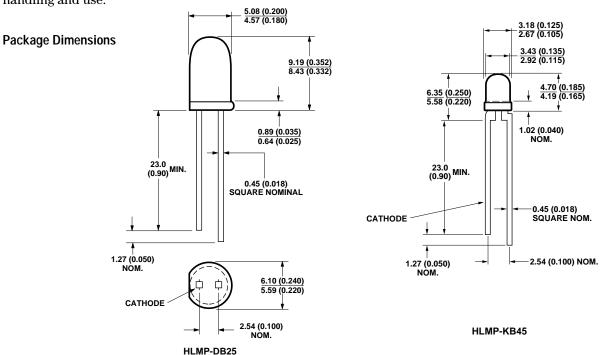


HLMP-DB25-B00xx, HLMP-KB45-A00xx

Description

These blue LEDs are designed in industry standard T-1 and T-13/4 package with clear and non diffused optics. They are also available in tape and reel, and ammo-pack option for ease of handling and use.


These blue lamps are ideal for use as indicators and for general purpose lighting. Blue lamps offer color differentiation as blue is attractive and not widely available.

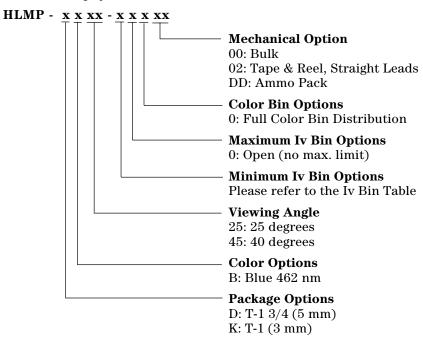
Features

- Popular T-13/4 and T-1 diameter packages
- · General purpose leads
- · Reliable and rugged
- · Available on tape and reel
- · Binned for color and intensity

Applications

- · Status indicators
- Small message panel
- · Running and decorative lights for commercial use

CAUTION: Devices are Class II ESD sensitive. Please observe appropriate precautions during handling and processing. Refer to Application Note AN-1142 for additional details.


ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).

2. EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (0.040") DOWN THE LEADS.

Selection Guide

			Luminous II	ntensity Iv (mcd)	
Part Number	Package	Viewing Angle	Min.	Max.	
HLMP-KB45-A00xx	T-1	40	30	-	
HLMP-DB25-B00xx	T-1 3/4	25	40	_	

Part Numbering System

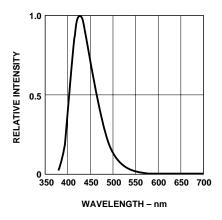
Absolute Maximum Ratings at T_A = 25°C

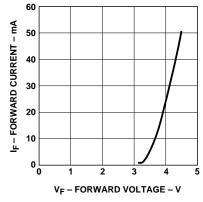
Parameter	Blue	Units
Peak Forward Current	70	mA
DC Current ^[1]	30	mA
Reverse Voltage (I _R = 100 μA)	5	V
Transient Forward Current ^[2] (10 µsec Pulse)	350	mA
LED Junction Temperature	115	°C
Operating Temperature	-20 to +80	°C
Storage Temperature	-30 to +100	°C

Notes:

- 1. Derate linearly from 50 °C as shown in Figure 6.
- 2. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that this device be operated at peak currents above the Absolute Maximum Peak Forward Current.

Optical Characteristics at $T_A = 25^{\circ}C$


			Color, Dominant		
		s Intensity @ I _F = 20 mA	Wavelength $\lambda_{\mathbf{d}^{[1]}}$ (nm)	Peak Wavelength $\lambda_{ extsf{PEAK}}$ (nm)	Viewing Angle $2\theta_{1/2}^{[2]}$ Degrees
Part Number	Min.	Тур.	Тур.	Тур.	Тур.
HLMP-DB25-B00xx	40	100	462	426	25
HLMP-KB45-A00xx	30	45	462	426	40


Notes

- 1. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half of the axial luminous intensity.

Electrical Characteristics at T_A = 25°C

	Forward V _F (Vol @ I _F = 2	•	Reverse V _R (Volt @ I _R = 1	•	Speed Response v_s (ns)	Capacitance C (pF), V _F = 0, f = 1 MHz	Thermal Resistance $R\theta_{J-PIN}$ (°C/W) Junction to Cathode Lead
Part Number	Тур.	Max.	Min.	Тур.	Тур.	Тур.	Тур.
HLMP-DB25-B00xx	4.0	5.0	5.0	30	500	97	260
HLMP-KB45-A00xx	4.0	5.0	5.0	30	500	97	290

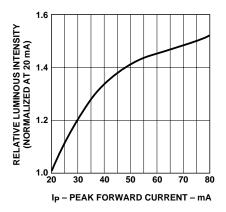
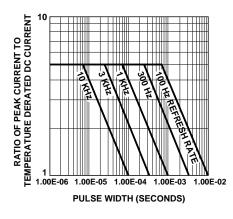
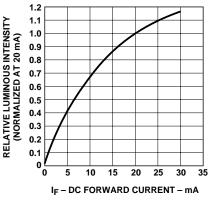




Figure 1. Relative intensity vs. wavelength.

Figure 2. Forward current vs. forward voltage.

Figure 3. Relative intensity vs. peak forward current (300 μs pulse width, 10 ms period).

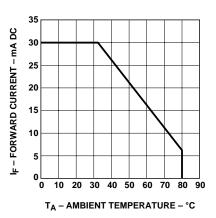


Figure 4. Forward current vs. forward voltage.

