

POWERTIP TECH. CORP.

DISPLAY DEVICES FOR BETTER ELECTRONIC DESIGN

Specification For Approval

Customer		:		
Model Typ	e	:	LCD Module	_
Sample Co	ode	:	PG12864LRS	S-KNN-H-SO_
Mass Prod	duction Code	:		
Edition		:	0	
Customer Sign	Sales Sign		Approved By	Prepared By

CONTENTS

1.SPECIFICATIONS

- 1.1 Features
- 1.2 Mechanical Specifications
- 1.3 Absolute Maximum Ratings
- 1.4 DC Electrical Characteristics
- 1.5 Optical Characteristics
- 1.6 Backlight Characteristics

2.MODULE STRUCTURE

- 2.1 Counter Drawing
- 2.2 Interface Pin Description
- 2.3 Timing Characteristics
- 2.4 Display Command

1. SPECIFICATIONS

1.1 Features

- Full dot-matrix structure with 128 dots *64 dots
- 1/64 Duty, 1/9 bias
- STN LCD, positive
- Transflective LCD, gray display
- 6 o'clock viewing angle
- 8 bits parallel data input.
- Built-in negative voltage and LED backlight

1.2 Mechanical Specifications

• Outline dimension : 93.0mm(L) *70.0mm(W)*14.0mm max.(H)

Viewing area : 72.0mm *40.0mm
 Active area : 66.52mm *33.24mm
 Dot size : 0.48mm *0.48mm
 Dot pitch : 0.52mm *0.52mm

1.3 Absolute Maximum Ratings

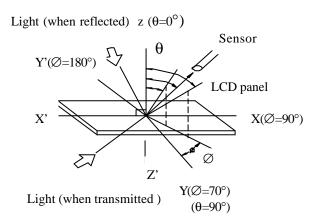
Item	Symbol	Conditions	Min.	Max.	Unit
Power supply Voltage	VDD	-	4.5	5.5	V
LCD drive Supply voltage	VDD-VEE	-	8.0	17	V
Input voltage	VIN	-	-0.3	VDD+0.3	V
Operating temperature	TOPR	-	-20	70	°C
Storage temperature	TSTG	-	-30	80	°C
Humidity	HD	-	-	90	%RH

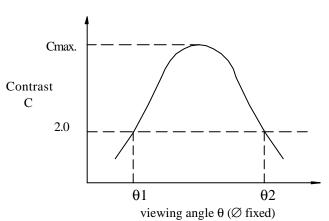
1.4 DC Electrical Characteristics

 $VDD=+5V\pm10\%$, VSS=0V, $TA=25^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Logic Supply voltage	Vdd	-	4.5	5	5.5	V
"H" input voltage	Vih	-	0.7VDD	1	Vdd	V
"L" input voltage	VIL	-	0	1	0.3VDD	V
"H" output voltage	Vон	-	VDD-0.4	1	1	V
"L" output voltage	Vol	-	1	1	0.4	V
Supply current	Idd	VDD=5V	1	7.88	9.73	mA
LCD driving voltage	Vop	VDD-VO	-	12.55	14.45	V

1.5 Optical Characteristics

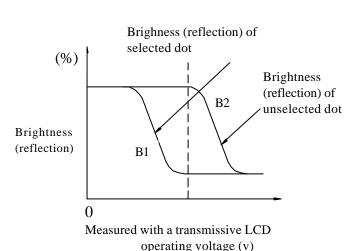

1/64 duty, 1/9 bias, V_{OPR}=13.6V, Ta=25°C

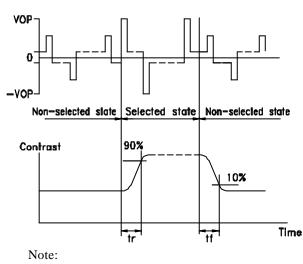

Item	Symbol	Conditions	Min.	Тур.	Max	Reference
Viewing angle	θ	C≥2.0,Ø=0°	30°	ı	1	Notes 1 & 2
Contrast	С	θ=5°, Ø=0°	1	3	1	Note 3
Response time(rise)	$T_{\rm r}$	θ=5°, Ø=0°	1	140ms	200ms	Note 4
Response time(fall)	$T_{ m f}$	θ=5°, Ø=0°	-	300ms	500ms	Note 4

Domonoston	Carrelle of	Tamananatana (9C)		I Init		
Parameter	Symbol	Temperature (°C)	Min	Тур	Max	Unit
Driving voltage		-20	14.3	14.7	15.1	
	V_{OP}	25	13.2	13.6	14.0	V
		70	12.0	12.4	12.8	

