2N5307 ## **NPN Darlington Transistor** This device is designed for applications requiring extremely high current gain at currents to 1.0 A. Sourced from Process 05. See MPSA14 for characteristics. ### **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |-----------------------------------|--|-------------|-------| | V_{CEO} | Collector-Emitter Voltage | 40 | V | | V _{CBO} | Collector-Base Voltage | 40 | V | | V _{EBO} | Emitter-Base Voltage | 12 | V | | Ic | Collector Current - Continuous | 1.2 | A | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. ## Thermal Characteristics TA = 25°C unless otherwise noted | Symbol | Characteristic | Max | Units | |------------------|--|------------|-------------| | | | 2N5307 | | | P _D | Total Device Dissipation Derate above 25°C | 625
5.0 | mW
mW/°C | | R _{θJC} | Thermal Resistance, Junction to Case | 83.3 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 200 | °C/W | # NPN Darlington Transistor (continued) | Symbol | Parameter | Test Conditions | Min | Max | Units | |----------------------|--------------------------------------|--|-------|-----------|----------| | | | | | | | | OFF CHA | RACTERISTICS | | | | | | $V_{(BR)CEO}$ | Collector-Emitter Breakdown Voltage* | $I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$ | 40 | | V | | V _{(BR)CBO} | Collector-Base Breakdown Voltage | $I_C = 0.1 \mu A, I_E = 0$ | 40 | | V | | $V_{(BR)EBO}$ | Emitter-Base Breakdown Voltage | $I_E = 0.1 \mu A, I_C = 0$ | 12 | | V | | I _{CBO} | Collector Cutoff Current | $V_{CB} = 40 \text{ V}, I_{E} = 0$ | | 0.1 | μΑ | | I _{EBO} | Emitter Cutoff Current | $V_{CB} = 40 \text{ V}, I_{E} = 0, T_{A} = 100 ^{\circ}\text{C}$ $V_{EB} = 12 \text{ V}, I_{C} = 0$ | | 20
0.1 | μA
μA | | h _{FE} | DC Current Gain | $V_{CE} = 5.0 \text{ V}, I_{C} = 2.0 \text{ mA}$ | 2,000 | 20,000 | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA}$
$I_{C} = 200 \text{ mA}, I_{R} = 0.2 \text{ mA}$ | 6,000 | 1.4 | V | | V _{BE(sat)} | Base-Emitter Saturation Voltage | $I_C = 200 \text{ mA}, I_B = 0.2 \text{ mA}$ | | 1.6 | V | | V _{BE(on)} | Base-Emitter On Voltage | $I_C = 200 \text{ mA}, V_{CE} = 5.0 \text{ V}$ | | 1.5 | V | | | | | | | | | SMALL SI | GNAL CHARACTERISTICS | | | | | | C _{cb} | Collector-Base Capacitance | V _{CB} = 10 V, f = 1.0 MHz | | 10 | pF | | h _{fe} | Small-Signal Current Gain | I_C =2.0 mA, V_{CE} = 5.0 V,
f = 1.0 kHz
I_C =2.0 mA, V_{CE} = 5.0 V, | 2,000 | | | | | | f = 10 MHz | 6.0 | | | ^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%