SCCS017A - MAY 1994 - REVISED OCTOBER 2001

- Function, Pinout, and Drive Compatible With FCT and F Logic
- Reduced V_{OH} (Typically = 3.3 V) Versions of Equivalent FCT Functions
- Edge-Rate Control Circuitry for Significantly Improved Noise **Characteristics**
- Ioff Supports Partial-Power-Down Mode Operation
- ESD Protection Exceeds JESD 22 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- **Matched Rise and Fall Times**
- Fully Compatible With TTL Input and **Output Logic Levels**
- **CY54FCT240T** 48-mA Output Sink Current 12-mA Output Source Current
- **CY74FCT240T** 64-mA Output Sink Current 32-mA Output Source Current
- 3-State Outputs

CY54FCT240T D PACKAGE CY74FCT240T Q OR SO PACKAGE (TOP VIEW)											
OE _A DA ₀ DB ₀ DA ₁ DB ₁ DA ₂ DB ₂ DB ₂ DB ₃ DB ₁ DB ₁	1 2 3 4 5 6 7 8 9 10	20] 19] 18] 17] 16] 15] 14] 13] 12] 11]	$\frac{V_{CC}}{OE}_{B}$ $\frac{DB_{0}}{OA_{1}}$ $\frac{DB_{1}}{OA_{2}}$ $\frac{DB_{2}}{OA_{3}}$ DB_{3}								

CY54FCT240T . . . L PACKAGE (TOP VIEW) $\frac{DA_0}{\overline{OE}_A}$ Ы 2 1 20 19 OA₀ DA₁ 18 I OB₁ 🛛 5 DB_0 17 DA_2 OA₁ 6 16 ОВ2Ц 15 DB₁ DA_3 OA₂ 8 | 1 14 10 11 13 GND DB

description

The 'FCT240T devices are octal buffers and line drivers designed to be employed as memory address drivers, clock drivers, and

bus-oriented transmitters/receivers. These devices provide speed and drive capabilities equivalent to their fastest bipolar logic counterparts, while reducing power consumption. The input and output voltage levels allow direct interface with TTL, NMOS, and CMOS devices without external components.

These devices are fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2001, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

CY54FCT240T, CY74FCT240T 8-BIT BUFFERS/LINE DRIVERS WITH 3-STATE OUTPUTS SCCS017A - MAY 1994 - REVISED OCTOBER 2001

ORDERING INFORMATION												
TA	PACI	KAGE [†]	SPEED (ns)	ORDERABLE PART NUMBER	TOP-SIDE MARKING							
	SOIC – SO	Tube	4.3	CY74FCT240CTSOC	FCT240C							
	3010 - 30	Tape and reel	4.3	CY74FCT240CTSOCT	FG1240C							
	QSOP – Q	Tape and reel	4.3	CY74FCT240CTQCT	FCT240C							
	SOIC - SO	Tube	4.8	CY74FCT240ATSOC	FCT240A							
–40°C to 85°C	3010 - 30	Tape and reel	4.8	CY74FCT240ATSOCT	FG1240A							
	QSOP – Q	Tape and reel	4.8	CY74FCT240ATQCT	FCT240A							
	SOIC - SO	Tube	8	CY74FCT240TSOC	FCT240							
	3010 - 30	Tape and reel	8	CY74FCT240TSOCT	FG1240							
	QSOP – Q	Tape and reel	8	CY74FCT240TQCT	FCT240							
	CDIP – D	Tube	4.7	CY54FCT240CTDMB								
–55°C to 125°C	CDIP – D	Tube	5.1	CY54FCT240ATDMB								
-55 C 10 125 C	LCC – L	Tube	5.1	CY54FCT240ATLMB								
	CDIP – D	Tube	9	CY54FCT240TDMB								

