration Register and every other
value set to O into the Mode Register.

The SDRAM Controller issues an “Auto-Refresh” Command when the SDRAM device is accessed regardless of
the cycle. Previously, an “All Banks Precharge” command must be issued.

The SDRAM Controller issues an extended load mode register command when the SDRAM device is accessed
1 0 1 regardless of the cycle. The command will load the PASR, DS and TCR from the Low Power Register and every
other value set to 0 into the Extended Mode Register.

1 1 0 Deep power-down mode. Enters deep power-down mode.

AIMEL 538

32054D-AVR32-10/07 I ©

s A T32AP7002

28.8.2 SDRAMC Refresh Timer Register

Register Name: TR

Access Type: Read/Write

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

. - r - ¢ - - r - rr - ¢ - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - - [- [-] COUNT |
7 6 5 4 3 2 1 0

| COUNT |

e COUNT: SDRAMC Refresh Timer Count

This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh
burst is initiated. The value to be loaded depends on the SDRAMC clock frequency (MCK: Master Clock), the refresh rate
of the SDRAM device and the refresh burst length where 15.6 us per row is a typical value for a burst of length one.

To refresh the SDRAM device, this 12-bit field must be written. If this condition is not satisfied, no refresh command is
issued and no refresh of the SDRAM device is carried out.

Alm L 539

32054D-AVR32-10/07 I ©

s A T32AP7002

28.8.3 SDRAMC Configuration Register

Register Name: CR

Access Type: Read/Write

Reset Value: 0x852372C0
31 30 29 28 27 26 25 24

| TXSR | TRAS |
23 22 21 20 19 18 17 16

| TRCD | TRP |
15 14 13 12 11 10 9 8

| TRC | TWR |
7 6 5 4 3 2 1 0

| DBW | CAS NB | NR NC |

¢ NC: Number of Column Bits
Reset value is 8 column bits.

NC Column Bits
8
9
10
11

P | |O| O
P | O || O

¢ NR: Number of Row Bits
Reset value is 11 row bits.

NR Row Bits
11
12
13

k| |O| O

P | O | | O

Reserved

* NB: Number of Banks
Reset value is two banks.

NB Number of Banks
0 2
1 4

AIMEL 540

32054D-AVR32-10/07 I ©

s A T32AP7002

* CAS: CAS Latency
Reset value is two cycles.

In the SDRAMC, only a CAS latency of one, two and three cycles is managed.

CAS CAS Latency (Cycles)
0 0 Reserved
0 1 1
1 0 2
1 1 3

* DBW: Data Bus Width

Reset value is 16 bits

0: Data bus width is 32 bits.

1: Data bus width is 16 bits.

* TWR: Write Recovery Delay

Reset value is two cycles.

This field defines the Write Recovery Time in number of cycles. Number of cycles is between 0 and 15.
* TRC: Row Cycle Delay

Reset value is seven cycles.

This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.

* TRP: Row Precharge Delay

Reset value is three cycles.

This field defines the delay between a Precharge Command and another Command in number of cycles. Number of cycles
is between 0 and 15.

* TRCD: Row to Column Delay
Reset value is two cycles.

This field defines the delay between an Activate Command and a Read/Write Command in number of cycles. Number of
cycles is between 0 and 15.

* TRAS: Active to Precharge Delay
Reset value is five cycles.

This field defines the delay between an Activate Command and a Precharge Command in number of cycles. Number of
cycles is between 0 and 15.

* TXSR: Exit Self Refresh to Active Delay
Reset value is height cycles.

This field defines the delay between SCKE set high and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.

AIMEL 541

32054D-AVR32-10/07 I ©

s A T32AP7002

28.8.4 SDRAMC High Speed Register

Register Name: HSR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - [tA |

* DA: Decode Cycle Enable

A decode cycle can be added on the addresses as soon as a non-sequential access is performed on the HSB bus.
The addition of the decode cycle allows the SDRAMC to gain time to access the SDRAM memory.
0: Decode cycle is disabled.