Note 1: Definition of angles θ and \emptyset

Note 2: Definition of viewing angles $\theta 1$ and $\theta 2$




Note: Optimum viewing angle with the naked eye and viewing angle θ at Cmax. Above are not always the same

Note 3: Definition of contrast C

 $C = \frac{\text{Brightness (reflection) of unselected dot (B2)}}{\text{Brightness (reflection) of selected dot (B1)}}$

Note 4: Definition of response time

panel which is displayed 1 cm²

 V_{OPR} : Operating voltage f_{FRM} : Frame frequency t_r : Response time (rise) t_f : Response time (fall)

1.6 Backlight Characteristic

The LCD Module is using a LED backlight

•. Maximum Ratings

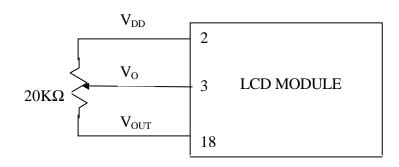
Item	Symbol	Conditions	Min.	Max.	Unit
Forward current	IF	TA=25°C	1	975	mA
Reverse voltage	VR	TA=25°C	1	8	V
Power dissipation	Ро	TA=25°C	1	4.5	W
Operating Temperature	Topr	-	-20	70	°C
Storage temperature	TSTG	-	-40	80	°C

•. Electrical Ratings

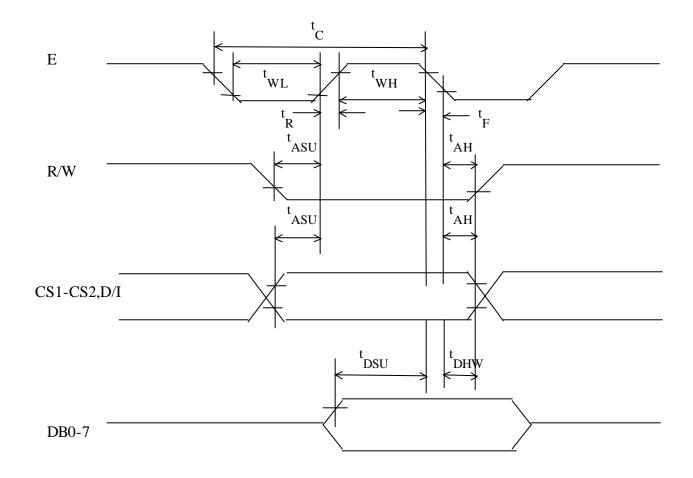
TA=25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward voltage	VF	IF=390mA		4.2	4.6	V
Reverse current	IR	VR=8V	-	1	0.2	mA
Luminous intensity (without LCD)	Iv	IF=390mA	184	230	1	cd/m ²
Luminous intensity (with LCD)	Iv	IF=390mA	-	84.1	1	cd/m ²
Wavelength	λр	IF=390mA	571	1	576	nm
Color	Yellow Gree	en	•			

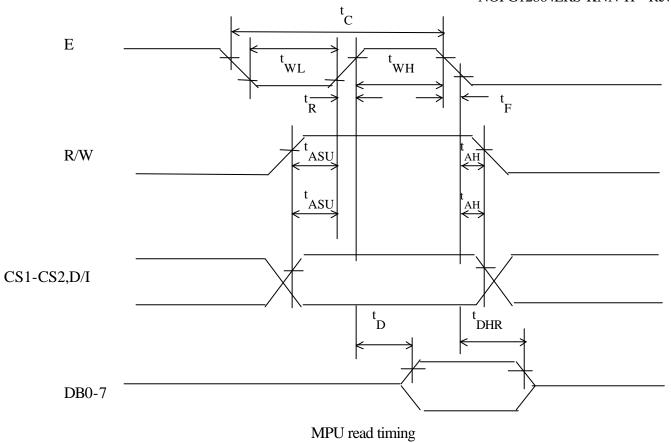
2. MODULE STRUCTURE


2.1 Counter Drawing

*See Appendix 1

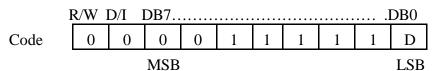

2.2 Interface Pin Description

Pin No.	Symbol	Function
1	V_{SS}	Power Supply (Vss=0)
2	$ m V_{DD}$	Power Supply (V _{DD} >V _{SS})
3	$V_{\rm o}$	Operating voltage for LCD
4	D/ I	Register selection input High =Data register Low =Instruction register (for write) Busy flag address counter (for read)
5	R/W	R/W signal input is used to select the read/write mode High =Read mode, Low =Write mode
6	E	Start enable signal to read or write the data
7-14	DB0~DB7	Data bus line
15	CS1	Chip enable for D2 (segment 1 to segment 64)
16	CS2	Chip enable for D3 (segment 65 to segment 128)
17	RST	Reset signal
18	V_{OUT}	Negative voltage supply
19	A	Power supply for LED backlight (+)
20	K	Power supply for LED backlight (-)


