MOC3051M, MOC3052M 6-Pin DIP Random-Phase Optoisolators Triac Drivers (600 Volt Peak)

Features

- Excellent $I_{\text {FT }}$ stability—IR emitting diode has low degradation
- High isolation voltage-minimum 7500 peak VAC

■ Underwriters Laboratory (UL) recognizedFile \#E90700, Volume 2

- 600V peak blocking voltage

■ IEC60747-5-2 approved (File \#94766)

- Ordering option V (e.g. MOC3052VM)

Applications

■ Solenoid/valve controls

- Lamp ballasts
- Static AC power switch
- Interfacing microprocessors to 115 and 240 Vac peripherals
- Solid state relay
- Incandescent lamp dimmers
- Temperature controls
- Motor controls

Description

The MOC3051M and MOC3052M consist of a AIGaAs infrared emitting diode optically coupled to a non-zerocrossing silicon bilateral AC switch (triac). These devices isolate low voltage logic from 115 and 240 Vac lines to provide random phase control of high current triacs or thyristors. These devices feature greatly enhanced static dv/dt capability to ensure stable switching performance of inductive loads.

Schematic

*DO NOT CONNECT (TRIAC SUBSTRATE)

Package Outlines

1

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified.)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Value	Units
TOTAL DEVICE			
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$
TopR	Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature (Wave Solder)	260 for 10 sec	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Range	-40 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ISO }}$	Isolation Surge Voltage ${ }^{(1)}$ (peak AC voltage, 60Hz, 1 sec. duration)	7500	$\mathrm{Vac}(\mathrm{pk})$
P_{D}	Total Device Power Dissipation @ $25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	330	mW
		4.4	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
EMITTER			
I_{F}	Continuous Forward Current	60	mA
V_{R}	Reverse Voltage	3	V
$P_{\text {D }}$	Total Device Power Dissipation @ $25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	100	mW
		1.33	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
DETECTOR			
$\mathrm{V}_{\text {DRM }}$	Off-State Output Terminal Voltage	600	V
$\mathrm{l}_{\text {TSM }}$	Peak Repetitive Surge Current (PW = 100 $\mathrm{s}^{\text {s, 120pps) }}$	1	A
$P_{\text {D }}$	Total Power Dissipation @ $25^{\circ} \mathrm{C}$ Ambient Derate above $25^{\circ} \mathrm{C}$	300	mW
		4	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$

Note:

1. Isolation surge votlage, $\mathrm{V}_{\text {ISO }}$, is an internal device breakdown rating. For this text, pins 1 and 2 are common, and pins 4,5 and 6 are common.

Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified.)
Individual Component Characteristics

Symbol	Parameters	Test Conditions	Min.	Typ.*	Max.	Units
EMITTER						
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.18	1.5	V
I_{R}	Reverse Leakage Current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$		0.05	100	$\mu \mathrm{A}$
DETECTOR						
$\mathrm{I}_{\text {DRM }}$	Peak Blocking Current, Either Direction	$\mathrm{V}_{\mathrm{DRM}}, \mathrm{I}_{\mathrm{F}}=0^{(2)}$		10	100	nA
$\mathrm{V}_{\text {TM }}$	Peak On-State Voltage, Either Direction	$\mathrm{I}_{\mathrm{TM}}=100 \mathrm{~mA}$ peak, $\mathrm{I}_{\mathrm{F}}=0$		1.7	2.5	V
dv/dt	Critical Rate of Rise of Off-State Voltage	$\mathrm{I}_{\mathrm{F}}=0$ (Figure 7, @ 400V)	1000			$\mathrm{V} / \mathrm{\mu s}$

Transfer Characteristics

Symbol	DC Characteristics	Test Conditions	Device	Min.	Typ.*	Max.	Units
I_{FT}	LED Trigger Current, Either Direction	Main terminal Voltage $=3 \mathrm{~V}^{(3)}$	MOC3051M			15	mA
	MOC3052M			10			
I_{H}	Holding Current, Either Direction		All		220		$\mu \mathrm{~A}$

Isolation Characteristics

Symbol	Characteristic	Test Conditions	Min.	Typ.*	Max.	Units
$\mathrm{V}_{\text {ISO }}$	Input-Output Isolation Voltage	$\mathrm{f}=60 \mathrm{~Hz}, \mathrm{t}=1 \mathrm{sec}$.	7500			$\mathrm{Vac}(\mathrm{pk})$
$\mathrm{R}_{\text {ISO }}$	Isolation Resistance	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{VDC}$		10^{11}		Ω
$\mathrm{C}_{\text {ISO }}$	Isolation Capacitance	$\mathrm{V}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.2		pF

*Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Notes:

2. Test voltage must be applied within dv/dt rating.
3. All devices are guaranteed to trigger at an I_{F} value less than or equal to $\max \mathrm{I}_{\mathrm{FT}}$. Therefore, recommended operating I_{F} lies between max. 15A for MOC3051M, 10mA for MOC3052M and absolute max. $I_{F}(60 \mathrm{~mA})$.