1: Decode cycle is enabled.

A mE|,® 542

32054D-AVR32-10/07

s A T32AP7002

28.8.5 SDRAMC Low Power Register

Register Name: LPR

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

. - r - ¢ - - r - rr - ¢ - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

| - | - | TIMEOUT | DS | TCSR |
7 6 5 4 3 2 1 0

| - | PASR | - - | LPCB |

* LPCB: Low-power Configuration Bits

Low Power Feature is inhibited: no Power-down, Self-refresh or Deep Power-down command is issued to

00 the SDRAM device.

The SDRAM Controller issues a Self-refresh command to the SDRAM device, the SDCLK clock is
01 deactivated and the SDCKE signal is set low. The SDRAM device leaves the Self Refresh Mode when
accessed and enters it after the access.

The SDRAM Controller issues a Power-down Command to the SDRAM device after each access, the
10 SDCKE signal is set to low. The SDRAM device leaves the Power-down Mode when accessed and
enters it after the access.

The SDRAM Controller issues a Deep Power-down command to the SDRAM device. This mode is

11 unique to low-power SDRAM.

* PASR: Partial Array Self-refresh (only for low-power SDRAM)

PASR parameter is transmitted to the SDRAM during initialization to specify whether only one quarter, one half or all banks
of the SDRAM array are enabled. Disabled banks are not refreshed in self-refresh mode. This parameter must be set
according to the SDRAM device specification.

After initialization, as soon as PASR field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and PASR bits are updated before entry in self-refresh mode.
* TCSR: Temperature Compensated Self-Refresh (only for low-power SDRAM)

TCSR parameter is transmitted to the SDRAM during initialization to set the refresh interval during self-refresh mode
depending on the temperature of the low-power SDRAM. This parameter must be set according to the SDRAM device
specification.

After initialization, as soon as TCSR field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and TCSR bits are updated before entry in self-refresh mode.

* DS: Drive Strength (only for low-power SDRAM)

DS parameter is transmitted to the SDRAM during initialization to select the SDRAM strength of data output. This parame-
ter must be set according to the SDRAM device specification.

AIMEL 543

32054D-AVR32-10/07 I ©

s A T32AP7002

After initialization, as soon as DS field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and DS bits are updated before entry in self-refresh mode.

e TIMEOUT: Time to define when low-power mode is enabled

00 The SDRAM controller activates the SDRAM low-power mode immediately after the end of the last transfer.

o1 The SDRAM controller activates the SDRAM low-power mode 64 clock cycles after the end of the last
transfer.

10 The SDRAM controller activates the SDRAM low-power mode 128 clock cycles after the end of the last
transfer.

11 Reserved.

32054D-AVR32-10/07

AIMEL 544

L ________________(0G]

s A T32AP7002

28.8.6 SDRAMC Interrupt Enable Register

Register Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- 1}
7 6 5 4 3 2 1 0

L - | - | - | - | - | - | - | RES |

* RES: Refresh Error Status
0: No effect.

1: Enables the refresh error interrupt.

A mE|,® 545

32054D-AVR32-10/07

s A T32AP7002

28.8.7 SDRAMC Interrupt Disable Register

Register Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- 1}
7 6 5 4 3 2 1 0

L - | - | - | - | - | - | - | RES |

* RES: Refresh Error Status
0: No effect.

1: Disables the refresh error interrupt.

A mE|,® 546

32054D-AVR32-10/07

s A T32AP7002

28.8.8 SDRAMC Interrupt Mask Register

Register Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

L - | - | - | - | - | - | - | RES |

* RES: Refresh Error Status
0: The refresh error interrupt is disabled.

1: The refresh error interrupt is enabled.

A mE|,® 547

32054D-AVR32-10/07

s A T32AP7002

28.8.9 SDRAMC Interrupt Status Register

Register Name: ISR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | RES |
* RES: Refresh Error Status
0: No refresh error has been detected since the register was last read.

1: A refresh error has been detected since the register was last read.

