MAX3243 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD (HBM) PROTECTION

- Single-Chip and Single-Supply Interface for IBM[™] PC/AT[™] Serial Port
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- Three Drivers and Five Receivers
- Operates Up To 250 kbit/s
- Designed to Transmit at a Data Rate of 250 kbit/s
- Low Standby Current ... 1 μA Typical
- External Capacitors . . . 4 × 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply
- Always-Active Noninverting Receiver Output (ROUT2B)
- Designed to Be Interchangeable With Maxim MAX3243
- Alternative High-Speed Pin-Compatible Device (1 Mbit/s)
 – SNx5C3243
- Serial-Mouse Driveability
- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Auto-Powerdown Feature to Disable Driver Outputs When No Valid RS-232 Signal Is Sensed
- Applications
 - Battery-Powered Systems, PDAs, Notebooks, Laptops, Palmtop PCs, and Hand-Held Equipment

description/ordering information

The MAX3243 consists of three line drivers, five line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM) protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. This combination of drivers and receivers matches that needed for the typical serial port used in an IBM PC/AT, or compatible. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, the device includes an always-active noninverting output (ROUT2B), which allows applications using the ring indicator to transmit data while the device is powered down. The device operates at data signaling rates up to 250 kbit/s and a maximum of 30-V/µs driver output slew rate.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

AT, IBM, and PC are trademarks of International Business Machines Corporation.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated

DB, DW,		PW PA P VIEW)	CKAGE
		$\overline{\mathbf{U}}$	L
C2+[1	28] C1+
C2-[2	27] V+
V-[3	26] V _{CC}
RIN1	4	25] GND
RIN2	5	24] C1–
RIN3	6	23] FORCEON
RIN4	7	22	FORCEOFF
RIN5	8	21	INVALID
DOUT1[9	20	ROUT2B
DOUT2	10	19] ROUT1
DOUT3[11	18	ROUT2
DIN3	12	17] ROUT3
DIN2	13	16	ROUT4
DIN1	14	15	ROUT5

SLLS350I - APRIL 1999 - REVISED SEPTEMBER 2003

description/ordering information (continued)

Flexible control options for power management are available when the serial port is inactive. The auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low, both drivers and receivers (except ROUT2B) are shut off, and the supply current is reduced to 1 uA. Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur.

Auto-powerdown can be disabled when FORCEON and FORCEOFF are high and should be done when driving a serial mouse. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to any receiver input. The INVALID output is used to notify the user if an RS-232 signal is present at any receiver input. $\overline{INVALID}$ is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V or has been between -0.3 V and 0.3 V for less than 30 µs. INVALID is low (invalid data) if all receiver input voltages are between -0.3 V and 0.3 V for more than 30 μ s. Refer to Figure 5 for receiver input levels.

TA	PACKAG	PACKAGET		TOP-SIDE MARKING
		Tube of 20	MAX3243CDW	MAX00400
	SOIC (DW)	Reel of 1000	MAX3243CDWR	MAX3243C
0°C to 70°C	SSOP (DB)	Reel of 2000	MAX3243CDBR	MAX3243C
	T0000 (DW)	Tube of 50	MAX3243CPW	MA00400
	TSSOP (PW)	Reel of 2000	MAX3243CPWR	MA3243C
		Tube of 20	MAX3243IDW	
	SOIC (DW)	Reel of 1000	MAX3243IDWR	MAX3243I
−40°C to 85°C	SSOP (DB)	Reel of 2000	MAX3243IDBR	MAX3243I
		Tube of 50	MAX3243IPW	MD22421
	TSSOP (PW)	Reel of 2000	MAX3243IPWR	MB3243I

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Function Tables

EACH DRIVER

		INPUTS		OUTPUT	
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS
Х	Х	L	Х	Z	Powered off
L	Н	Н	Х	Н	Normal operation with
н	Н	Н	Х	L	auto-powerdown disabled
L	L	Н	Yes	Н	Normal operation with
н	L	Н	Yes	L	auto-powerdown enabled
L	L	Н	No	Z	Powered off by
н	L	Н	No	Z	auto-powerdown feature

