PHK31NQ03LT

N-channel TrenchMOS logic level FET

Rev. 01 — 18 December 2006

Product data sheet

1. Product profile

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology.

1.2 Features

- Optimized for use in DC-to-DC converters
- Logic level compatible
- Very low switching and conduction losses

1.3 Applications

- DC-to-DC converters
- Voltage regulators

- Switched-mode power supplies
- Notebook computers

1.4 Quick reference data

- $V_{DS} \le 30 \text{ V}$
- $\blacksquare \quad R_{DSon} \leq 4.4 \ m\Omega$

- $I_D \le 30.4 \text{ A}$
- $Q_{GD} = 7.7 \text{ nC (typ)}$

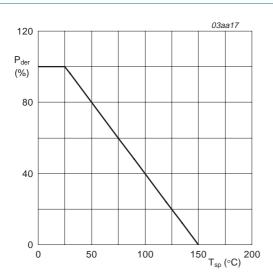
2. Pinning information

Table 1. Pinning

Pin	Description	Simplified outline	Symbol
1, 2, 3	source (S)		
4	gate (G)	8 <u> </u>	D
	drain (D)	1	mbb076 S
		SOT96-1 (SO8)	

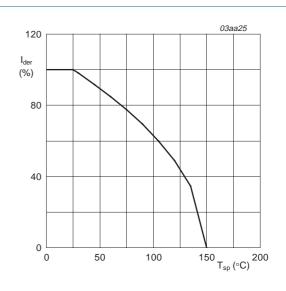
3. Ordering information

Table 2. Ordering information


Type number	Package	^a ckage						
	Name	Description	Version					
PHK31NQ03LT	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1					

4. Limiting values

Table 3. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	25 °C ≤ T _j ≤ 150 °C	-	30	V
V_{DGR}	drain-gate voltage (DC)	$25~^{\circ}\text{C} \le \text{T}_{j} \le 150~^{\circ}\text{C}$; $\text{R}_{\text{GS}} = 20~\text{k}\Omega$	-	30	V
V_{GS}	gate-source voltage		-	±20	V
I_D	drain current	$T_{sp} = 25 ^{\circ}\text{C}$; $V_{GS} = 10 \text{V}$; see Figure 2 and 3	-	30.4	Α
		$T_{sp} = 100 ^{\circ}\text{C}$; $V_{GS} = 10 ^{\circ}\text{V}$; see Figure 2	-	17.2	Α
I_{DM}	peak drain current	T_{sp} = 25 °C; pulsed; $t_p \le 10 \mu s$; see Figure 3	-	121.8	Α
P _{tot}	total power dissipation	T _{sp} = 25 °C; see <u>Figure 1</u>	-	6.9	W
T _{stg}	storage temperature		-55	+150	°C
Tj	junction temperature		-55	+150	°C
Source-o	Irain diode				
Is	source current	T _{sp} = 25 °C	-	5.7	Α
I _{SM}	peak source current	T_{sp} = 25 °C; pulsed; $t_p \le 10 \mu s$	-	23.1	Α
Avalance	ne ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	unclamped inductive load; I_D = 35 A; t_p = 0.16 ms; $V_{DS} \le$ 25 V; R_{GS} = 50 Ω ; V_{GS} = 10 V; starting at T_j = 25 °C	-	120	mJ

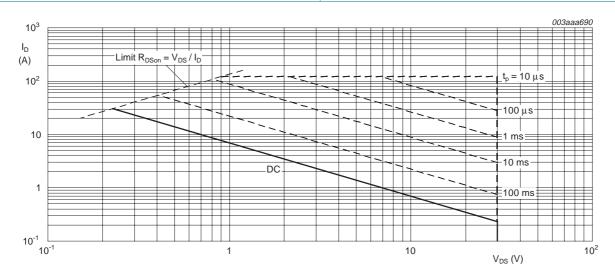
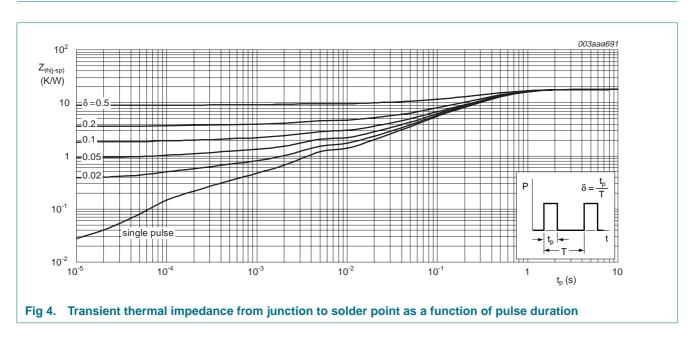

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$$

Fig 1. Normalized total power dissipation as a function of solder point temperature

$$I_{der} = \frac{I_D}{I_{D(25^{\circ}C)}} \times 100 \%$$

Fig 2. Normalized continuous drain current as a function of solder point temperature

