

2N5307

NPN Darlington Transistor

This device is designed for applications requiring extremely high current gain at currents to 1.0 A. Sourced from Process 05. See MPSA14 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	12	V
Ic	Collector Current - Continuous	1.2	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		2N5307	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
R _{θJC}	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

NPN Darlington Transistor (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 0.1 \mu A, I_E = 0$	40		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 0.1 \mu A, I_C = 0$	12		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 40 \text{ V}, I_{E} = 0$		0.1	μΑ
I _{EBO}	Emitter Cutoff Current	$V_{CB} = 40 \text{ V}, I_{E} = 0, T_{A} = 100 ^{\circ}\text{C}$ $V_{EB} = 12 \text{ V}, I_{C} = 0$		20 0.1	μA μA
h _{FE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 2.0 \text{ mA}$	2,000	20,000	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA}$ $I_{C} = 200 \text{ mA}, I_{R} = 0.2 \text{ mA}$	6,000	1.4	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 200 \text{ mA}, I_B = 0.2 \text{ mA}$		1.6	V
V _{BE(on)}	Base-Emitter On Voltage	$I_C = 200 \text{ mA}, V_{CE} = 5.0 \text{ V}$		1.5	V
SMALL SI	GNAL CHARACTERISTICS				
C _{cb}	Collector-Base Capacitance	V _{CB} = 10 V, f = 1.0 MHz		10	pF
h _{fe}	Small-Signal Current Gain	I_C =2.0 mA, V_{CE} = 5.0 V, f = 1.0 kHz I_C =2.0 mA, V_{CE} = 5.0 V,	2,000		
		f = 10 MHz	6.0		

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%