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

F	UNC	ΓΙΟΝ	ТА	BLE

	INPUTS		OUTPUT
OEA	OEB	D	ō
L	L	L	н
L	L	Н	L
Н	Н	Х	Z

H = High logic level, L = Low logic level,

X = Don't care, Z = High-impedance state

logic diagram (positive logic)

absolute maximum rating over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range to ground potential	–0.5 V to 7 V
DC input voltage range	–0.5 V to 7 V
DC output voltage range	–0.5 V to 7 V
DC output current (maximum sink current/pin)	120 mA
Package thermal impedance, θ_{JA} (see Note 1): Q package	68°C/W
SO package	58°C/W
Ambient temperature range with power applied, T _A	–65°C to 135°C
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

CY54FCT240T, CY74FCT240T 8-BIT BUFFERS/LINE DRIVERS WITH 3-STATE OUTPUTS SCCS017A - MAY 1994 - REVISED OCTOBER 2001

recommended operating conditions (see Note 2)

		CY54FCT240T		0Т	CY	74FCT24	ют	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ЮН	High-level output current			-12			-32	mA
IOL	Low-level output current			48			64	mA
ТА	Operating free-air temperature	-55		125	-40		85	°C

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

SCCS017A - MAY 1994 - REVISED OCTOBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		CY	54FCT24	ют	CY	74FCT24	ют	UNIT		
PARAMETER		TEST CONDITIO	N5	MIN	түр†	MAX	MIN	түр†	MAX	UNII
Nu.	V _{CC} = 4.5 V,	I _{IN} = -18 mA			-0.7	-1.2				V
VIK	V _{CC} = 4.75 V,	I _{IN} = -18 mA						-0.7	-1.2	v
	V _{CC} = 4.5 V,	I _{OH} = -12 mA		2.4	3.3					
VOH	V _{CC} = 4.75 V	I _{OH} = -32 mA					2			V
	VCC = 4.75 V	I _{OH} = -15 mA					2.4	3.3		
Ve	V _{CC} = 4.5 V,	I _{OL} = 48 mA			0.3	0.55				V
VOL	V _{CC} = 4.75 V,	I _{OL} = 64 mA						0.3	0.55	v
V _{hys}	All inputs				0.2			0.2		V
1.	V _{CC} = 5.5 V,	$V_{IN} = V_{CC}$				5				μA
łı	V _{CC} = 5.25 V,	$V_{IN} = V_{CC}$							5	μΑ
I	V _{CC} = 5.5 V,	V _{IN} = 2.7 V				±1				μA
ΊΗ	V _{CC} = 5.25 V,	V _{IN} = 2.7 V							±1	μΑ
1	V _{CC} = 5.5 V,	V _{IN} = 0.5 V				±1				μA
ΙL	V _{CC} = 5.25 V,	V _{IN} = 0.5 V							±1	μА
	V _{CC =} 5.5 V,	V _{OUT} = 2.7 V				10				μA
IOZH	V _{CC =} 5.25 V,	V _{OUT} = 2.7 V							10	μА
1071	V _{CC} = 5.5 V,	V _{OUT} = 0.5 V				-10				μA
IOZL	V _{CC} = 5.25 V,	V _{OUT} = 0.5 V							-10	μΛ
los‡	V _{CC} = 5.5 V,	V _{OUT} = 0 V		-60	-120	-225				mA
108+	V _{CC} = 5.25 V,	V _{OUT} = 0 V					-60	-120	-225	ША
loff	$V_{CC} = 0 V,$	V _{OUT} = 4.5 V				±1			±1	μA
	V _{CC} = 5.5 V,	$V_{IN} \le 0.2 V$,	$V_{IN} \ge V_{CC} - 0.2 V$		0.1	0.2				~^^
ICC	V _{CC} = 5.25 V,	$V_{IN} \le 0.2 V$,	$V_{IN} \ge V_{CC} - 0.2 V$					0.1	0.2	mA
		= 3.4 V [§] , f ₁ = 0, Out			0.5	2				mA
∆ICC	V_{CC} = 5.25 V, V_{IN}	I = 3.4 V§, f ₁ = 0, O	utputs open					0.5	2	IIIA
	$V_{CC} = 5.5 V, One$ Outputs open, OE	input switching at 5°	0% duty cycle,		0.06	0.10				
. T	$V_{IN} \le 0.2 \text{ V or } V_{IN}$			0.06	0.12				mA/	
ICCD		V _{CC} = 5.25 V, <u>One input</u> switching at 50% duty cycle,						0.00		MHz
	Outputs open, OE $V_{IN} \le 0.2 \text{ V or } V_{IN}$							0.06	0.12	

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

* Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, IOS tests should be performed last.