Safety and Insulation Ratings

As per IEC 60747-5-2, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter	Min.	Typ.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1				
	For Rated Main Voltage < 150Vrms		I-IV		
	For Rated Main voltage < 300Vrms		I-IV		
	Climatic Classification		55/100/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
$V_{\text {PR }}$	Input to Output Test Voltage, Method b, $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $\mathrm{tm}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	1594			$\mathrm{V}_{\text {peak }}$
	Input to Output Test Voltage, Method a, $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{tm}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	1275			$\mathrm{V}_{\text {peak }}$
$V_{\text {IORM }}$	Max. Working Insulation Voltage	850			$V_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over Voltage	6000			$V_{\text {peak }}$
	External Creepage	7			mm
	External Clearance	7			mm
	Insulation Thickness	0.5			mm
RIO	Insulation Resistance at Ts, $\mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}$	10^{9}			Ω

Typical Performance Curves

Figure 1. LED Forward Voltage vs. Forward Current

Figure 3. Trigger Current vs. Ambient Temperature

I_{F} vs. Temperature (normalized)

Figure 3 shows the increase of the trigger current when the device is expected to operate at an ambient temperature below $25^{\circ} \mathrm{C}$. Multiply the normalized I_{FT} shown this graph with the data sheet guaranteed I_{FT}.
Example:
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{FT}}=10 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{FT}} @-40^{\circ} \mathrm{C}=10 \mathrm{~mA} \times 1.4=14 \mathrm{~mA}$

Phase Control Considerations

LED Trigger Current versus PW (normalized)

Random Phase Triac drivers are designed to be phase controllable. They may be triggered at any phase angle within the AC sine wave. Phase control may be accomplished by an AC line zero cross detector and a variable pulse delay generator which is synchronized to the zero

Figure 4. LED Current Required to Trigger vs. LED Pulse Width

cross detector. The same task can be accomplished by a microprocessor which is synchronized to the AC zero crossing. The phase controlled trigger current may be a very short pulse which saves energy delivered to the input LED. LED trigger pulse currents shorter than $100 \mu \mathrm{~s}$ must have an increased amplitude as shown on Figure 4. This graph shows the dependency of the trigger current I_{FT} versus the pulse width can be seen on the chart delay $\mathrm{t}(\mathrm{d})$ versus the LED trigger current.
$I_{F T}$ in the graph $I_{F T}$ versus (PW) is normalized in respect to the minimum specified I_{FT} for static condition, which is specified in the device characteristic. The normalized I_{FT} has to be multiplied with the devices guaranteed static trigger current.

Example:

Guaranteed $\mathrm{I}_{\mathrm{FT}}=10 \mathrm{~mA}$, Trigger pulse width $\mathrm{PW}=3 \mu \mathrm{~s}$ $\mathrm{I}_{\mathrm{FT}}($ pulsed $)=10 \mathrm{~mA} \times 5=50 \mathrm{~mA}$

Minimum LED Off Time in Phase Control Applications

In Phase control applications one intends to be able to control each AC sine half wave from 0° to 180°. Turn on at 0° means full power and turn on at 180° means zero power. This is not quite possible in reality because triac driver and triac have a fixed turn on time when activated at zero degrees. At a phase control angle close to 180° the driver's turn on pulse at the trailing edge of the AC sine wave must be limited to end 200 ms before AC zero cross as shown in Figure 5. This assures that the triac driver has time to switch off. Shorter times may cause loss of control at the following half cycle.

I_{FT} versus dv/dt

Triac drivers with good noise immunity (dv/dt static) have internal noise rejection circuits which prevent false
triggering of the device in the event of fast raising line voltage transients. Inductive loads generate a commutating dv/dt that may activate the triac drivers noise suppression circuits. This prevents the device from turning on at its specified trigger current. It will in this case go into the mode of "half waving" of the load. Half waving of the load may destroy the power triac and the load.
Figure 8 shows the dependency of the triac drivers I_{FT} versus the reapplied voltage rise with a Vp of 400V. This dv/dt condition simulates a worst case commutating dv/dt amplitude.

