Quad 2-Channel Multiplexer The MC74VHCT157A is an advanced high speed CMOS quad 2–channel multiplexer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. It consists of four 2–input digital multiplexers with common select (S) and enable (\overline{E}) inputs. When \overline{E} is held High, selection of data is inhibited and all the outputs go Low. The select decoding determines whether the A or B inputs get routed to the corresponding Y outputs. The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V because it has full 5 V CMOS level output swings. The VHCT157A input structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. The output structures also provide protection when $V_{CC}=0$ V. These input and output structures help prevent device destruction caused by supply voltage—input/output voltage mismatch, battery backup, hot insertion, etc. The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems. - High Speed: $t_{PD} = 4.1 \text{ns}$ (Typ) at $V_{CC} = 5 \text{ V}$ - Low Power Dissipation: $I_{CC} = 4\mu A$ (Max) at $T_A = 25^{\circ}C$ - TTL-Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$ - Power Down Protection Provided on Inputs and Outputs - Balanced Propagation Delays - Designed for 2 V to 5.5 V Operating Range - Low Noise: $V_{OLP} = 0.8 \text{ V (Max)}$ - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 300mA - ESD Performance: HBM > 2000 V; Machine Model > 200 V - Chip Complexity: 82 FETs or 20 Equivalent Gates #### ON Semiconductor http://onsemi.com #### MARKING DIAGRAMS SO-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F EIAJ SO-16 M SUFFIX CASE 966 A = Assembly Location L, WL = Wafer Lot Y = Year W, WW = Work Week #### ORDERING INFORMATION | Device | Package | Shipping | |------------------|------------|------------------| | MC74VHCT157AD | SO-16 | 48 Units/Rail | | MC74VHCT157ADR2 | SO-16 | 2500 Tape & Reel | | MC74VHCT157ADT | TSSOP-16 | 96 Units/Rail | | MC74VHCT157ADTR2 | TSSOP-16 | 2500 Tape & Reel | | MC74VHCT157AM | EIAJ-SO-16 | 50 Units/Rail | | MC74VHCT157AMEL | EIAJ-SO-16 | 2000 Tape & Reel | Figure 1. Pin Assignment Figure 2. Expanded Logic Diagram Figure 3. IEC Logic Symbol #### **FUNCTION TABLE** | Inp | uts | Outputs | |-----|-----|---------| | Ē | S | Y0 – Y3 | | Н | Х | L | | L | L | A0-A3 | | l L | н | B0-B3 | A0 - A3, B0 - B3 = the levels of the respective Data–Word Inputs. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. ### **MAXIMUM RATINGS** (Note 1.) | Symbol | Р | arameter | Value | Unit | |-----------------------|---|---|--|------| | V _{CC} | Positive DC Supply Voltage | | -0.5 to +7.0 | V | | V _{IN} | Digital Input Voltage | | -0.5 to +7.0 | V | | V _{OUT} | DC Output Voltage | Output in 3–State
High or Low State | -0.5 to +7.0
-0.5 to V _{CC} +0.5 | V | | I _{IK} | Input Diode Current | | -20 | mA | | I _{OK} | Output Diode Current | | ±20 | mA | | l _{OUT} | DC Output Current, per Pin | | ±25 | mA | | Icc | DC Supply Current, V _{CC} and GND Pins | 3 | ±75 | mA | | P _D | Power Dissipation in Still Air | SOIC Package
TSSOP | 200
180 | mW | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | V _{ESD} | ESD Withstand Voltage | Human Body Model (Note 2.)
Machine Model (Note 3.)
