2.5V/3.3V SiGe Differential Receiver/Driver with RSECL* Outputs

*Reduced Swing ECL

The NBSG16 is a differential receiver/driver targeted for high frequency applications. The device is functionally equivalent to the EP16 and LVEP16 devices with much higher bandwidth and lower EMI capabilities.

Inputs incorporate internal 50 Ω termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), HSTL, LVTTL, LVCMOS, CML, or LVDS. Outputs are RSECL (Reduced Swing ECL), 400 mV.

The V_{BB} and V_{MM} pins are internally generated voltage supplies available to this device only. The V_{BB} is used as a reference voltage for single-ended NECL or PECL inputs and the V_{MM} pin is used as a reference voltage for LVCMOS inputs. For all single-ended input conditions, the unused complementary differential input is connected to V_{BB} or V_{MM} as a switching reference voltage. V_{BB} or V_{MM} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{MM} via a 0.01 µF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} and V_{MM} outputs should be left open.

- Maximum Input Clock Frequency > 12 GHz Typical
- Maximum Input Data Rate > 12 Gb/s Typical
- 120 ps Typical Propagation Delay
- 40 ps Typical Rise and Fall Times
- RSPECL Output with Operating Range: $V_{CC} = 2.375$ V to 3.465 V with $V_{EE} = 0$ V
- RSNECL Output with RSNECL or NECL Inputs with Operating Range: $V_{CC} = 0$ V with $V_{EE} = -2.375$ V to -3.465 V
- RSECL Output Level (400 mV Peak-to-Peak Output), Differential Output Only
- 50 Ω Internal Input Termination Resistors
- Compatible with Existing 2.5 V/3.3 V LVEP, EP, and LVEL Devices
- V_{BB} and V_{MM} Reference Voltage Output

ON Semiconductor®

http://onsemi.com

- Y = Year
- W = Work Week

*For further details, refer to Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping
NBSG16BA	4x4 mm FCBGA-16	100 Units/Tray
NBSG16BAR2	4x4 mm FCBGA-16	500/Tape & Reel
NBSG16MN	3x3 mm QFN-16	123 Units/Rail
NBSG16MNR2	3x3 mm QFN-16	3000/Tape & Reel

Board	Description
NBSG16BAEVB	NBSG16BA Evaluation Board

Figure 1. BGA-16 Pinout (Top View)

Figure 2. QFN-16 Pinout (Top View)

Table 1. Pin Description

Pin					
BGA	QFN	Name	I/O	Description	
C2	1	VTD	-	Internal 50 Ω Termination Pin. See Table 2.	
C1	2	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Inverted Differential Input. Internal 75 k Ω to V_{EE} and 36.5 k Ω to $V_{CC}.$	
B1	3	D	ECL, CML, LVCMOS, LVDS, LVTTL Input	Noninverted differential input. Internal 75 k Ω to $V_{\text{EE}}.$	
B2	4	VTD	-	Internal 50 Ω Termination Pin. See Table 2.	
A1,D1,A4, D4	5,8,13,16	V_{EE}	-	Negative Supply Voltage	
A2,A3	6,7	NC	-	No Connect	
B3,C3	9,12	V _{CC}	-	Positive Supply Voltage	
B4	10	Q	RSECL Output	Noninverted Differential Output. Typically Terminated with 50 Ω to V_{TT} = V_{CC} - 2 V	
C4	11	Q	RSECL Output	Inverted Differential Output. Typically Terminated with 50 Ω to V_{TT} = V_{CC} - 2 V	
D3	14	V _{MM}	-	LVCMOS Reference Voltage Output. (V _{CC} - V _{EE})/2	
D2	15	V _{BB}	-	ECL Reference Voltage Output	
N/A	-	EP	-	Exposed Pad. (Note 2)	

1. The NC pins are electrically connected to the die and MUST be left open.

 All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. The thermally exposed pad on package bottom (see case drawing) must be attached to a heat-sinking conduit.

3. In the differential configuration when the input termination pins (VTD, VTD) are connected to a common termination voltage, and if no signal is applied then the device will be susceptible to self-oscillation.