A mE|,® 548

32054D-AVR32-10/07

s A T32AP7002

28.8.10 SDRAMC Memory Device Register

Register Name: MDR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - r - r - -+ - 1 - - [- |
23 22 21 20 19 18 17 16

. - r - r - -+ - 1 - @ - [- |
15 14 13 12 11 10 9 8

. - r - r - -+ - 1 - - [- |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | MD |

* MD: Memory Device Type

00 SDRAM

01 Low-power SDRAM
10 Reserved

11 Reserved.

A mE|,® 549

32054D-AVR32-10/07

s A T32AP7002

29. Error Corrected Code (ECC) Controller

29.1 Features

29.2 Description

Rev: 1.0.0.0

* Hardware Error Corrected Code (ECC) Generation
— Detection and Correction by Software
» Supports NAND Flash and SmartMedia™ Devices with 8- or 16-bit Data Path.
* Supports NAND Flash/SmartMedia with Page Sizes of 528, 1056, 2112 and 4224 Bytes, Specified
by Software

NAND Flash/SmartMedia devices contain by default invalid blocks which have one or more
invalid bits. Over the NAND Flash/SmartMedia lifetime, additional invalid blocks may occur
which can be detected/corrected by ECC code.

The ECC Controller is a mechanism that encodes data in a manner that makes possible the
identification and correction of certain errors in data. The ECC controller is capable of single bit
error correction and 2-bit random detection. When NAND Flash/SmartMedia have more than 2
bits of errors, the data cannot be corrected.

The ECC user interface is accesible through the peripheral bus.

29.3 Block Diagram

32054D-AVR32-10/07

Figure 29-1. Block Diagram

Static NAND Flash
—ly .
Memory SmartMedia
Controller .
Logic
ECC
Controller
\ 4 A 4
Ctrl/ECC Algorithm
User Interface
Peripheral Bus ¢
< >
ATMEL 550
Y)

s A T32AP7002

29.4 Functional Description

294.1

29.4.2

Write Access

Read Access

32054D-AVR32-10/07

A page in NAND Flash and SmartMedia memories contains an area for main data and an addi-
tional area used for redundancy (ECC). The page is organized in 8-bit or 16-bit words. The page
size corresponds to the number of words in the main data plus the number of words in the extra
area used for redundancy.

The only configuration required for ECC is the NAND Flash or the SmartMedia page size
(528/1056/2112/4224). Page size is configured setting the PAGESIZE field in the ECC Mode
Register (MR).

ECC is automatically computed as soon as a read (00h)/write (80h) command to the NAND
Flash or the SmartMedia is detected. Read and write access must start at a page boundary.

ECC is computed as soon as the counter reaches the page size. Values in the ECC Parity Reg-
ister (PR) and ECC NParity Register (NPR) are then valid and locked until a new start condition
(read/write command followed by five access address cycles).

Once the flash memory page is written, the computed ECC code is available in the ECC Parity
Error (PR) and ECC_NParity Error (NPR) registers. The ECC code value must be written by the
software application at the end of the page, in the extra area used for redundancy.

After reading main data in the page area, the application can perform read access to the extra
area used for redundancy. Error detection is automatically performed by the ECC controller. The
application can check the ECC Status Register (SR) for any detected errors.

It is up to the application to correct any detected error. ECC computation can detect four differ-
ent circumstances:

« No error: XOR between the ECC computation and the ECC code stored at the end of the
NAND Flash or SmartMedia page is equal to 0. No error flags in the ECC Status Register
(SR).

* Recoverable error: Only the RECERR flag in the ECC Status register (SR) is set. The
corrupted word offset in the read page is defined by the WORDADDR field in the ECC Parity
Register (PR). The corrupted bit position in the concerned word is defined in the BITADDR
field in the ECC Parity Register (PR).

« ECC error: The ECCERR flag in the ECC Status Register is set. An error has been detected
in the ECC code stored in the Flash memory. The position of the corrupted bit can be found
by the application performing an XOR between the Parity and the NParity contained in the
ECC code stored in the flash memory.