 T_{sp} = 25 °C; I_{DM} is single pulse

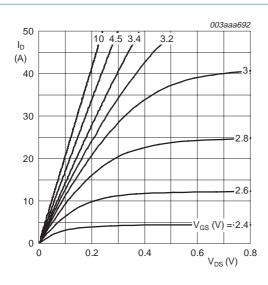

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

3 of 12

5. Thermal characteristics

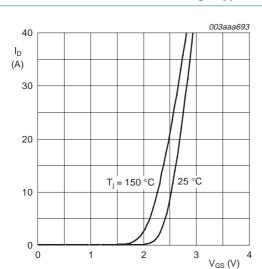
Table 4. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-sp)}$	thermal resistance from junction to solder point	see Figure 4	-	-	18	K/W


PHK31NQ03LT_1 © NXP B.V. 2006. All rights reserved.

6. Characteristics

Table 5. Characteristics


 $T_j = 25 \,^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static ch	aracteristics					
V _{(BR)DSS}	drain-source breakdown	$I_D = 250 \mu\text{A}; V_{GS} = 0 V$				
	voltage	T _j = 25 °C	30	-	-	V
		T _j = −55 °C	27	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; see <u>Figure 9</u> and <u>10</u>				
		T _j = 25 °C	1.3	1.7	2.15	V
		T _j = 150 °C	0.8	-	-	V
		T _j = −55 °C	-	-	2.6	V
I _{DSS}	drain leakage current	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}$				
		T _j = 25 °C	-	-	1	μΑ
		T _j = 150 °C	-	-	100	μΑ
I _{GSS}	gate leakage current	$V_{GS} = \pm 16 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	100	nΑ
R_G	gate resistance	$f = 1 \text{ MHz}; V_{GSS(AC)} = 150 \text{ mV}$	-	1.2	-	Ω
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}$; $I_D = 25 \text{ A}$; see Figure 6 and 8				
		T _j = 25 °C	-	3.45	4.4	$m\Omega$
		T _j = 150 °C	-	5.85	7.5	$m\Omega$
		$V_{GS} = 4.5 \text{ V}$; $I_D = 25 \text{ A}$; see Figure 6 and 8	-	4.25	5.6	$m\Omega$
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 4.5 \text{ V};$	-	33	-	nC
Q_{GS}	gate-source charge	see Figure 11 and 12	-	13.6	-	nC
Q _{GS1}	pre-V _{GS(th)} gate-source charge		-	6.5	-	nC
Q _{GS2}	post-V _{GS(th)} gate-source charge		-	7.1	-	nC
Q_{GD}	gate-drain charge		-	7.7	-	nC
$V_{GS(pl)}$	gate-source plateau voltage		-	2.85	-	V
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 12 \text{ V}; f = 1 \text{ MHz};$	-	4235	-	pF
C _{oss}	output capacitance	see Figure 14	-	840	-	pF
C _{rss}	reverse transfer capacitance		-	370	-	pF
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 0 \text{ V}; f = 1 \text{ MHz}$	-	4900	-	pF
t _{d(on)}	turn-on delay time	V_{DS} = 12 V; R_L = 0.5 Ω ; V_{GS} = 4.5 V;	-	37	-	ns
t _r	rise time	$R_G = 5.6 \Omega$	-	62	-	ns
t _{d(off)}	turn-off delay time		-	54	-	ns
t _f	fall time		-	26	-	ns
Source-d	drain diode					
V_{SD}	source-drain voltage	I _S = 25 A; V _{GS} = 0 V; see <u>Figure 13</u>	-	0.94	1.2	V
t _{rr}	reverse recovery time	$I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s}; V_{GS} = 0 \text{ V}$	-	52	-	ns
Q _r	recovered charge		-	30	-	nC

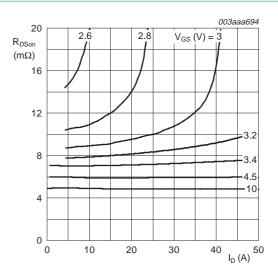

T_i = 25 °C

Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

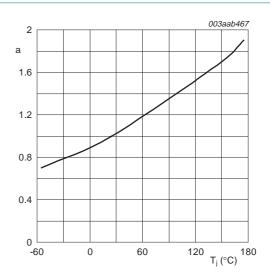
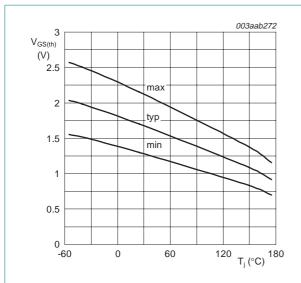
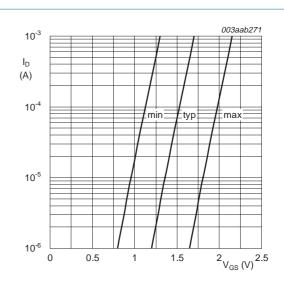