Contrast Adjust

2.3 Timing Characteristics

MPU write timing


Characteristic	Symbol	Min.	Тур	Max	Unit
E Cycle	t_{C}	1000	-	-	ns
E High Level Width	$t_{ m WH}$	450	-	-	ns
E Low Level Width	$t_{ m WL}$	450	-	-	ns
E Rise Time	t _R	-	-	25	ns
E Fall Time	$t_{ m F}$	-	-	25	ns
Address Set-Up time	$t_{ m ASU}$	140	-	-	ns
Address Hold Time	$t_{ m AH}$	10	-	-	ns
Data Set-Up Time	$t_{ m SU}$	200		-	ns
Data Delay Time	t_{D}	-	-	320	ns
Data Hold Time (Write)	$t_{ m DHW}$	10	-	_	ns
Data Hold Time (Read)	$t_{ m DHR}$	20	_	_	ns

2.4 Display command

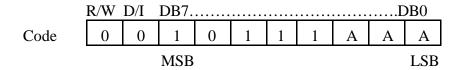
	Code											
Instructions	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Functions	
Display on/off	0	0	0	0	1	1	1	1	1	1/0	Controls display on/off. RA	M data and internal
											status are not affected.	
Display start line	0	0	1	1	Displ	ay st	art 1	ine	(0-6	3)	Specifies the RAM line disp	played at the top of the
						1					screen.	
Set Page (x address)	0	0	1	0	1	1	1	Pag	ge (()-7)	Sets the page (X address)	of RAM at the page
											(X address) register.	
Set Y address	0	0	0	1	Y add	dress	s (0-	63)			Sets the Y address in the co	ounter.
Status read	1	0	Busy	0	ON/	Res	et 0	0	0	0	Reads the status.	
					OFF						Reads 1: Reset	
											0: Normal	
											ON/OFF 1: Display of	f
											0: Display or	1
											Busy 1: Internal op	eration
											0: Ready	
Write display data	0	1	Write	e dat	a						Writes data DB0 (LSB) to	Has access to the
											DB7 (MSB) on the data	address of the
											bus into display	display RAM
											RAM.	specified in
Read display data	1	1	Read	data	a						Reads data DB0 (LSB)	advance. After the
											to DB7 (MSB) from the	access, Y address
											display RAM to the data	is increased by 1.
											bus.	
		1										

Detailed Explanation

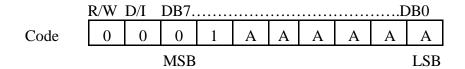
Display On/Off

The display data appears when D is 1 and disappears when D is 0. Though the data is not on the screen with D=0, it remains in the display data RAM. Therefore, you can make it appear by changing D=0 into D=1.

Display Start Line



Z address AAAAA (binary) of the display data RAM is set in the display start line register and displayed at the top of the screen. Figure 1 shows examples of display (1/64 duty cycle) when the start line=0-3. When the display duty cycle is 1/64 or more (ex. 1/32, 1/24 etc.), the data of total line number of LCD screen, from the line specified by display start line instruction, is displayed.


See figure 1.

Set page (X address)

X address AAA (binary) of the display data RAM is set in the X address register. After that, writing or reading to or from MPU is executed in this specified page until the next page is set. See figure 2.

Set Y Address

Y address AAAAA (binary) of the display data RAM is set in the Y address Counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU.

Status Read

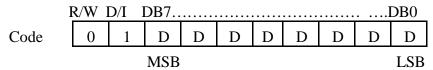
• Busy

When busy is 1, the LSI is executing internal operations. No instructions are accepted while busy is 1, so you should make sure that busy is 0 before writing the next instruction.

• ON/OFF

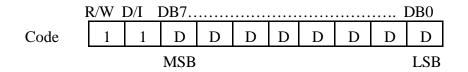
Shows the liquid crystal display conditions: on condition or off condition.

When on/off is 1, the display is in off condition.