» Non correctable error: The MULERR flag in the ECC Status Register is set. Several
unrecoverable errors have been detected in the flash memory page.

ECC Status Register, ECC Parity Register and ECC NParity Register are cleared when a
read/write command is detected or a software register is enabled.

For single bit Error Correction and double bit Error Detection (SEC-DED) hsiao code is used. 32-
bit ECC is generated in order to perform one bit correction per 512/1024/2048/4096 8- or 16-bit

Alm L 551

L ________________(0G]

s A T32AP7002

words. Of the 32 ECC bits, 26 bits are for line parity and 6 bits are for column parity. They are
generated according to the schemes shown in Figure 29-2 and Figure 29-3.

Figure 29-2. Parity Generation for 512/1024/2048/4096 8-bit Words1

1stbyte | Bit7| Bit6 | Bit5 | Bit4 | Bit3 [Bit2 [Bit1 [BitO P8 P16
2nd byte Bit7 | Bit6 | Bit5 | Bit4 Bit3 | Bit2 | Bitl Bit0 P8’ P32 | — —
3rd byte Bit7 | Bit6 | Bit5 | Bit4 Bit3 | Bit2 | Bit1 Bit0 P8 P16' PX
4thbyte | Bit7| Bité | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito| | P8
(page size -3)th byte| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito | | P8 P16
(page size -2)th byte(Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito | | P8' P32 | — — | PX
(page size -1)th byte [Bit7 | Bit6 | Bit5 | Bita | Bit3 | Bit2 | Bit1 | Bito | [P8 P16
Page size th byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 [BitO Pg'
[1] [pi|[pP1] [P][P1] [Pr|[P1] | P1]
[P2 [l P2 [[P2 [[P2 |
| P4 [| P4’ |
Pagesize = 512 Px= 2048 P1=bit7(+)bit5(+)bit3(+)bit1(+)P1
Page size = 1024 Px = 4096 P2=Dbit7(+)bit6(+)bit3(+)bit2(+)P2
Page size = 2048 Px = 8192 P4=Dbit7(+)bit6(+)bit5(+)bit4(+)P4
Page size = 4096 Px= 16384 P1'=bit6(+)bit4(+)bit2(+)bit0(+)P1'

((((
P2'=bit5(+)bit4(+)bit1(+)bit0(+)P2'
P4'=bit7(+)bit6(+)bit5(+)bit4(+)P4’

To calculate P8’ to PX’ and P8 to PX, apply the algorithm that follows.

Page size = 2"

for 1 =0 to n
begin
for (j = 0 to page size byte)
begin
if (3 [i] ==1)
P[21*3]=bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[213]
else
P[28*3] 7 =bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[21*3]"
end

end

AIMEL 552

32054D-AVR32-10/07 I ©

s A T32AP7002

Parity Generation for 512/1024/2048/4096 16-bit Words

Figure 29-3.

Gd+ 8Uq(+)6Ha(+)0LNq(+
(H)ZLHAHE LH(+Hy LIg(+
vd(+)P1q(+)SUq(+)91q(+) g
(H)ZLNG(H)ELUY(+H)F LHG(+)SLIg=td
Td(H)ng(+)eng(+)ong(+)nq
(+)oLug(+) L LHg(+H)y LHg(+)S LHg=td
Ld(+) LUg(H)eNq(+)SHa(+) g

(H6uq(+)LLUg(+HELNG(+H)SLHg=1d

L1Yq
SLN9=5d

¥8€91=Xd 960 = 9215 9bey
7618 =Xd 807 = 9215 9beg
960t = Xd ¥20 = 8215 3abey
8Y07=xd 71§ =2zIs abed