H = high level, L = low level, X = irrelevant, Z = high impedance

			EACH RECEI	VER		
	INPUTS			OUTP	UTS	
RIN2	RIN1, RIN3–RIN5	FORCEOFF	VALID RIN RS-232 LEVEL	ROUT2B	ROUT	RECEIVER STATUS
L	Х	L	Х	L	Z	Powered off while
Н	Х	L	Х	н	Z	ROUT2B is active
L	L	Н	Yes	L	Н	
L	Н	н	Yes	L	L	Normal operation with
Н	L	н	Yes	н	Н	auto-powerdown
н	Н	Н	Yes	н	L	disabled/enabled
Open	Open	Н	No	L	Н	

H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)	-0.3 V to 6 V
Positive output supply voltage range, V+ (see Note 1)	
Negative output supply voltage range, V– (see Note 1)	0.3 V to –7 V
Supply voltage difference, V+ – V– (see Note 1)	13 V
Input voltage range, V _I : Driver (FORCEOFF, FORCEON)	–0.3 V to 6 V
Receiver	
Output voltage range, V _O : Driver	–13.2 V to 13.2 V
Receiver (INVALID)	–0.3 V to V _{CC} + 0.3 V
Package thermal impedance, θ_{JA} (see Notes 2 and 3): DB package	62°C/W
DW package	46°C/W
PW package	62°C/W
Operating virtual junction temperature, T _J	150°C
Storage temperature range, T _{stg}	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to network GND.

- 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4 and Figure 6)

				MIN	NOM	MAX	UNIT
	Current constance		$V_{CC} = 3.3 V$	3	3.3	3.6	N
	Supply voltage			4.5	5	5.5	V
			$V_{CC} = 3.3 V$	2			V
VIH	Driver and control high-level input voltage	DIN, FORCEOFF, FORCEON	$V_{CC} = 5 V$	2.4			V
VIL	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEON				0.8	V
VI	Driver and control input voltage	DIN, FORCEOFF, FORCEON		0		5.5	V
VI	V _I Receiver input voltage			-25		25	V
т.	T _A Operating free-air temperature		MAX3243C	0		70	°C
Α			MAX3243I	-40		85	J

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6)

	PARAME	TER	TES	T CONDITIONS	MIN	TYP‡	MAX	UNIT
Ι	Input leakage current	FORCEOFF, FORCEON				±0.01	±1	μΑ
		Auto-powerdown disabled		No load, FORCEOFF and FORCEON at V _{CC}		0.3	1	mA
Icc	Supply current	Powered off	V _{CC} = 3.3 V or 5 V,	No load, FORCEOFF at GND		1	10	
		Auto-powerdown enabled	T _A = 25°C	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded, All DIN are grounded		1	10	μΑ

[‡] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
VOH	High-level output voltage	All DOUT at R _L = 3 k Ω to GND	5	5.4		V
VOL	Low-level output voltage	All DOUT at R _L = 3 k Ω to GND	-5	-5.4		V
VO	Output voltage (mouse driveability)	DIN1 = DIN2 = GND, DIN3 = V _{CC} , 3-k Ω to GND at DOUT3, DOUT1 = DOUT2 = 2.5 mA	±5			V
Iн	High-level input current	VI = VCC		±0.01	±1	μA
١ _{IL}	Low-level input current	V _I at GND		±0.01	±1	μΑ
		$V_{CC} = 3.6 \text{ V}, \qquad V_{O} = 0 \text{ V}$				
los	Short-circuit output current‡	$V_{CC} = 5.5 \text{ V}, \qquad V_{O} = 0 \text{ V}$		±35	±60	mA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V, $V_{O} = \pm 2 V$	300	10M		Ω
loff	Output leakage current	$\overline{\text{FORCEOFF}} = \text{GND}, \qquad \text{V}_{\text{O}} = \pm 12 \text{ V}, \qquad \text{V}_{\text{CC}} = 0 \text{ to } 5.5 \text{ V}$			±25	μΑ

[†] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

[‡] Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6)

	PARAMETER	TEST CONDITIONS		MIN	TYP†	MAX	UNIT
	Maximum data rate	C _L = 1000 pF, One DOUT switching,	RL = 3 kΩ, See Figure 1	150	250		kbit/s
t _{sk(p)}	Pulse skew§	C _L = 150 pF to 2500 pF	$R_L = 3 k\Omega$ to 7 kΩ, See Figure 2		100		ns
SR(tr)	Slew rate, transition region	V _{CC} = 3.3 V,	C _L = 150 pF to 1000 pF	6		30	V/µs
SK(II)	(see Figure 1)	$V_{CC} = 3.3 V,$ R _L = 3 kΩ to 7 kΩ	C _L = 150 pF to 2500 pF	4		30	v/µs