 T_j = 25 °C and 150 °C; $V_{DS} > I_D \times R_{DSon}$

Fig 7. Transfer characteristics: drain current as a function of gate-source voltage; typical values

 $T_j = 25 \, ^{\circ}C$


Fig 6. Drain-source on-state resistance as a function of drain current; typical values

$$a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$$


Fig 8. Normalized drain-source on-state resistance factor as a function of junction temperature

6 of 12

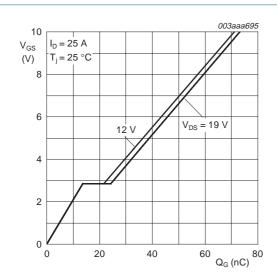

 $I_D = 1 \text{ mA}; V_{DS} = V_{GS}$

Fig 9. Gate-source threshold voltage as a function of junction temperature

 T_j = 25 °C; V_{DS} = 5 V

Fig 10. Sub-threshold drain current as a function of gate-source voltage

 $I_D = 25 \text{ A}$; $V_{DS} = 12 \text{ V}$ and 19 V

Fig 11. Gate-source voltage as a function of gate charge; typical values

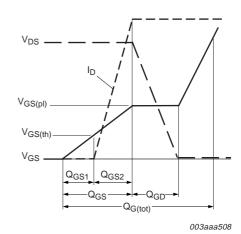
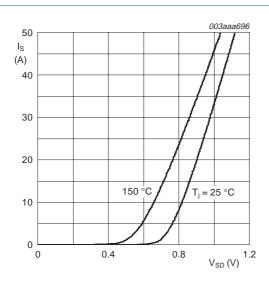
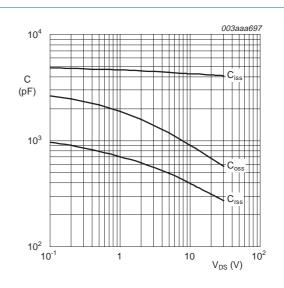




Fig 12. Gate charge waveform definitions

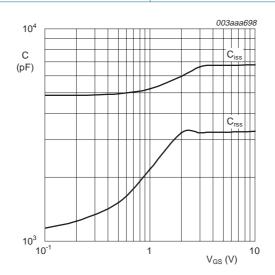

 T_i = 25 °C and 150 °C; V_{GS} = 0 V

Fig 13. Source current as a function of source-drain voltage; typical values

 $V_{GS} = 0 V; f = 1 MHz$

Fig 14. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

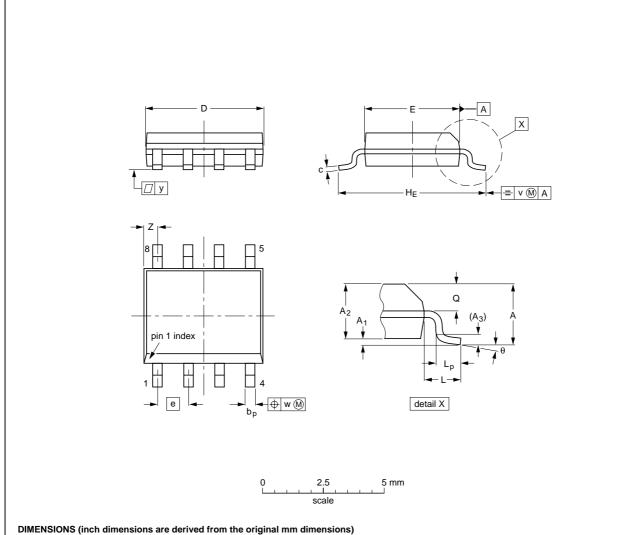

 $V_{GS} = 0 V$; f = 1 MHz

Fig 15. Input and reverse transfer capacitances as a function of gate-source voltage; typical values

Package outline

SO8: plastic small outline package; 8 leads; body width 3.9 mm

SOT96-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	5.0 4.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.20 0.19	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

- 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE			REFER	EUROPEAN	ISSUE DATE		
	VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
	SOT96-1	076E03	MS-012				99-12-27 03-02-18

Fig 16. Package outline SOT96-1 (SO8)

PHK31NQ03LT_1 © NXP B.V. 2006. All rights reserved.

8. Revision history

Table 6. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PHK31NQ03LT_1	20061218	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to

result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

10. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

PHK31NQ03LT

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data 1
2	Pinning information 1
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 4
6	Characteristics 5
7	Package outline 9
8	Revision history
9	Legal information11
9.1	Data sheet status
9.2	Definitions
9.3	Disclaimers
9.4	Trademarks11
10	Contact information
11	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

