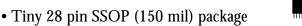


MK74CB218

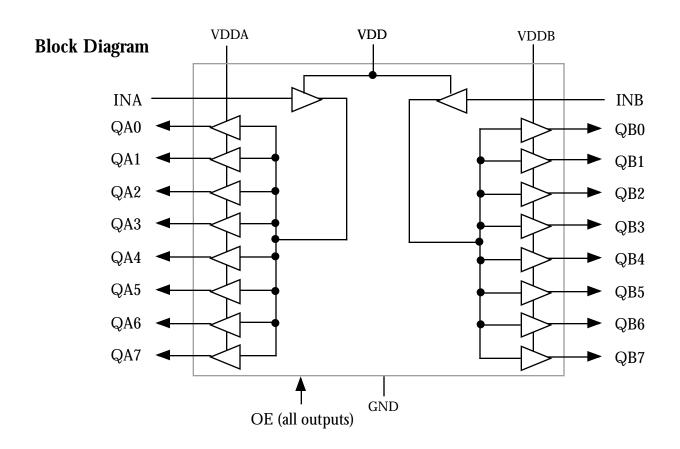
Dual 1 to 8 BuffaloTM Clock Driver


Description

The MK74CB218 Buffalo $^{\rm TM}$ is a monolithic CMOS high speed clock driver. It consists of two identical single input to eight low-skew output, non-inverting clock drivers. This eliminates concerns of part to part matching in many systems. The MK74CB218 is packaged in the tiny 28 pin SSOP, which uses the same board space as the narrow 16 pin SOIC. The inputs can be connected together for a 1 to 16 fanout buffer.

A quad 1 to 4, and PECL versions, are also available. Consult ICS for more details.

The MK74CB218 can also act as a voltage translator, since it is possible to run the inputs at 3.3 V and the outputs at 2.5 V.

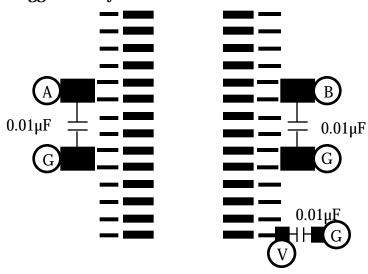

Features

- Dual one input to eight output clock drivers
- Outputs are skew matched to within 250 ps
- A outputs and B outputs matched to 250 ps
- 2.5 V, 3.3 V or 5 V supply voltages
- Output Enable tri-states each bank of eight
- Clock speeds up to 200 MHz

Family of ICS Parts

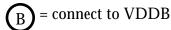
The MK74CB218 Buffalo[™] is designed to be used with ICS's clock synthesizer devices. The inputs of the Buffalo are matched to the outputs of ICS clock synthesizers. Consult ICS for applications support.

PRELIMINARY INFORMATION

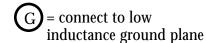

MK74CB218

Dual 1 to 8 BuffaloTM Clock Driver

Pin Assignment


INA	1 (28	INB
QA0	$_{2}$	27	QB0
QA1	3	26	QB1
QA2	4	25	QB2
VDDA	5	24	VDDB
VDDA	6	23	VDDB
QA3	7	22	QB3
QA4	8	21	QB4
GND	9	20	GND
GND	10	19	GND
QA5	11	18	QB5
QA6	12	17	QB6
QA7	13	16	QB7
OE	14	15	VDD

Suggested Layout



For simplicity, series terminating resistors are not shown for the outputs, but should be placed as close to the device as possible. It is most critical to have the $0.01\mu F$ decoupling capacitors closest.

Pin Descriptions

Number	Name	Туре	Description
1	INA	I	Clock input for eight A outputs.
2, 3, 4	QA0, QA1, QA2	Ο	Clock A outputs.
5, 6	VDDA	P	Power supply for QA outputs. Connect to a voltage from 2.5V to 5V. Cannot exceed VDD.
7, 8	QA3, QA4	Ο	Clock A outputs.
9, 10	GND	P	Connect to ground.
11, 12, 13	QA5, QA6, QA7	Ο	Clock A outputs.
14	OE	I	Output Enable. Tri-states all clock outputs when this input is low. Internal pull-up to VDD
15	VDD	P	Power supply for inputs.
16, 17, 18	QB7, QB6, QB5	Ο	Clock B outputs.
19, 20	GND	P	Connect to ground.
21, 22	QB4, QB3	Ο	Clock B outputs.
23, 24	VDDB	P	Power supply for QB outputs. Connect to a voltage from 2.5V to 5V. Cannot exceed VDD.
25, 26, 27	QB2, QB1, QB0	Ο	Clock B outputs.
28	INB	I	Clock input for eight B outputs.