Xd

Xd

| Sd | | 5d |
| bd | td | | rd | td

[e || oz || wd || @ | [e] W | W || W

[td | [td Jftd] [rd [[td] [td f]utd] [td | [[ta J{td] [rd [[td | [td |[utd] [td]
[

| [ong [[oug [evg | vua [sug | ong |zug gug [eug'jolug [L1ng |z1ug [eing |ving [sing
OUd[551 [one [| 2om o | e | ong | ovg | o gug [eng lovg [Lig |cig [eig [ving |siwg
ctd gd| [ong [g [cug |eva | vig | sug | oug |oug | [sve [eus Jorng [ting [cuva [elug [ving [siug
1| eq] [ong [1ia [cva [eva | w8 [sug | ong | | [598 | 6ug [oivs [Lbi |<1ug [etig [viug |sivg

| | 1 1 I I | | | I I 1 | I | |

| | | | | I | | | | | | | |

| | | | | | | | | | | | [|
ga| [ong [g [cug [eva [vua [sug | ong | g | [8vg [eug Jorug Juivg [zing [eing [ping [sing
9ld ad | [ovg [1ng | zug | eng | vma | cug | ong | sug 8lg | eug [OLMG [LLNG |CLNE |ELNg |pLYg [SLug
ced 8d| |ova [ua [zug [eng | vyg [cug | oug |mg | [sve [eng [orng [ting [civg feing [ring [s1ng
o) Foq| [oug [1 [cug | €ug | via | sug | owg |oug | [8va | evg [orva [riug |<iu [eoig |ring |sivg

piom Yy azis abed

piom yy(|- 8zis abed)
piom Yy g- ezis abed)
piom yi(g- ezis abiey)

plom uiy
PIOM pIg
pIoM pug
piomis|

553

ATMEL

32054D-AVR32-10/07

s A T32AP7002

To calculate P8’ to PX' and P8 to PX, apply the algorithm that follows.

Page size = 2"

for i =0 to n
begin
for (j = 0 to page_size_word)
begin
if (3011 ==1)
P[23*3]= bitl15(+)bitl4 (+)bitl3 (+)bitl2 (+)
bitl1l (+)bitl10 (+)bit9 (+)bit8 (+)
bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[27"]
else
P[21*3]/=bit15 (+)bit14 (+)bitl13 (+)bitl12 (+)
bitll (+)bitl0(+)bit9 (+)bit8 (+)
bit7 (+)bit6 (+)bit5(+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[2**3]"
end

end

AImEl 554

32054D-AVR32-10/07 I ©

s A T32AP7002

29.5 ECC User Interface

Table 29-1. ECC Register Mapping

Offset Register Register Name Access Reset
0x00 ECC Control Register CR Write-only 0x0
0x04 ECC Mode Register MR Read/Write 0x0
0x8 ECC Status Register SR Read-only 0x0
0x0C ECC Parity Register PR Read-only 0x0
0x10 ECC NParity Register NPR Read-only 0x0

0x14-OxF8 Reserved - - -
0x14 - OXFC Reserved - - -

AIMEL 555

32054D-AVR32-10/07 I ©

s A T32AP7002

29.5.1 ECC Control Register

Name: CR

Access Type: Write-only
31 30 29 28 27 26 25 24

. - r - r - -+ - - - [- |
23 22 21 20 19 18 17 16

. - r - r - r -+ - r - - [- |
15 14 13 12 11 10 9 8

. - r - r - -+ -1 - ¢ - [- |
7 6 5 4 3 2 1 0

. - - r - r - 1 - [- [- | RS]

* RST: RESET Parity

Provides reset to current ECC by software.

0: No effect

1: Reset sECC Parity and ECC NParity register

A mE|,® 556

32054D-AVR32-10/07

s A T32AP7002

29.5.2 ECC Mode Register

Register Name: MR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - - - - [- [- | S
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | N
15 14 13 12 11 10 9 8

. - r - - - [- [- | N
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | PAGESIZE |

» PAGESIZE: Page Size
This field defines the page size of the NAND Flash device.

Page Size | Description
00 528 words

01 1056 words
10 2112 words
11 4224 words

A word has a value of 8 bits or 16 bits, depending on the NAND Flash or Smartmedia memory organization.