§ Per TTL-driven input (V_{IN} = 3.4 V); all other inputs at V_{CC} or GND

¶ This parameter is derived for use in total power-supply calculations.

SCCS017A - MAY 1994 - REVISED OCTOBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

DADAMETED				CY	54FCT24	ют	CY	74FCT24	0Т	UNUT
PARAMETER		TEST CONDITIONS	5	MIN	түр†	MAX	MIN	түр†	MAX	UNIT
	V _{CC} = 5.5 V, <u>Outputs op</u> en, OE _A = OE _B = GND	One bit switching at f ₁ = 10 MHz	$\begin{array}{l} V_{IN} \leq 0.2 \ V \ or \\ V_{IN} \geq V_{CC} - 0.2 \ V \end{array}$		0.7	1.4				
		at 50% duty cycle	V_{IN} = 3.4 V or GND		1	2.4				
		Eight bits switching			1.3	2.6				
IC#		at f ₁ = 2.5 MHz at 50% duty cycle	V_{IN} = 3.4 V or GND		3.3	10.6ll				m۸
IC"		One bit switching at f ₁ = 10 MHz	$\begin{array}{l} V_{IN} \leq 0.2 \ V \ \text{or} \\ V_{IN} \geq V_{CC} - 0.2 \ V \end{array}$					0.7	1.4	mA
	V _{CC} = 5.25 V,	at 50% duty cycle	V_{IN} = 3.4 V or GND					1	2.4	
	$\frac{\text{Outputs open,}}{\text{OE}_{A}} = \overline{\text{OE}_{B}} = \text{GND}$	Eight bits switching						1.3	2.6	
		at f ₁ = 2.5 MHz at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$					3.3	10.6ll	
Ci					5	10		5	10	pF
Co					9	12		9	12	pF

[†] Typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

[#] IC = ICC + Δ ICC × D_H × N_T + ICCD (f₀/2 + f₁ × N₁)

Where:

= Total supply current IC

ICC = Power-supply current with CMOS input levels

 ΔI_{CC} = Power-supply current for a TTL high input (VIN = 3.4 V)

I_{CCD} = Dynamic current caused by an input transition pair (HLH or LHL)

fo = Clock frequency for registered devices, otherwise zero

= Input signal frequency f1

= Number of inputs changing at f1 N_1

All currents are in milliamperes and all frequencies are in megahertz.

I Values for these conditions are examples of the ICC formula.

CY54FCT240T, CY74FCT240T **8-BIT BUFFERS/LINE DRIVERS** WITH 3-STATE OUTPUTS SCCS017A – MAY 1994 – REVISED OCTOBER 2001

switching characteristics over operating free-air temperature range (see Figure 1)

PARAMETER	FROM	TO (OUTPUT)	CY54FC	CY54FCT240T		CY54FCT240AT		CY54FCT240CT	
	(INPUT)		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	D	ō	1.5	9	1.5	5.1	1.5	4.7	ns
^t PHL	D	0	1.5	9	1.5	5.1	1.5	4.7	115
^t PZH	OE	ō	1.5	10.5	1.5	6.5	1.5	5.7	-
^t PZL	UE	0	1.5	10.5	1.5	6.5	1.5	5.7	ns
^t PHZ	OE	ō	1.5	10	1.5	5.9	1.5	4.6	
^t PLZ	UE	0	1.5	10	1.5	5.9	1.5	4.6	ns

switching characteristics over operating free-air temperature range (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CY74FC	CY74FCT240T		CY74FCT240AT		CY74FCT240CT	
PARAMETER			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	D	ō	1.5	8	1.5	4.8	1.5	4.3	
^t PHL	U	0	1.5	8	1.5	4.8	1.5	4.3	ns
^t PZH	OE	ō	1.5	10	1.5	6.2	1.5	5	20
^t PZL	UE	0	1.5	10	1.5	6.2	1.5	5	ns
^t PHZ	OE	ō	1.5	9.5	1.5	5.6	1.5	4.5	
^t PLZ	UE		1.5	9.5	1.5	5.6	1.5	4.5	ns