Figure 3. Logic Diagram

0 1	
INTERFACING OPTIONS	CONNECTIONS
CML	Connect VTD and $\overline{\text{VTD}}$ to V _{CC}
LVDS	Connect VTD and VTD together
AC-COUPLED	Bias VTD and VTD Inputs within (V _{IHCMR}) Common Mode Range
RSECL, PECL, NECL	Standard ECL Termination Techniques
LVTTL	The external voltage should be applied to the unused complementary differential input. Nominal voltage is 1.5 V for LVTTL.
LVCMOS	V _{MM} should be connected to the unused complementary differential input.

Table 2. Interfacing Options

Table 3. ATTRIBUTES

Characteristi	cs	Value						
Internal Input Pulldown Resistor (D, I	Internal Input Pulldown Resistor (D, \overline{D})							
Internal Input Pullup Resistor (D)	36.5 kΩ							
ESD Protection	> 2 kV > 100 V							
Moisture Sensitivity (Note 1)	Moisture Sensitivity (Note 1) FCBGA-16 QFN-16							
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in						
Transistor Count	167							
Meets or exceeds JEDEC Spec EIA/	Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test							

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	Positive Power Supply	V _{EE} = 0 V		3.6	V
V_{EE}	Negative Power Supply	$V_{CC} = 0 V$		-3.6	V
VI	Positive Input Negative Input	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	3.6 -3.6	V V
V _{INPP}	Differential Input Voltage D - D	$\begin{array}{ll} V_{CC} \mbox{-} V_{EE} \geq & 2.8 \ V \\ V_{CC} \mbox{-} V_{EE} \mbox{-} & 2.8 \ V \end{array}$		2.8 V _{CC} - V _{EE}	V V
l _{out}	Output Current	Continuous Surge		25 50	mA mA
I _{BB}	V _{BB} Sink/Source			1	mA
I _{MM}	V _{MM} Sink/Source			1	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 LFPM 500 LFPM 0 LFPM 500 LFPM	16 FCBGA 16 FCBGA 16 QFN 16 QFN	108 86 41.6 35.2	°C/W °C/W °C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	1S2P (Note 3) 2S2P (Note 4)	16 FCBGA 16 QFN	5 4.0	°C/W °C/W
T _{sol}	Wave Solder	< 15 sec.		225	°C

Maximum Ratings are those values beyond which device damage may occur.
JEDEC standard multilayer board - 1S2P (1 signal, 2 power)
JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

			-40 °C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	17	23	29	17	23	29	17	23	29	mA
V _{OH}	Output HIGH Voltage (Note 6)	1450	1530	1575	1525	1565	1600	1550	1590	1625	mV
V _{OUTPP}	Output Voltage Amplitude	350	410	525	350	410	525	350	410	525	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 7)	V _{THR} + 75 mV	V _{CC} - 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} - 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} - 1.0*	V _{CC}	V
V _{IL}	Input LOW Voltage (Single-Ended) (Note 7)	V_{EE}	V _{CC} - 1.4*	V _{THR} - 75 mV	V _{EE}	V _{CC} - 1.4*	V _{THR} - 75 mV	V_{EE}	V _{CC} - 1.4*	V _{THR} - 75 mV	V
V_{BB}	PECL Output Voltage Reference	1080	1140	1200	1080	1140	1200	1080	1140	1200	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 8) (Differential Configuration)	1.2		2.5	1.2		2.5	1.2		2.5	V
V _{MM}	CMOS Output Voltage Reference V _{CC} /2	1100	1250	1400	1100	1250	1400	1100	1250	1400	mV
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@ VIH)		30	100		30	100		30	100	μA
IIL	Input LOW Current (@ VIL)		25	50		25	50		25	50	μA

Table 5. DC CHARACTERISTICS, INPUT WITH RSPECL OUTPUT VCC = 2.5 V: VEE = 0 V (Note 5)

NOTE: SiGe circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

5. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.125 V to -0.965 V.

6. All loading with 50 Ω to V_{CC}-2.0 volts.

7. V_{THR} is the voltage applied to the complementary input, typically V_{BB} or V_{MM}.

8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

*Typicals used for testing purposes.