A mE|,® 557

32054D-AVR32-10/07

s A T32AP7002

29.5.3 ECC Status Register

Register Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - rr - - - r - r - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - r - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | — | - | - | - | MULERR | ECCERR | RECERR |

» RECERR: Recoverable Error
0: No Errors Detected

1: Errors Detected. If MULERR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors were
detected

» ECCERR: ECC Error
0: No Errors Detected
1. A single bit error occurred in the ECC bytes.

Read both ECC Parity and ECC Parityn register, the error occurred at the location which contains a 1 in the least significant
16 bits.

« MULERR: Multiple Error
0: No Multiple Errors Detected
1. Multiple Errors Detected

Alm L 558

32054D-AVR32-10/07 I ©

s A T32AP7002

29.5.4 ECC Parity Register

Register Name: PR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - - - [- [- | S
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | N
15 14 13 12 11 10 9 8

| WORDADDR |
7 6 5 4 3 2 1 0

| WORDADDR | BITADDR |

During a page write, the value of the entire register must be written in the extra area used for redundancy (for a 512-byte
page size: address 512-513)

* BITADDR

During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If
multiple errors were detected, this value is meaningless.

* WORDADDR

During a page read, this value contains the word address (8-bit or 16-bit word depending on the memory plane organiza-
tion) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless.

AIMEL 559

32054D-AVR32-10/07 I ©

s A T32AP7002

2955 ECC NParity Register

Register Name: NPR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - - - - [- [- | S
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | N
15 14 13 12 11 10 9 8

| NPARITY |
7 6 5 4 3 2 1 0

| NPARITY |

* NPARITY:

During a write, the value of this register must be written in the extra area used for redundancy (for a 512-byte page size:
address 514-515)

A mE|,® 560

32054D-AVR32-10/07

s A T32AP7002

30. MultiMedia Card Interface (MCI)

30.1 Features

30.2 Description

32054D-AVR32-10/07

Rev: 2.1.0.1

* Compatible with MultiMedia Card Specification Version 2.2
* Compatible with SD Memory Card Specification Version 1.0
* Compatible with MultiMedia Card Specification Version 3.31
* Compatible with SDIO Specification Version 1.1
* Cards Clock Rate Up to Master Clock Divided by 2
* Embedded Power Management to Slow Down Clock Rate When Not Used
e Supports 2 Multiplexed Slot(s)
— Each Slot for either a MultiMediaCard Bus (Up to 30 Cards) or an SD Memory Card
e Support for Stream, Block and Multi-block Data Read and Write
e Supports Connection to DMA Controller
— Minimizes Processor Intervention for Large Buffer Transfers

The MCI includes a command register, response registers, data registers, timeout counters and
error detection logic that automatically handle the transmission of commands and, when
required, the reception of the associated responses and data with a limited processor overhead.

The MCI supports stream, block and multi-block data read and write, and is compatible with a
DMA Controller, minimizing processor intervention for large buffer transfers.

The MCI operates at a rate of up to Master Clock divided by 2 and supports the interfacing of 2
slot(s). Each slot may be used to interface with a MultiMedia Card bus (up to 30 Cards) or with a
SD Memory Card. Only one slot can be selected at a time (slots are multiplexed). A bit field in
the SD Card Register performs this selection.

The SD Memory Card communication is based on a 9-pin interface (clock, command, four data
and three power lines) and the MultiMediaCard on a 7-pin interface (clock, command, one data,
three power lines and one reserved for future use).

The SD Memory Card interface also supports MultiMedia Card operations. The main differences
between SD and MultiMedia Cards are the initialization process and the bus topology.