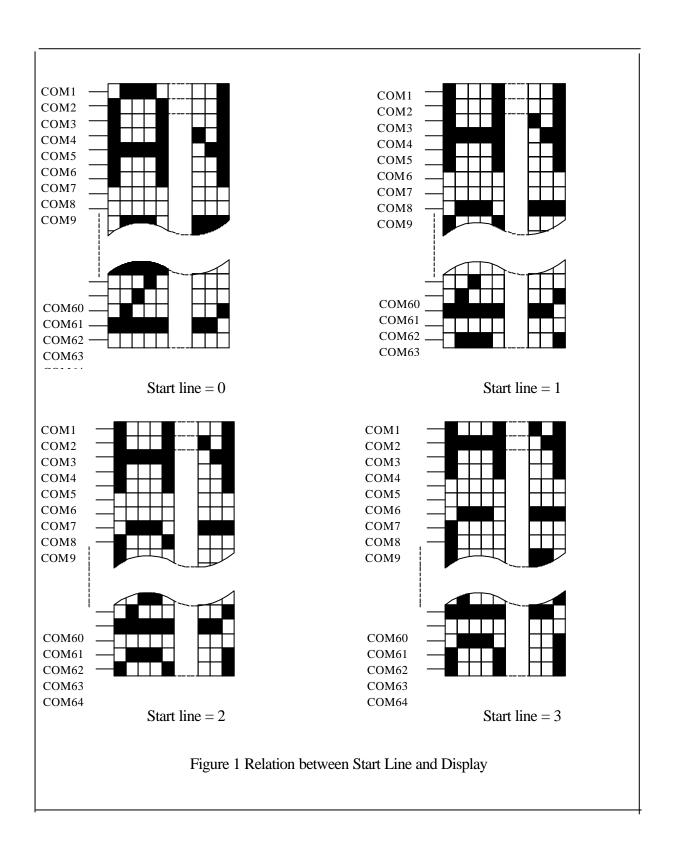

When on/off is 0, the display is in on condition.

• RESET

RESET=1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted.


RESET=0 shows that initializing has finished and the system is in the usual operation condition.

Write Display Data


Write 8-bit data DDDDDDDD (binary) into the display data RAM. Then Y address is increased by 1 automatically.

Read Display Data

Reads out 8-bit data DDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically.

One dummy read is necessary right after the address setting. For details, refer to the explanation of output register in "Function of Each Block".

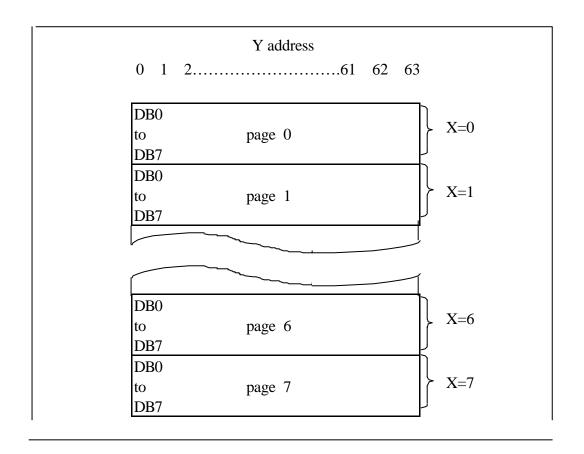
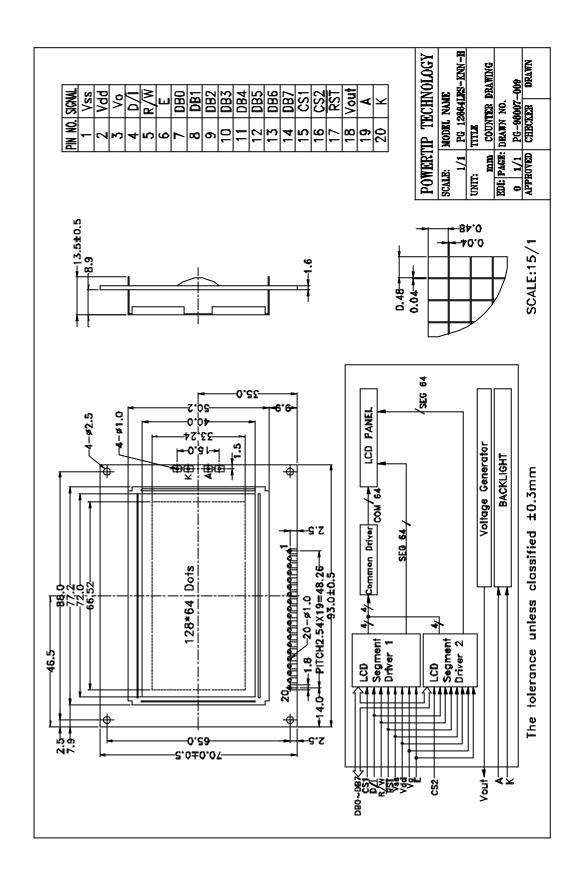



Figure 2 Address Configuration of Display Data RAM

Note: "128*64" consist of 2 "64*64"

CS1⇒ Chip enable for left 64*64 (segment1 to segment 64)

CS2⇒ Chip enable for right 64*64 (segment 65 to segment 128)