			-40 °C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	17	23	29	17	23	29	17	23	29	mA
V _{OH}	Output HIGH Voltage (Note 10)	2250	2330	2375	2325	2365	2400	2350	2390	2425	mV
V _{OUTPP}	Output Voltage Amplitude	350	410	525	350	410	525	350	410	525	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 11)	V _{THR} + 75 mV	V _{CC} - 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} - 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} - 1.0*	V _{CC}	V
V _{IL}	Input LOW Voltage (Single-Ended) (Note 11)	V _{EE}	V _{CC} - 1.4*	V _{THR} - 75 mV	V _{EE}	V _{CC} - 1.4*	V _{THR} - 75 mV	V _{EE}	V _{CC} - 1.4*	V _{THR} - 75 mV	V
V_{BB}	PECL Output Voltage Reference	1880	1940	2000	1880	1940	2000	1880	1940	2000	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Note 12) (Differential Configuration)	1.2		3.3	1.2		3.3	1.2		3.3	V
V _{MM}	CMOS Output Voltage Reference V _{CC} /2	1500	1650	1800	1500	1650	1800	1500	1650	1800	mV
R _{TIN}	Internal Input Termination Resistor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@ VIH)		30	100		30	100		30	100	μΑ
IIL	Input LOW Current (@ VIL)		25	50		25	50		25	50	μA

Table 6. DC CHARACTERISTICS, INPUT WITH RSPECL OUTPUT VCC = 3.3 V; VEE = 0 V (Note 9)

NOTE: SiGe Circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

9. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.925 V to -0.165 V.

10. All loading with 50 Ω to V_{CC} - 2.0 V. 11. V_{THR} is the voltage applied to the complementary input, typically V_{BB} or V_{MM}. 12. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

*Typicals used for testing purposes.

Table 7. DC CHARACTERISTICS, NECL OR RSNECL INPUT WITH NECL OUTPUT

 $V_{CC} = 0 \text{ V}; \text{ V}_{EE} = -3.465 \text{ V} \text{ to } -2.375 \text{ V} \text{ (Note 13)}$

			-40 °C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I_{EE}	Negative Power Supply Current	17	23	29	17	23	29	17	23	29	mA
VOH	Output HIGH Voltage (Note 14)	-1050	-970	-925	-975	-935	-900	-950	-910	-875	mV
V _{OUTPP}	Output Voltage Amplitude	350	410	525	350	410	525	350	410	525	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 15)	V _{THR} + 75 mV	V _{CC} - 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} - 1.0*	V _{CC}	V _{THR} + 75 mV	V _{CC} - 1.0*	V _{CC}	V
V _{IL}	Input LOW Voltage (Single-Ended) (Note 15)	V _{EE}	V _{CC} - 1.4*	V _{THR} - 75 mV	V _{EE}	V _{CC} - 1.4*	V _{THR} - 75 mV	V _{EE}	V _{CC} - 1.4*	V _{THR} - 75 mV	V
V _{BB}	NECL Output Voltage Reference	-1420	-1360	-1300	-1420	-1360	-1300	-1420	-1360	-1300	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 16) (Differential Configuration)	V _{EE} +	1.2	0.0	V _{EE} +	1.2	0.0	V _{EE} -	+1.2	0.0	V
V _{MM}	CMOS Output Voltage Reference (Note 17)	V _{MMT} -150	V _{MMT}	V _{MMT} + 150	V _{MMT} -150	V _{MMT}	V _{MMT} + 150	V _{MMT} -150	V _{MMT}	V _{MMT} + 150	mV
R _{TIN}	Internal Input Termination Resis- tor	45	50	55	45	50	55	45	50	55	Ω
I _{IH}	Input HIGH Current (@ VIH)		30	100		30	100		30	100	μΑ
IIL	Input LOW Current (@ VIL)		25	50		25	50		25	50	μΑ

NOTE: SiGe circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

13. Input and output parameters vary 1:1 with V_{CC} .

14. All loading with 50 Ω to V_{CC} -2.0 volts.

15. V_{THR} is the voltage applied to the complementary input, typically V_{BB} or V_{MM}.

16. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

17. V_{MM} typical = $|V_{CC} - V_{EE}|/2 + V_{EE} = V_{MMT}$ *Typicals used for testing purposes.

Table 8. AC CHARACTERISTICS for FCBGA-16

 $V_{CC} = 0$ V; $V_{EE} = -3.465$ V to -2.375 V or $V_{CC} = 2.375$ V to 3.465 V; $V_{EE} = 0$ V