AIMEL 561

L ________________(0G]

s A T32AP7002

30.3 Block Diagram

Figure 30-1. Block Diagram

Peripheral Bus Bridge
A

—

PDC / DMA

Peripheral

A

Bus

PM MCK

MCI Interface

Interrupt Control

4

MCI Interrupt

PIO

bbb booh:

1)
MCCK

MccpA @
)
MCDAO

mMcpa1l @

mMcpa2 @

MCDA3 @)

(6]
MCCDB

mcoeo™
mcoe1™

(6]
MCDB2

mcoe3 &

Note: 1. When several MCI (x MCI) are embedded in a product, MCCK refers to MCI x CK, MCCDA to

MCI x CDA, MCDAy to MCIx DAy, MCDBY to MCIx DBy

ATMEL

32054D-AVR32-10/07 I ©

562

s A T32AP7002

30.4 Application Block Diagram

Figure 30-2. Application Block Diagram

Application Layer
ex: File System, Audio, Security, etc.

Physical Layer
MCI Interface

Ilnnnnnn
B12345678
o SDCard
30.5 Pin Name List
Table 30-1. /O Lines Description
Pin Name Pin Description Type® Comments
MCCDA/MCCDB Command/response I/O/PP/OD | CMD of an MMC or SD Card
MCCK Clock 110 CLK of an MMC or SD Card
DATO of an MMC
MCDAO - MCDA3 Data 0..3 of Slot A I/O/PP
DATJO0..3] of an SD Card
DATO of an MMC
MCDBO - MCDB3 Data 0..3 of Slot B I/0/IPP
DATJO0..3] of an SD Card

Note: 1. [: Input, O: Output, PP: Push/Pull, OD: Open Drain.

AIMEL 563

32054D-AVR32-10/07 I ©

s A T32AP7002

30.6 Product Dependencies

30.6.1 I/O Lines
The pins used for interfacing the MultiMedia Cards or SD Cards may be multiplexed with P1O
lines. The programmer must first program the P1O controllers to assign the peripheral functions
to MCI pins.

30.6.2 Power Management
The MCI may receive a clock from the Power Manager (PM), so the programmer must first con-
figure the PM to enable the MCI clock.

30.6.3 Interrupt

The MCI interface has an interrupt line connected to the Interrupt Controller (INTC).

Handling the MCI interrupt requires programming the INTC before configuring the MCI.
30.7 Bus Topology

Figure 30-3. MultiMedia Memory Card Bus Topology

innnnn
1234567

MMC

The MultiMedia Card communication is based on a 7-pin serial bus interface. It has three com-
munication lines and four supply lines.

32054D-AVR32-10/07

Table 30-2. Bus Topology
Pin MCI Pin Name
Number Name Type® Description (Slot x)
1 RSV NC Not connected
2 CMD 1/0/PP/OD Command/response MCCDx
3 VSS1 S Supply voltage ground VSS
4 VDD S Supply voltage VDD
5 CLK 1/0 Clock MCCK
6 VSS2 S Supply voltage ground VSS
7 DATI[0] I/0/PP Data 0 MCDx0
Note: 1. [: Input, O: Output, PP: Push/Pull, OD: Open Drain.

2. When several MCI (x MCI) are embedded in a product, MCCK refers to MCI x CK, MCCDA to
MCI x CDA, MCDAy to MCIx DAy, MCDBY to MCIx DBy

ATMEL

L ________________(0G]

564

s A T32AP7002

Figure 30-4. MMC Bus Connections (One Slot)

MCI
MCCDA
MCDAO
MCCK
innnnnn innnnnn innnnnn
1234567 1234567 1234567
MMC1 MMC2 MMC3

Note: 1. When several MCI (x MCI) are embedded in a product, MCCK refers to MCI x CK, MCCDA to
MCI x CDA, MCDAy to MCIx DAy

Figure 30-5. SD Memory Card Bus Topology

ARRRNNNDN
B12345678

SD CARD

The SD Memory Card bus includes the signals listed in Table 30-3 on page 565.