Type: I = Input, O = output, P = power supply connection

PRELIMINARY INFORMATION

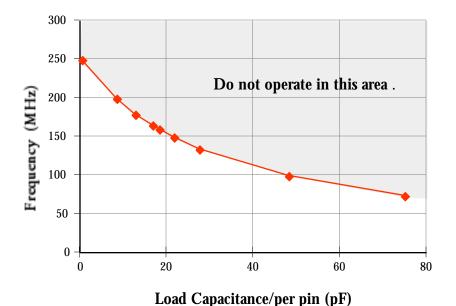
MK74CB218 Dual 1 to 8 BuffaloTM Clock Driver

Electrical Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Units		
ABSOLUTE MAXIMUM RATINGS (Note 1)							
Supply Voltage, VDD	Referenced to GND			7	V		
Inputs	Referenced to GND	0.5		VDD+0.5	V		
Clock Outputs	Referenced to GND	0.5		VDD+0.5	V		
Ambient Operating Temperature		0		70	°C		
Soldering Temperature	Max of 20 seconds			260	°C		
Storage Temperature		-65		150	°C		
DC CHARACTERISTICS (VDD = 3.3	DC CHARACTERISTICS (VDD = 3.3 V unless noted)						
Operating Voltage, VDD		3.0	3.3	5.5	V		
Operating Voltage, VDDA or VDDB		2.375		VDD	V		
Input High Voltage, VIH (INA, INB pins)		VDD-1.0	VDD/2		V		
Input Low Voltage, VIL (INA, INB pins)			VDD/2	1.0	V		
Input High Voltage, VIH (OE pin)		2.0			V		
Input Low Voltage, VIL (OE pin)				0.8	V		
Output High Voltage, 3.3V and 5V	IOH=-12mA	VDD-0.4			V		
Output High Voltage, 3.3V and 5V	IOH=-25mA	2.4			V		
Output Low Voltage, 3.3V and 5V	IOL=25mA			0.8	V		
Output High Voltage, 2.5V	IOH=-16mA	2			V		
Output Low Voltage, 2.5V	IOL=16mA			0.5	V		
Operating Supply Current, IDD, at 100 MHz	No Load		55		mA		
Output Impedance			14				
Short Circuit Current	Each output		100		mA		
On-Chip Pull-up Resistor	OE		250		k		
Input Capacitance			7		pF		
AC CHARACTERISTICS (VDD = 3.3	V unless noted)						
Input Clock Frequency	Note 4	0		200	MHz		
Propagation Delay with load=15pF			1.4	3	ns		
Output Clock Rise Time	0.8 to 2.0V			2	ns		
Output Clock Fall Time	2.0 to 0.8V			2	ns		
Output Clock Rising Edge Skew	At VDD/2. Note 2		100	250	ps		
Output Clock A to B Skew	At VDD/2. Note 3		100	250	ps		
Output Enable Time, OE high to output on				20	ns		
Output Disable Time, OE low to tri-state				20	ns		

Notes:

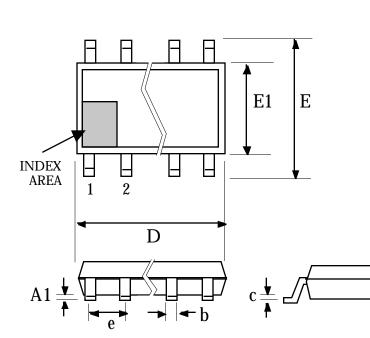
- 1. Stresses beyond those listed under Absolute Maximum Ratings could cause permanent damage to the device. Prolonged exposure to levels above the operating limits but below the Absolute Maximums may affect device reliability.
- 2. Between any two A outputs, or any two B outputs, with equal loading.
- 3. Between any clock A output and any clock B output with INA connected to INB, and equal loading.
- 4. See discussion and graph of speed versus load.



MK74CB218 Dual 1 to 8 BuffaloTM Clock Driver

Maximum Speed

The maximum speed at which the chip can operate is limited by power dissipation in the package. Graph 1 shows the operating frequency plotted against load capacitance per pin for a die temperature of 125° C. This is at VDD = VDDA = VDDB = 3.3 V, 70° C and with 33° series termination resistors. The termination resistors are essential because they allow a large proportion of the total power to be dissipated outside the package. Reducing or eliminating the series termination will cause an increase in die temperature. It is not recommended to operate the chip at die temperatures greater than 125° C. Also note that the load capacitance per pin must include PC board parasitics such as trace capacitance.


If not all outputs of the chip are used, it is possible to operate the chip faster with larger loads. Consult ICS for your specific requirement.

Graph 1 MK74CB218 Maximum Speed with all VDDs at 3.3V

Dual 1 to 8 BuffaloTM Clock Driver

Package Outline and Package Dimensions (For current dimensional specifications, see JEDEC Publication No. 95.)

28 pin SSOP

	Inch	es	Millin	neters
Symbol	Min	Max	Min	Max
Α	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
b	0.008	0.012	0.20	0.30
С	0.007	0.010	0.18	0.25
D	0.337	0.344	8.55	8.75
e	.025 BSC		0.635 I	BSC
Е	0.228	0.244	5.80	6.20
E1	0.150	0.157	3.80	4.00
L	0.016	0.050	0.40	1.27

Ordering Information

Part/Order Number	Marking	Package	Temperature
MK74CB218R	MK74CB218R	28 pin SSOP	0-70 °C
MK74CB218RTR	MK74CB218R	Add Tape & Reel	0-70 °C

While the information presented herein has been checked for both accuracy and reliability, ICS Incorporated assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

Buffalo is a trademark of ICS Incorporated