SCCS017A - MAY 1994 - REVISED OCTOBER 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

 B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

TEXAS INSTRUMENTS www.ti.com

28-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9220301M2A	ACTIVE	LCCC	FK	20	1	None	Call TI	Level-NC-NC-NC
5962-9220301MRA	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
5962-9220301MSA	ACTIVE	CFP	W	20	1	None	Call TI	Level-NC-NC-NC
5962-9220302M2A	ACTIVE	LCCC	FK	20	1	None	Call TI	Level-NC-NC-NC
5962-9220302MRA	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
5962-9220302MSA	ACTIVE	CFP	W	20	1	None	Call TI	Level-NC-NC-NC
5962-9220303M2A	ACTIVE	LCCC	FK	20	1	None	Call TI	Level-NC-NC-NC
5962-9220303MRA	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
5962-9220303MSA	ACTIVE	CFP	W	20	1	None	Call TI	Level-NC-NC-NC
5962-9221301MRA	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
5962-9221303M2A	ACTIVE	LCCC	FK	20	1	None	Call TI	Level-NC-NC-NC
5962-9221303MRA	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
5962-9221305MRA	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
CY54FCT240ATDMB	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
CY54FCT240ATLMB	ACTIVE	LCCC	FK	20	1	None	Call TI	Level-NC-NC-NC
CY54FCT244ATDMB	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
CY54FCT244ATLMB	ACTIVE	LCCC	FK	20	1	None	Call TI	Level-NC-NC-NC
CY54FCT244ATW	ACTIVE	CFP	W	20	1	None	Call TI	Level-NC-NC-NC
CY54FCT244CTDMB	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
CY54FCT244CTW	ACTIVE	CFP	W	20	1	None	Call TI	Level-NC-NC-NC
CY54FCT244TDMB	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
CY54FCT244TLMB	ACTIVE	LCCC	FK	20	1	None	Call TI	Level-NC-NC-NC
CY54FCT244TW	ACTIVE	CFP	W	20	1	None	Call TI	Level-NC-NC-NC
CY74FCT240ATQCT	ACTIVE	SSOP/ QSOP	DBQ	20	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT240ATSOC	ACTIVE	SOIC	DW	20	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT240ATSOCT	ACTIVE	SOIC	DW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT240CTQCT	ACTIVE	SSOP/ QSOP	DBQ	20	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT240CTSOC	ACTIVE	SOIC	DW	20	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT240CTSOCT	ACTIVE	SOIC	DW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT240TQCT	ACTIVE	SSOP/ QSOP	DBQ	20	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT240TSOC	ACTIVE	SOIC	DW	20	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT240TSOCT	ACTIVE	SOIC	DW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT244ATPC	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CY74FCT244ATQCT	ACTIVE	SSOP/ QSOP	DBQ	20	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM

28-Feb-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CY74FCT244ATSOC	ACTIVE	SOIC	DW	20	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT244ATSOCT	ACTIVE	SOIC	DW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT244CTQCT	ACTIVE	SSOP/ QSOP	DBQ	20	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT244CTSOC	ACTIVE	SOIC	DW	20	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT244CTSOCT	ACTIVE	SOIC	DW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT244DTQCT	ACTIVE	SSOP/ QSOP	DBQ	20	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT244DTSOC	ACTIVE	SOIC	DW	20	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT244DTSOCT	ACTIVE	SOIC	DW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT244TQCT	ACTIVE	SSOP/ QSOP	DBQ	20	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT244TSOC	ACTIVE	SOIC	DW	20	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CY74FCT244TSOCT	ACTIVE	SOIC	DW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated