Features - 3.3V operation (3.0V-3.6V) - · High speed - $-t_{AA} = 10/12/15 \text{ ns}$ - · CMOS for optimum speed/power - Low Active Power (L version) - -576 mW (max.) - Low CMOS Standby Power (L version) - -1.80 mW (max.) - Automatic power-down when deselected - Independent control of upper and lower bits - Available in 44-pin TSOP II and 400-mil SOJ - · Available in a 48-Ball Mini BGA package ## Functional Description^[1] The CY7C1021BV is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected. ## 64K x 16 Static RAM Writing to the device is accomplished by taking Chip Enable $(\overline{\underline{CE}})$ and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_1$ through I/O $_8$), is written into the location specified on the address pins (A $_0$ through A $_{15}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_9$ through I/O $_{16}$) is written into the location specified on the address pins (A $_0$ through A $_{15}$). Reading from the device is accomplished by taking Chip Enable $(\overline{\text{CE}})$ and Output Enable $(\overline{\text{OE}})$ LOW while forcing the Write Enable $(\overline{\text{WE}})$ HIGH. If Byte Low Enable $(\overline{\text{BLE}})$ is LOW, then data from the memory location specified by the address pins will appear on I/O₁ to I/O₈. If Byte High Enable $(\overline{\text{BHE}})$ is LOW, then data from memory will appear on I/O₉ to I/O₁₆. See the truth table at the back of this data sheet for a complete description of read and write modes. The input/output pins (I/O₁ through I/O₁₆) are placed in a high-impedance state when the device is deselected $(\overline{CE} \ HIGH)$, the outputs are disabled ($\overline{OE} \ HIGH)$, the \overline{BHE} and \overline{BLE} are disabled (\overline{BHE} , $\overline{BLE} \ HIGH)$, or during a write operation ($\overline{CE} \ LOW$, and $\overline{WE} \ LOW$). The CY7C1021BV is available in 400-mil-wide SOJ, standard 44-pin TSOP Type II, and 48-ball mini BGA packages. #### **Selection Guide** | | | | 7C1021BV-8 | 7C1021BV-10 | 7C1021BV-12 | 7C1021BV-15 | |--------------------------------|------------|---|------------|-------------|-------------|-------------| | Maximum Access Time (ns) | | | 8 | 10 | 12 | 15 | | Maximum Operating Current (mA) | Commercial | | 170 | 160 | 150 | 140 | | | Industrial | | 190 | 180 | 170 | 160 | | Maximum CMOS Standby Current | Commercial | | 5 | 5 | 5 | 5 | | (mA) | | L | 0.500 | 0.500 | 0.500 | 0.500 | Shaded areas contain advance information. #### Note: 1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com. ## **Pin Configurations** ## **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-55°C to +125°C Supply Voltage on V_{CC} to Relative $GND^{[2]}$ -0.5V to +4.6V DC Voltage Applied to Outputs in High Z State [2]-0.5V to V_{CC} +0.5V DC Input Voltage [2]-0.5V to V_{CC} +0.5V #### Note: | Current into Outputs (LOW) | 20 mA | |--|---------| | Static Discharge Voltage(per MIL-STD-883, Method 3015) | .>2001V | | Latch-Up Current | >200 mA | ## **Operating Range** | Range | Ambient Temperature | V _{CC} | | |------------|---------------------|-----------------|--| | Commercial | 0°C to +70°C | 3.3V ± 10% | | | Industrial | -40°C to +85°C | 3.3V ± 10% | | ^{2.} Mimimum voltage is-2.0V for pulse durations of less than 20 ns. ## **Electrical Characteristics** Over the Operating Range | | | | | 7C1021BV-8 | | 7C1021BV-10 | | 7C1021BV-12 | | 7C1021BV-15 | | | |------------------|--|---|-------|------------|---------------------------|-------------|---------------------------|-------------|---------------------------|-------------|---------------------------|------| | Parameter | Description | Test Condition | ns | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | V _{OH} | Output HIGH
Voltage | $V_{CC} = Min.,$
$I_{OH} = -4.0 \text{ mA}$ | | 2.4 | | 2.4 | | 2.4 | | 2.4 | | V | | V _{OL} | Output LOW
Voltage | $V_{CC} = Min., I_{OL} = 8$ | .0 mA | | 0.4 | | 0.4 | | 0.4 | | 0.4 | V | | V _{IH} | Input HIGH
Voltage | | | 2.2 | V _{CC} +
0.3V | V | | V _{IL} | Input LOW
Voltage ^[2] | | | -0.3 | 0.8 | -0.3 | 0.8 | -0.3 | 0.8 | -0.3 | 0.8 | V | | I _{IX} | Input Load
Current | $GND \leq V_I \leq V_CC$ | | -1 | +1 | -1 | +1 | – 1 | +1 | -1 | +1 | μΑ | | I _{OZ} | Output Leakage
Current | GND ≤ V _I ≤ V _{CC} ,
Output Disabled | | -1 | +1 | -1 | +1 | – 1 | +1 | -1 | +1 | μΑ | | I _{CC} | V _{CC} Operating | V _{CC} = Max., | Com | | 170 | | 160 | | 150 | | 140 | mA | | | Supply Current | $I_{OUT} = 0 \text{ mA},$
$f = f_{MAX} = 1/t_{RC}$ | Ind | | 190 | | 120 | | 170 | | 160 | mA | | I _{SB1} | Automatic CE
Power-Down
Current
—TTL Inputs | $\label{eq:local_max} \begin{split} & \underline{\text{Max}}. \ V_{CC}, \\ & CE \geq V_{IH} \\ & V_{IN} \geq V_{IH} \ \text{or} \\ & V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{split}$ | | | 40 | | 40 | | 40 | | 40 | mA | | I _{SB2} | Automatic CE | Max. V _{CC} , | | | 5 | | 5 | | 5 | | 5 | mA | | Chadadasa | Power-Down
Current
—CMOS Inputs | $\begin{tabular}{ c c c c }\hline \hline \hline \hline CE &\geq V_{CC} - 0.3V, \\ V_{IN} &\geq V_{CC} - 0.3V, \\ or \ V_{IN} &\leq 0.3V, \\ f &= 0 \end{tabular}$ | L | | 500 | | 500 | | 500 | | 500 | μА | Shaded areas contain advance information. ## Capacitance^[3] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|----------------------------------|------|------| | C _{IN} | Input Capacitance | T _A = 25°C, f = 1 MHz | 6 | pF | | C _{OUT} | Output Capacitance | | 8 | pF | #### Note: ## **AC Test Loads and Waveforms** ^{3.} Tested initially and after any design or process changes that may affect these parameters. ## Switching Characteristics^[4] Over the Operating Range | | | 7C1021BV-8 | | 7C1021BV-10 | | 7C1021BV-12 | | 7C1021BV-15 | | | |-------------------|-------------------------------------|------------|------|-------------|------|-------------|------|-------------|------|------| | Parameter | er Description | | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | READ CYC | LE | | • | • | 1 | • | • | • | • | | | t _{RC} | Read Cycle Time | 8 | | 10 | | 12 | | 15 | | ns | | t _{AA} | Address to Data Valid | | 8 | | 10 | | 12 | | 15 | ns | | t _{OHA} | Data Hold from Address Change | 3 | | 3 | | 3 | | 3 | | ns | | t _{ACE} | CE LOW to Data Valid | | 8 | | 10 | | 12 | | 15 | ns | | t _{DOE} | OE LOW to Data Valid | | 4 | | 4 | | 6 | | 7 | ns | | t _{LZOE} | OE LOW to Low Z | 0 | | 0 | | 0 | | 0 | | ns | | t _{HZOE} | OE HIGH to High Z ^[5, 6] | | 4 | | 5 | | 6 | | 7 | ns | | t _{LZCE} | CE LOW to Low Z ^[6] | 3 | | 3 | | 3 | | 3 | | ns | | t _{HZCE} | CE HIGH to High Z ^[5, 6] | | 4 | | 5 | | 6 | | 7 | ns | | t _{PU} | CE LOW to Power-Up | 0 | | 0 | | 0 | | 0 | | ns | | t _{PD} | CE HIGH to Power-Down | | 12 | | 12 | | 12 | | 15 | ns | | t _{DBE} | Byte Enable to Data Valid | 4 | | | 5 | | 6 | | 7 | ns | | t _{LZBE} | Byte Enable to Low Z | 0 | | 0 | | 0 | | 0 | | ns | | t _{HZBE} | Byte Disable to High Z | | 4 | | 5 | | 6 | | 7 | ns | | WRITE CYC | CLE ^[7] | | | | | | | | | | | t _{WC} | Write Cycle Time | 8 | | 10 | | 12 | | 15 | | ns | | t _{SCE} | CE LOW to Write End | 7 | | 8 | | 9 | | 10 | | ns | | t _{AW} | Address Set-Up to Write End | 6 | | 7 | | 8 | | 10 | | ns | | t _{HA} | Address Hold from Write End | 0 | | 0 | | 0 | | 0 | | ns | | t _{SA} | Address Set-Up to Write Start | 0 | | 0 | | 0 | | 0 | | ns | | t _{PWE} | WE Pulse Width | 6 | | 8 | | 8 | | 10 | | ns | | t _{SD} | Data Set-Up to Write End | 4 | | 6 | | 6 | | 8 | | ns | | t _{HD} | Data Hold from Write End | 0 | | 0 | | 0 | | 0 | | ns | | t _{LZWE} | WE HIGH to Low Z ^[6] | 3 | | 3 | | 3 | | 3 | | ns | | t _{HZWE} | WE LOW to High Z ^[5, 6] | | 4 | | 5 | | 6 | | 7 | ns | | t _{BW} | Byte Enable to End of Write | 8 | | 8 | | 8 | | 9 | | ns | Shaded areas contain advance information. ## Data Retention Characteristics Over the Operating Range (L version only) | Parameter | Description | | Conditions ^[8] | Min. | Max. | Unit | |---------------------------------|------------------------------------|----------|--|-----------------|------|------| | V_{DR} | V _{CC} for Data Retention | | | 2.0 | | V | | ICCDR | Data Retention Current Co | om'l | $V_{CC} = V_{DR} = 2.0V,$
$CE \ge V_{CC} - 0.3V,$
$V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$ | | 100 | μА | | t _{CDR} ^[9] | Chip Deselect to Data Retention | ion Time | | 0 | | ns | | t _R ^[10] | Operation Recovery Time | | | t _{RC} | | ns | #### Notes: - Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. - I_{OL}/I_{OH} and 30-pF load capacitance. t_{HZOE}, t_{HZBE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE} from given device. The internal write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE / BLE LOW. CE, WE and BHE / BLE must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. No input may exceed V_{CC} + 0.5V. Tested initially and after any design or process changes that may affect these parameters. t_r ≤ 3 ns for the -12 and -15 speeds. t_r ≤ 5 ns for the -20 and slower speeds. ## **Data Retention Waveform** ## **Switching Waveforms** ## Read Cycle No. 2 (OE Controlled)^[12, 13] #### Notes: - Device is continuously selected. OE, CE, BHE and/or BHE = V_{IL}. WE is HIGH for read cycle. Address valid prior to or coincident with CE transition LOW. ## Switching Waveforms (continued) # Write Cycle No. 1 (CE Controlled) [14, 15] ## Write Cycle No. 2 (BLE or BHE Controlled) ^{14.} Data I/O is high impedance if OE or BHE and/or BLE= V_{IH}. 15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state. ## Switching Waveforms (continued) ## Write Cycle No. 3 (WE Controlled, LOW) ## **Truth Table** | CE | OE | WE | BLE | вне | I/O ₁ –I/O ₈ | I/O ₉ -I/O ₁₆ | Mode | Power | |----|----|----|-----|-----|------------------------------------|-------------------------------------|----------------------------|----------------------------| | Н | Х | Х | Χ | Х | High Z | High Z | Power-Down | Standby (I _{SB}) | | L | L | Н | L | L | Data Out | Data Out | Read - All bits | Active (I _{CC}) | | | | | L | Н | Data Out | High Z | Read - Lower bits only | Active (I _{CC}) | | | | | Н | L | High Z | Data Out | Read - Upper bits only | Active (I _{CC}) | | L | Х | L | L | L | Data In | Data In | Write - All bits | Active (I _{CC}) | | | | | L | Н | Data In | High Z | Write - Lower bits only | Active (I _{CC}) | | | | | Н | L | High Z | Data In | Write - Upper bits only | Active (I _{CC}) | | L | Н | Н | Χ | Х | High Z | High Z | Selected, Outputs Disabled | Active (I _{CC}) | | L | Х | Х | Н | Н | High Z | High Z | Selected, Outputs Disabled | Active (I _{CC}) | ## **Ordering Information** | Speed (ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |------------|--|-----------------|--|--------------------| | 8 | CY7C1021BV33-8BAC | BA48A | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | Commercial | | | CY7C1021BV33-8VC | V34 | 44-Lead (400-Mil) Molded SOJ | | | | CY7C1021BV33L-8VC | V34 | 44-Lead (400-Mil) Molded SOJ | | | | CY7C1021BV33-8ZC | Z44 | 44-Lead TSOP Type II | | | | CY7C1021BV33L-8ZC | Z44 | 44-Lead TSOP Type II | | | 10 | CY7C1021BV33-10BAC | BA48A | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | Commercial | | | CY7C1021BV33-10VC | V34 | 44-Lead (400-Mil) Molded SOJ | | | | CY7C1021BV33L-10VC | V34 | 44-Lead (400-Mil) Molded SOJ | | | | CY7C1021BV33-10ZC | Z44 | 44-Lead TSOP Type II | | | | CY7C1021BV33L-10ZC | Z44 | 44-Lead TSOP Type II | | | 12 | CY7C1021BV33-12BAC | BA48A | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | Commercial | | | CY7C1021BV33-12VC | V34 | 44-Lead (400-Mil) Molded SOJ | | | | CY7C1021BV33L-12VC | V34 | 44-Lead (400-Mil) Molded SOJ | | | | CY7C1021BV33-12ZC | Z44 | 44-Lead TSOP Type II | | | | CY7C1021BV33L-12ZC | Z44 | 44-Lead TSOP Type II | | | | CY7C1021BV33-12BAI BA48A 48-Ball Mini Ball Grid Array (7.00 mm | | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | Industrial | | | CY7C1021BV33-12VI | V34 | 44-Lead (400-Mil) Molded SOJ | | | 15 | CY7C1021BV33-15BAC | BA48A | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | Commercial | | | CY7C1021BV33L-15BAC | BA48A | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | | | | CY7C1021BV33-15VC | V34 | 44-Lead (400-Mil) Molded SOJ | | | | CY7C1021BV33L-15VC | V34 | 44-Lead (400-Mil) Molded SOJ | | | | CY7C1021BV33-15ZC | Z44 | 44-Lead TSOP Type II | | | | CY7C1021BV33L-15VC | Z44 | 44-Lead TSOP Type II | | | | CY7C1021BV33-15BAI | BA48A | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | Industrial | | | CY7C1021BV33L-15BAI | BA48A | 48-Ball Mini Ball Grid Array (7.00 mm x 7.00 mm) | | | | CY7C1021BV33-15VI | V34 | 44-Lead (400-Mil) Molded SOJ | | | | CY7C1021BV33L-15ZI | Z44 | 44-Lead TSOP Type II | | Shaded areas contain advance information. ## **Package Diagrams** #### 48-Ball (7.00 mm x 7.00 mm x 1.2 mm) FBGA BA48A 51-85096-*E #### Package Diagrams (continued) #### 44-Lead (400-Mil) Molded SOJ V34 #### 44-Pin TSOP II Z44 DIMENSION IN MM (INCH) MAX MIN. All product and company names mentioned in this document may be the trademarks of their respective holders. # **Document History Page** | Document Title: CY7C1021BV33 64K x 16 Static RAM Document Number: 38-05148 | | | | | | | | | |--|---------|---------------|-----------------|---|--|--|--|--| | REV. | ECN NO. | Issue
Date | Orig. of Change | Description of Change | | | | | | ** | 109892 | 09/22/01 | SZV | Change from Spec number: 38-00954 to 38-05148 | | | | | | *A | 116474 | 09/16/02 | CEA | Add applications foot note to data sheet, page 1. | | | | |