[†] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

§ Pulse skew is defined as |tpLH - tpHL| of each channel of the same device.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

RECEIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
∨он	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} -0.6 V	V _{CC} -0.1 V		V
VOL	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
N/	Desitive reing input threads all values	V _{CC} = 3.3 V		1.6	2.4	
VIT+	Positive-going input threshold voltage	$V_{CC} = 5 V$		1.9	2.4	V
	No section and a single set there also had a set to see	$V_{CC} = 3.3 V$	0.6	1.1		
VIT-	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.8	1.4		V
V _{hys}	Input hysteresis (V _{IT+} – V _{IT–})			0.5		V
loff	Output leakage current (except ROUT2B)	FORCEOFF = 0 V		±0.05	±10	μA
ri	Input resistance	$V_I = \pm 3 V \text{ to } \pm 25 V$	3	5	7	kΩ

[†] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4)

	PARAMETER	TEST CONDITIONS	ΜΙΝ ΤΥΡ [†] ΜΑΧ	UNIT
^t PLH	Propagation delay time, low- to high-level output		150	ns
^t PHL	Propagation delay time, high- to low-level output	C _L = 150 pF, See Figure 3	150	ns
t _{en}	Output enable time		200	ns
^t dis	Output disable time	$C_{L} = 150 \text{ pF}, R_{L} = 3 \text{ k}\Omega$, See Figure 4	200	ns
^t sk(p)	Pulse skew [‡]	See Figure 3	50	ns

[†] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

[‡] Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device. NOTE 4: Test conditions are C1-C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2-C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

AUTO-POWERDOWN SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
VT+(valid)	Receiver input threshold for INVALID high-level output voltage	$\frac{FORCEON}{FORCEOFF} = V_{CC}$			2.7	V
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	$\frac{FORCEON}{FORCEOFF} = V_{CC}$	-2.7			V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	$\frac{\text{FORCEON} = \text{GND},}{\text{FORCEOFF}} = V_{CC}$	-0.3		0.3	V
VOH	INVALID high-level output voltage	$I_{OH} = -1 \text{ mA}$, FORCEON = GND, FORCEOFF = V _{CC}	V _{CC} -0.6			V
V _{OL}	INVALID low-level output voltage	$I_{OL} = 1.6 \text{ mA}$, FORCEON = GND, FORCEOFF = V _{CC}			0.4	V

[†] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	ΜΙΝ ΤΥΡ [†] ΜΑΧ	UNIT
t _{valid}	Propagation delay time, low- to high-level output	1	μs
^t invalid	Propagation delay time, high- to low-level output	30	μs
t _{en}	Supply enable time	100	μs

[†] All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^{\circ}$ C.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.

Figure 1. Driver Slew Rate

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. CI includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_{O} = 50 Ω , 50% duty cycle, $t_{r} \le 10$ ns. $t_{f} \le 10$ ns.

Figure 2. Driver Pulse Skew

NOTES: A. CL includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_{O} = 50 \Omega$, 50% duty cycle, $t_{f} \le 10$ ns. $t_{f} \le 10$ ns.

Figure 3. Receiver Propagation Delay Times

NOTES: A. C_L includes probe and jig capacitance.

- B. The pulse generator has the following characteristics: $Z_{O} = 50 \Omega$, 50% duty cycle, $t_{f} \le 10$ ns. $t_{f} \le 10$ ns.
- C. tpLZ and tpHZ are the same as tdis.
- D. tpzL and tpzH are the same as ten.

Figure 4. Receiver Enable and Disable Times

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Cl includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 5 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.

Figure 5. INVALID Propagation Delay Times and Supply Enabling Time

APPLICATION INFORMATION

NOTE A: Resistor values shown are nominal.

V_{CC} vs CAPACITOR VALUES

Vcc	C1	C2, C3, and C4
$\begin{array}{c} \textbf{3.3 V} \pm \textbf{0.3 V} \\ \textbf{5 V} \pm \textbf{0.5 V} \\ \textbf{3 V to 5.5 V} \end{array}$	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF

Figure 6. Typical Operating Circuit and Capacitor Values

MECHANICAL DATA

MSOI003E - JANUARY 1995 - REVISED SEPTEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

DW (R-PDSO-G**) 16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013

MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated