Power MOSFET 125 A, 24 V N-Channel TO-220, D²PAK

Features

- Planar HD3e Process for Fast Switching Performance
- Body Diode for Low t_{rr} and Q_{rr} and Optimized for Synchronous Operation
- Low C_{iss} to Minimize Driver Loss
- Optimized Q_{gd} and R_{DS(on)} for Shoot-through Protection
- Low Gate Charge
- Pb–Free Packages are Available

MAXIMUM RATINGS (T_J = 25° C Unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	24	V _{dc}
Gate-to-Source Voltage - Continuous	V _{GS}	±20	V _{dc}
Thermal Resistance – Junction–to–Case Total Power Dissipation @ $T_C = 25^{\circ}C$ Drain Current – Continuous @ $T_C = 25^{\circ}C$, Chip Continuous @ $T_C = 25^{\circ}C$, Limited by Package	R _{θJC} P _D I _D	1.1 113.6 125 120.5	°C/W W A A
Continuous @ $T_A = 25^{\circ}C$, Limited by Wires Single Pulse ($t_p = 10 \ \mu s$)	I _D I _D	95 250	A A
Thermal Resistance – Junction–to–Ambient (Note 1) Total Power Dissipation @ $T_A = 25^{\circ}C$ Drain Current – Continuous @ $T_A = 25^{\circ}C$	R _{θJA} P _D I _D	46 2.72 18.6	°C/W W A
Thermal Resistance – Junction–to–Ambient (Note 2) Total Power Dissipation @ $T_A = 25^{\circ}C$ Drain Current – Continuous @ $T_A = 25^{\circ}C$	R _{θJA} P _D I _D	63 1.98 15.9	°C/W W A
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting $T_J = 25^{\circ}C$ ($V_{DD} = 50 V_{dc}, V_{GS} = 10 V_{dc}, I_L = 15.5 A_{pk},$ L = 1 mH, $R_G = 25 \Omega$)	E _{AS}	120	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 When surface mounted to an FR4 board using 1 inch pad size, (Cu Area 1.127 in²).

 When surface mounted to an FR4 board using minimum recommended pad size, (Cu Area 0.412 in²).

PIN ASSIGNMENT

PIN	FUNCTION
1	Gate
2	Drain
3	Source
4	Drain

ON Semiconductor®

http://onsemi.com

125 AMPERES, 24 VOLTS $R_{DS(on)} = 3.7 \text{ m}\Omega \text{ (Typ)}$

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Semiconductor Components Industries, LLC, 2006

ELECTRICAL CHARACTERISTICS (T_J = 25° C Unless otherwise specified)

Characteristics			Min	Тур	Max	Unit
OFF CHARACTERISTICS		•	•	•	•	•
$ Drain-to-Source Breakdown Voltage (Note 3) \\ (V_{GS} = 0 V_{dc}, I_D = 250 \ \mu A_{dc}) \\ Temperature Coefficient (Positive) $			25 -	28 15		V _{dc} mV/°C
Zero Gate Voltage Drain Current $(V_{DS} = 20 V_{dc}, V_{GS} = 0 V_{dc})$ $(V_{DS} = 20 V_{dc}, V_{GS} = 0 V_{dc}, T_J = 125^{\circ}C)$					1.5 10	μA _{dc}
Gate-Body Leakage Current (V _{GS} = ±20 V _{dc} , V _{DS} = 0 V _{dc})			-	-	±100	nA _{dc}
ON CHARACTERISTICS (Note 3)						
Gate Threshold Voltage (Note 3) ($V_{DS} = V_{GS}$, $I_D = 250 \ \mu A_{dc}$) Threshold Temperature Coefficient (Negative)			1.0 _	1.5 5.0	2.0	V _{dc} mV/°C
Static Drain-to-Source On-Resistance (Note 3) $(V_{GS} = 10 V_{dc}, I_D = 110 A_{dc})$ $(V_{GS} = 4.5 V_{dc}, I_D = 55 A_{dc})$ $(V_{GS} = 10 V_{dc}, I_D = 20 A_{dc})$ $(V_{GS} = 4.5 V_{dc}, I_D = 20 A_{dc})$				3.7 4.9 3.7 4.7	- - 4.6 6.2	mΩ
Forward Transconductance (Note 3) ($V_{DS} = 10 V_{dc}$, $I_D = 15 A_{dc}$)			-	44	_	Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	2710	3440	pF
Output Capacitance	$(V_{DS} = 20 V_{dc}, V_{GS} = 0 V, f = 1 MHz)$	C _{oss}	I	1105	1670	
Transfer Capacitance		C _{rss}	_	227	640	
SWITCHING CHARACTERISTICS (Not	e 4)					
Turn–On Delay Time		t _{d(on)}	1	11	22	ns
Rise Time	$(V_{GS} = 10 V_{dc}, V_{DD} = 10 V_{dc},$	t _r	I	39	80	
Turn–Off Delay Time	$I_{D} = 40 A_{dc}, R_{G} = 3 \Omega$)	t _{d(off)}	_	27	40	
Fall Time		tf	-	21	40	
Gate Charge	$(V_{GS} = 4.5 V_{dc}, I_D = 40 A_{dc}, V_{DS} = 10 V_{dc})$ (Note 3)	QT	_	23.6	28	nC
		Q ₁	-	5.1	-	
		Q ₂	-	11	-	
SOURCE-DRAIN DIODE CHARACTER	RISTICS					
Forward On–Voltage		V _{SD}		0.82 0.99 0.65	1.2 - -	V _{dc}
Reverse Recovery Time		t _{rr}	-	36.5	-	ns
	$(I_{S} = 30 A_{dc}, V_{GS} = 0 V_{dc},$	t _a	-	17.7	-	1
	$dI_S/dt = 100 A/\mu s$ (Note 3)	t _b	-	18.8	-	1
Reverse Recovery Stored Charge	1	Q _{RR}	_	0.024	-	μC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

ORDERING INFORMATION

Device	Package	Shipping [†]	
NTP125N02R	TO-220AB	50 Units / Rail	
NTP125N02RG	TO-220AB (Pb-Free)	50 Units / Rail	
NTB125N02R	D ² PAK	50 Units / Rail	
NTB125N02RG	D ² PAK (Pb–Free)	50 Units / Rail	
NTB125N02RT4	D ² PAK	800 Units / Tape & Reel	
NTB125N02RT4G	D ² PAK (Pb–Free)	800 Units / Tape & Reel	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

-igure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

PACKAGE DIMENSIONS

MILLIMETERS

9.65

10.29

4.83 0.92

1.40

0.64

MIN MAX

8.64

9.65

4.06 0.51 1.14

7.87

0.46

2.29

2.54 BSC

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 ISSUE AA

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

 DIMENSIONING AND TOLERANCING PER AN Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.

CONTROLLING DIMENSION: INCH.
DIMENSION Z DEFINES A ZONE WHERE ALL

 DIMENSION 2 DEFINES A 20NE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
Κ	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04
STYLE 5: PIN 1. GATE 2. DRAIN				

2. DRAIN 3. SOURCE 4 DRAIN

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in which the failure of the SCILLC product could create a situation where personal injury or deatth may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or deatth associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.