Table 30-3. SD Memory Card Bus Signals

MCI Pin Name

Pin Number | Name Type®W Description (Slot x)
1 CD/DAT[3] I/0/PP Card detect/ Data line Bit 3 MCDx3
2 CMD PP Command/response MCCDx
3 VSS1 S Supply voltage ground VSS

4 VDD S Supply voltage VDD

5 CLK I/O Clock MCCK
6 VSS2 S Supply voltage ground VSS

7 DATI[0] I/O/PP Data line Bit 0 MCDXx0
8 DAT[1] I/O/PP Data line Bit 1 or Interrupt MCDx1
9 DAT[2] I/O/PP Data line Bit 2 MCDx2

Note: 1. I:input, O: output, PP: Push Pull, OD: Open Drain

AIMEL 565

32054D-AVR32-10/07 I ©

s A T32AP7002

Figure 30-6. SD Card Bus Connections with Two Slots

I
MCDAO - MCDA3 |« > | m~
m ©
)
MCCK mm < SDCARD1
T
MCCDA -
=
oo
MCDBO - MCDB3 [> 2
I ©
10
mm < SDCARD2
)
MCCDB - o
-
|_Jeo)}

Note: 1. When several MCI (x MCI) are embedded in a product, MCCK refers to MCI x CK, MCCDA to
MCI x CDA, MCDAY to MCIx DAy, MCDBY to MCIx DBy

Figure 30-7. Mixing MultiMedia and SD Memory Cards with Two Slots

MCDAO
MCCDA Y
MCCK
innnnnn innnnnn innnnnn
1234567 1234567 1234567
MMC1 MMC2 MMC3
I ©
MCDBO - MCDBS3 |« -~
m ©
1)
- SD CARD
)
MCCDB gV
-
L]

Note: 1. When several MCI (x MCI) are embedded in a product, MCCK refers to MCI x CK, MCCDA to
MCI x CDA, MCDAy to MCIx DAy, MCDBY to MCIx DBy

When the MCI is configured to operate with SD memory cards, the width of the data bus can be

selected in the SDCR register. Clearing the SDCBUS bit in this register means that the width is

one bit; setting it means that the width is four bits. In the case of multimedia cards, only the data

line O is used. The other data lines can be used as independent PIOs.

AIMEL 566

32054D-AVR32-10/07 I ©

s A T32AP7002

30.8 MultiMedia Card Operations

After a power-on reset, the cards are initialized by a special message-based MultiMedia Card
bus protocol. Each message is represented by one of the following tokens:

« Command: A command is a token that starts an operation. A command is sent from the host
either to a single card (addressed command) or to all connected cards (broadcast command).
A command is transferred serially on the CMD line.

* Response: A response is a token which is sent from an addressed card or (synchronously)
from all connected cards to the host as an answer to a previously received command. A
response is transferred serially on the CMD line.

» Data: Data can be transferred from the card to the host or vice versa. Data is transferred via
the data line.

Card addressing is implemented using a session address assigned during the initialization

phase by the bus controller to all currently connected cards. Their unique CID number identifies
individual cards.

The structure of commands, responses and data blocks is described in the MultiMedia-Card
System Specification. See also Table 30-4 on page 568.

MultiMediaCard bus data transfers are composed of these tokens.

There are different types of operations. Addressed operations always contain a command and a
response token. In addition, some operations have a data token; the others transfer their infor-
mation directly within the command or response structure. In this case, no data token is present
in an operation. The bits on the DAT and the CMD lines are transferred synchronous to the MCI
Clock.

Two types of data transfer commands are defined:

« Sequential commands: These commands initiate a continuous data stream. They are
terminated only when a stop command follows on the CMD line. This mode reduces the
command overhead to an absolute minimum.

« Block-oriented commands: These commands send a data block succeeded by CRC bits.

Both read and write operations allow either single or multiple block transmission. A multiple

block transmission is terminated when a stop command follows on the CMD line similarly to the

sequential read or when a multiple block transmission has a predefined block count (See "Data

Transfer Operation” on page 569.).

The MCI provides a set of registers to perform the entire range of MultiMedia Card operations.

30.8.1 Command - Response Operation

After reset, the MCI is disabled and becomes valid after setting the MCIEN bit in the CR (MCI
Control Register).

The PWSEN bit saves power by dividing the MCI clock by 2°YSPV + 1 when the bus is inactive.

The two bits RDPROOF and WRPROOF in the