Figure 5. Relative luminous intensity vs. forward current.

Figure 6. Maximum DC forward current vs. ambient temperature. Derating based on T_J max. = 115 °C.

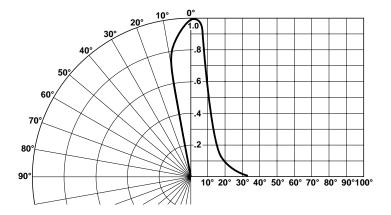


Figure 7. Relative luminous intensity vs. angular displacement for HLMP-DB25.

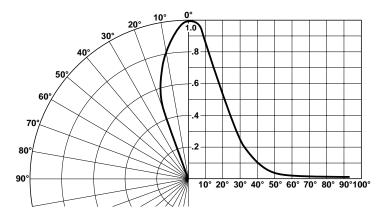


Figure 8. Relative luminous intensity vs. angular displacement for HLMP-KB45.

Soldering/Cleaning

Cleaning agents from the ketone family (acetone, methyl ethyl ketone, etc.) and from the chlorinated hydrocarbon family (methylene chloride, trichloroethylene, carbon tetrachloride, etc.) are not recommended for cleaning LED parts. All of these various solvents attack or dissolve the encapsulating epoxies used to form the package of plastic LED parts.

For information on soldering LEDs, please refer to Application Note 1027.

Intensity Bin Limits

	•	
Intensity Range (mcd)		
Bin	Min.	Max.
A	30.0	40.0
В	40.0	50.0
С	50.0	65.0
D	65.0	85.0
E	85.0	110.0
F	110.0	140.0
G	140.0	180.0
Н	180.0	240.0
J	240.0	310.0
K	310.0	400.0
L	400.0	520.0
M	520.0	680.0
N	680.0	880.0

Color Bin Limits (nm at 20 mA)

Blue	nm @ 20	nm @ 20 mA		
Bin ID	Min.	Max.		
1	460.0	464.0		
2	464.0	468.0		
3	468.0	472.0		
4	472.0	476.0		
5	476.0	480.0		

Tolerance for each bin limit will be ± 0.5 nm.

Mechanical Option Matrix

Mechanical	
Option Code	Definition
00	Bulk Packaging, minimum increment 500 pcs/bag
02	Tape & Reel, straight leads, minimum increment 1300 pcs/bag
DD	Ammo Pack, straight leads with minimum increment

Note

All categories are established for classification of products. Products may not be available in all categories. Please contact your local Agilent representative for further clarification/information.

Precautions

Lead Forming

- The leads of an LED lamp may be preformed or cut to length prior to insertion and soldering into PC board.
- If lead forming is required before soldering, care must be taken to avoid any excessive mechanical stress induced to LED package. Otherwise, cut the leads of LED to length after soldering process at room temperature. The solder joint formed will absorb the mechanical stress of the lead cutting from traveling to the LED chip die attach and wirebond.
- It is recommended that tooling made to precisely form and cut the leads to length rather than rely upon hand operation.

Soldering Conditions

- Care must be taken during PCB assembly and soldering process to prevent damage to LED component.
- The closest LED is allowed to solder on board is 1.59 mm below the body (encapsulant epoxy) for those parts without standoff.
- Recommended soldering conditions:

		Manual Solder
	Wave Soldering	Dipping
Pre-heat Temperature	105 °C Max.	_
Pre-heat Time	30 sec Max.	_
Peak Temperature	250 °C Max.	260 °C Max.
Dwell Time	3 sec Max.	5 sec Max.

- Wave soldering parameter must be set and maintained according to recommended temperature and dwell time in the solder wave. Customer is advised to periodically check on the soldering profile to ensure the soldering profile used is always conforming to recommended soldering condition.
- If necessary, use fixture to hold the LED component in proper orientation with respect to the PCB during soldering process.
- Proper handling is imperative to avoid excessive thermal stresses to LED components when heated.
 Therefore, the soldered PCB must be allowed to cool to room temperature, 25°C, before handling.
- Special attention must be given to board fabrication, solder masking, surface plating and lead holes size and component orientation to assure solderability.
- Recommended PC board plated through hole sizes for LED component leads:

LED Component Lead Size	Diagonal	Plated Through Hole Diameter
0.457 x 0.457 mm	0.646 mm	0.976 to 1.078 mm
(0.018 x 0.018 inch)	(0.025 inch)	(0.038 to 0.042 inch)
0.508 x 0.508 mm	0.718 mm	1.049 to 1.150 mm
(0.020 x 0.020 inch)	(0.028 inch)	(0.041 to 0.045 inch)

Note: Refer to application note AN1027 for more information on soldering LED components.

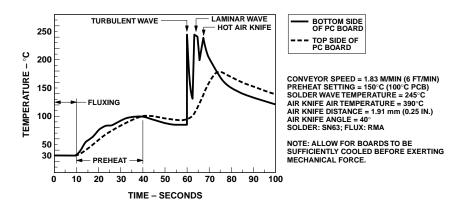


Figure 9. Recommended wave soldering profile.

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or

(916) 788-6763

Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 6756 2394

Hong Kong: (+65) 6756 2394 India, Australia, New Zealand: (+65) 6755 1939

Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)

Korea: (+65) 6755 1989

Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 2044

Taiwan: (+65) 6755 1843

Data subject to change.

Copyright © 2003-2005 Agilent Technologies, Inc.

Obsoletes 5989-3263EN

November 14, 2005

5989-4261EN