Charged Device Model (Note 4.) | >2000
>200
>2000 | V | | I _{LATCH-UP} | Latch–Up Performance | Above V _{CC} and Below GND at 125°C (Note 5.) | ±300 | mA | | θ_{JA} | Thermal Resistance, Junction to Ambie | nt SOIC Package TSSOP | 143
164 | °C/W | ^{1.} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Characteristics | | Min | Max | Unit | |---------------------------------|--|--|-----|-----------------|------| | V _{CC} | DC Supply Voltage | | 4.5 | 5.5 | V | | V _{IN} | DC Input Voltage | | 0 | 5.5 | V | | V _{OUT} | DC Output Voltage | Output in 3–State
High or Low State | 0 | V _{CC} | V | | T _A | Operating Temperature Range, all Package Types | | -55 | 125 | °C | | t _r , t _f | Input Rise or Fall Time | $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$ | 0 | 20 | ns/V | # DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES | Junction
Temperature °C | Time, Hours | Time, Years | |----------------------------|-------------|-------------| | 80 | 1,032,200 | 117.8 | | 90 | 419,300 | 47.9 | | 100 | 178,700 | 20.4 | | 110 | 79,600 | 9.4 | | 120 | 37,000 | 4.2 | | 130 | 17,800 | 2.0 | | 140 | 8,900 | 1.0 | Figure 4. Failure Rate vs. Time Junction Temperature ^{2.} Tested to EIA/JESD22-A114-A ^{3.} Tested to EIA/JESD22-A115-A ^{4.} Tested to JESD22-C101-A ^{5.} Tested to EIA/JESD78 ### DC CHARACTERISTICS (Voltages Referenced to GND) | | | | V _{CC} | T _A = 25°C | | T _A ≤ 85°C | | -55°C ≤ T _A ≤ 125°C | | | | |------------------|---|--|-----------------|-----------------------|-----|-----------------------|-----|--------------------------------|------|------|------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | V _{IH} | Minimum High–Level Input Voltage | | 4.5 to 5.5 | 2 | | | 2 | 0.8 | 2 | | V | | V _{IL} | Maximum Low–Level Input Voltage | | 4.5 to 5.5 | | | 0.8 | | 0.8 | | 0.8 | V | | V _{OH} | Maximum High-Level
Output Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = -50 \mu\text{A}$ | 4.5 | 4.4 | 4.5 | | 4.4 | | 4.4 | | V | | | | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = -8 \text{ mA}$ | 4.5 | 3.94 | | | 3.8 | | 3.66 | | | | V _{OL} | Maximum Low–Level Output Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OL} = 50 \mu\text{A}$ | 4.5 | | 0.0 | 0.1 | | 0.1 | | 0.1 | V | | | | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = 8 \text{ mA}$ | 4.5 | | | 0.36 | | 0.44 | | 0.52 | | | I _{IN} | Input Leakage Current | V _{IN} = 5.5 V or GND | 0 to 5.5 | | | ±0.1 | | ±1.0 | | ±1.0 | μΑ | | I _{CC} | Maximum Quiescent
Supply Current | $V_{IN} = V_{CC}$ or GND | 5.5 | | | 4.0 | | 40.0 | | 40.0 | μΑ | | I _{CCT} | Additional Quiescent
Supply Current
(per Pin) | Any one input: $V_{IN} = 3.4 \text{ V}$ All other inputs: $V_{IN} = V_{CC}$ or GND | 5.5 | | | 1.35 | | 1.5 | | 1.5 | μА | | I _{OPD} | Output Leakage
Current | V _{OUT} = 5.5 V | 0 | | | 0.5 | | 5 | | 5 | μΑ | ### AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns) | | | | | Т | T _A = 25°C | | T _A = ≤ | 85°C | -55° C \leq T _A \leq 125 $^{\circ}$ C | | | |--|--|----------------------------------|------------------------------|-----|-----------------------|-------------|---------------------------|--------------|---|--------------|------| | Symbol | Parameter | Test Condi | tions | Min | Тур | Max | Min | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 5.6
8.0 | 7.0
10.0 | 1.0
1.0 | 7.7
11.0 | 1.0
1.0 | 7.7
11.0 | ns | | | A to B to Y | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 4.1
5.6 | 6.4
8.4 | 1.0
1.0 | 7.5
9.5 | 1.0
1.0 | 7.5
9.5 | | | t _{PLH} ,
t _{PHL} | Maximum Propagation
Delay
S to Y | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 6.1
8.5 | 7.5
10.5 | 1.0
1.0 | 8.2
11.5 | 1.0
1.0 | 8.2
11.5 | ns | | | | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 5.3
6.8 | 8.1
10.1 | 1.0
1.0 | 9.5
11.5 | 1.0
1.0 | 9.5
11.5 | | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay | $V_{CC} = 3.3 \pm 0.3 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 6.1
8.5 | 7.5
10.5 | 1.0
1.0 | 8.2
11.5 | 1.0
1.0 | 8.2
11.5 | ns | | | Ē to Y | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 5.6
7.1 | 8.6
10.6 | 1.0
1.0 | 10.0
12.0 | 1.0
1.0 | 10.0
12.0 | | | C _{IN} | Maximum Input
Capacitance | | | | 4 | 10 | | 10 | | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |-----------------|---|---|----| | C _{PD} | Power Dissipation Capacitance (Note 6.) | 20 | pF | ^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. ## **NOISE CHARACTERISTICS** (Input $t_{\text{f}} = t_{\text{f}} = 3.0 \text{ns}, C_{\text{L}} = 50 \text{pF}, V_{\text{CC}} = 5.0 \text{ V})$ | | | T _A = 25°C | | | |------------------|---|-----------------------|-------|------| | Symbol | Characteristic | Тур | Max | Unit | | V _{OLP} | Quiet Output Maximum Dynamic V _{OL} | 0.3 | 0.8 | V | | V _{OLV} | Quiet Output Minimum Dynamic V _{OL} | - 0.3 | - 0.8 | V | | V _{IHD} | /IHD Minimum High Level Dynamic Input Voltage | | 2.0 | V | | V _{ILD} | Maximum Low Level Dynamic Input Voltage | | 0.8 | V | Figure 5. Switching Waveform Figure 6. Inverting Switching ^{*}Includes all probe and jig capacitance Figure 7. Test Circuit Figure 8. Input Equivalent Circuit #### PACKAGE DIMENSIONS ## SOIC-16 **D SUFFIX** CASE 751B-05 #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982. - 114.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) DED SIDE - MAXIMUM MOLD PHO HUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.06) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | RS INCHES | | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | С | 1.35 | 1.75 | 0.054 | 0.068 | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | F | 0.40 | 1.25 | 0.016 | 0.049 | | | G | 1.27 | BSC | 0.050 BSC | | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | Κ | 0.10 | 0.25 | 0.004 | 0.009 | | | M | 0° | 7° | 0° | 7° | | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | #### TSSOP-16 **DT SUFFIX** CASE 948F-01 **ISSUE O** - IOLES: Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD - FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED - PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INCHES | | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | C | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 BSC | | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 | | 0.252 BSC | | | | M | 0° | 8° | 0° 8 | | | #### **PACKAGE DIMENSIONS** #### **SOIC EIAJ-16 M SUFFIX** CASE 966-01 **ISSUE O** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). | | MILLIN | IETERS | INC | HES | | |----------------|--------|--------|-------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | | 2.05 | | 0.081 | | | A ₁ | 0.05 | 0.20 | 0.002 | 0.008 | | | b | 0.35 | 0.50 | 0.014 | 0.020 | | | С | 0.18 | 0.27 | 0.007 | 0.011 | | | D | 9.90 | 10.50 | 0.390 | 0.413 | | | Е | 5.10 | 5.45 | 0.201 | 0.215 | | | е | 1.27 | BSC | 0.050 | 0 BSC | | | HE | 7.40 | 8.20 | 0.291 | 0.323 | | | L | 0.50 | 0.85 | 0.020 | 0.033 | | | LE | 1.10 | 1.50 | 0.043 | 0.059 | | | M | 0 ° | 10 ° | 0 ° | 10° | | | Q ₁ | 0.70 | 0.90 | 0.028 | 0.035 | | | 7 | | 0.78 | | 0.031 | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** #### NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada N. American Technical Support: 800-282-9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor - European Support German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland #### CENTRAL/SOUTH AMERICA: Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com Toll-Free from Mexico: Dial 01-800-288-2872 for Access - then Dial 866-297-9322 ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 1-303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001-800-4422-3781 Email: ONlit-asia@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 **Phone**: 81–3–5740–2700 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.