			-40 °C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (See Figure 4. F _{max} /JITTER) (Note 18)	10.7	12		10.7	12		10.7	12		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	90	110	130	100	120	140	105	125	145	ps
t _{SKEW}	Duty Cycle Skew (Note 19)		3	15		3	15		3	15	ps
t _{JITTER}	RMS Random Clock Jitter f _{in} < 10 GHz Peak-to-Peak Data Dependent Jitter f _{in} < 10 Gb/s		0.2 TBD	1		0.2 TBD	1		0.2 TBD	1	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 20)	75		2600	75		2600	75		2600	mV
t _r t _f	Output Rise/Fall Times @ 1 GHz Q, Q (20% - 80%)	30	45	75	20	40	65	20	40	65	ps

18. Measured using a 400 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} - 2.0 V. Input edge rates 40 ps (20% - 80%). 19. See Figure 6. $t_{skew} = |t_{PLH} - t_{PHL}|$ for a nominal 50% differential clock input waveform. 20. $V_{INPP(max)}$ cannot exceed $V_{CC} - V_{EE}$

Table 9. AC CHARACTERISTICS for QFN-16

 V_{CC} = 0 V; V_{EE} = -3.465 V to -2.375 V or V_{CC} = 2.375 V to 3.465 V; V_{EE} = 0 V

			-40 °C			25°C		85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (See Figure 4. F _{max} /JITTER) (Note 21)	10.7	12		10.7	12		10.7	12		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	90	110	130	100	120	140	95	125	145	ps
t _{SKEW}	Duty Cycle Skew (Note 22)		3	15		3	15		3	15	ps
t _{JITTER}	RMS Random Clock Jitter f _{in} < 10 GHz Peak-to-Peak Data Dependent Jitter f _{in} < 10 Gb/s		0.2 TBD	2		0.2 TBD	2		0.2 TBD	2	ps
V _{INPP}	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 23)	75		2600	75		2600	75		2600	mV
t _r t _f	Output Rise/Fall Times @ 1 GHz Q, Q (20% - 80%)	20	30	50	20	30	50	20	30	50	ps

21. Measured using a 400 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} - 2.0 V. Input edge rates 40 ps (20% - 80%).

22. See Figure 6. $t_{skew} = |t_{PLH} - t_{PHL}|$ for a nominal 50% differential clock input waveform. 23. $V_{INPP(max)}$ cannot exceed $V_{CC} - V_{EE}$

X = 17 ps/Div Y = 70 mV/Div

Figure 5. 10.709 Gb/s Diagram (3.0 V, 25°C)

Figure 6. AC Reference Measurement

Figure 7. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 - Termination of ECL Logic Devices)

PACKAGE DIMENSIONS

FCBGA-16

DETAIL K ROTATED 90 ° CLOCKWISE

- NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSION & IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO DATUM PLANE Z. 4. DATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

	MILLIMETERS									
DIM	MIN	MAX								
Α	1.40 MAX									
A1	0.25	0.35								
A2	1.20 REF									
b	0.30	0.50								
D	4.00	BSC								
Е	4.00	BSC								
е	1.00 BSC									
S	0.50	BSC								

PACKAGE DIMENSIONS

16 PIN QFN MN SUFFIX CASE 485G-01 ISSUE O

NOTES:

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 CONTROLLING DIMENSION: MILLIMETERS.
DIMENSION D APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL

4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	3.00 BSC		0.118 BSC	
В	3.00 BSC		0.118 BSC	
С	0.80	1.00	0.031	0.039
D	0.23	0.28	0.009	0.011
Е	1.75	1.85	0.069	0.073
F	1.75	1.85	0.069	0.073
G	0.50 BSC		0.020 BSC	
Н	0.875	0.925	0.034	0.036
J	0.20 REF		0.008 REF	
K	0.00	0.05	0.000	0.002
L	0.35	0.45	0.014	0.018
Μ	1.50 BSC		0.059 BSC	
Ν	1.50 BSC		0.059 BSC	
Ρ	0.875	0.925	0.034	0.036
R	0.60	0.80	0.024	0.031

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.