It can be seen that the $I_{\text {FT }}$ does not change until a commutating $\mathrm{dv} / \mathrm{dt}$ reaches $1000 \mathrm{~V} / \mathrm{ms}$. The data sheet specified $I_{F T}$ is therefore applicable for all practical inductive loads and load factors.

Figure. 7 Leakage Current, $I_{\text {DRM }}$ vs. Temperature

Figure. 8 LED Trigger Current, $\mathrm{I}_{\text {FT }}$ vs. dv/dt

t (delay), $t(f)$ versus $I_{F T}$

The triac driver's turn on switching speed consists of a turn on delay time $\mathrm{t}(\mathrm{d})$ and a fall time $\mathrm{t}(\mathrm{f})$. Figure 9 shows that the delay time depends on the LED trigger current, while the actual trigger transition time $\mathrm{t}(\mathrm{f})$ stays constant with about one micro second.

The delay time is important in very short pulsed operation because it demands a higher trigger current at very short trigger pulses. This dependency is shown in the graph I_{FT} vs. LED PW.

The turn on transition time $\mathrm{t}(\mathrm{f})$ combined with the power triac's turn on time is important to the power dissipation of this device.

Switching Time Test Circuit

Figure 9. Delay Time, $\mathbf{t}(\mathrm{d})$, and Fall Time, $\mathrm{t}(\mathrm{f})$, vs. LED Trigger Current

1. The mercury wetted relay provides a high speed repeated pulse to the D.U.T.
2. 100 x scope probes are used, to allow high speeds and voltages.
3. The worst-case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable $\mathrm{R}_{\text {TEST }}$ allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. τ_{RC} is measured at this point and recorded.

Figure 10. Static dv/dt Test Circuit

Applications Guide

Basic Triac Driver Circuit

The new random phase triac driver family MOC3052M and MOC3051M are very immune to static $\mathrm{dv} / \mathrm{dt}$ which allows snubberless operations in all applications where external generated noise in the AC line is below its guaranteed dv/dt withstand capability. For these applications a snubber circuit is not necessary when a noise insensitive power triac is used. Figure 11 shows the circuit diagram. The triac driver is directly connected to the triac main terminal 2 and a series Resistor R which limits the current to the triac driver. Current limiting resistor R must have a minimum value which restricts the current into the driver to maximum 1A.

$$
\mathrm{R}=\mathrm{Vp} \mathrm{AC} / \mathrm{I}_{\mathrm{TM}} \max \text { rep. }=\mathrm{Vp} \mathrm{AC} / 1 \mathrm{~A}
$$

The power dissipation of this current limiting resistor and the triac driver is very small because the power triac carries the load current as soon as the current through driver and current limiting resistor reaches the trigger current of the power triac. The switching transition times for the driver is only one micro second and for power triacs typical four micro seconds.

Figure 11. Basic Driver Circuit

Triac Driver Circuit for Noisy Environments

When the transient rate of rise and amplitude are expected to exceed the power triacs and triac drivers maximum ratings a snubber circuit as shown in Figure 12 is recommended. Fast transients are slowed by the R-C snubber and excessive amplitudes are clipped by the Metal Oxide Varistor MOV.

Triac Driver Circuit for Extremely Noisy Environments

As specified in the noise standards IEEE472 and IEC255-4.

Industrial control applications do specify a maximum transient noise $\mathrm{dv} / \mathrm{dt}$ and peak voltage which is superimposed onto the AC line voltage. In order to pass this environment noise test a modified snubber network as shown in Figure 13 is recommended.

Figure 12. Triac Driver Circuit for Noisy Environments

Figure 13. Triac Driver Circuit for Extremely Noisy Environments

Package Dimensions

Through Hole

0.4" Lead Spacing

Recommended Pad Layout for Surface Mount Leadform

Note:

All dimensions are in inches (millimeters).

Ordering Information

Option	Order Entry Identifier (Example)	Description
No option	MOC3051M	Standard Through Hole Device
S	MOC3051SM	Surface Mount Lead Bend
SR2	MOC3051SR2M	Surface Mount; Tape and Reel
T	MOC3051TM	$0.4 "$ Lead Spacing
V	MOC3051VM	VDE 0884
TV	MOC3051TVM	VDE 0884, 0.4" Lead Spacing
SV	MOC3051SVM	VDE 0884, Surface Mount
SR2V	MOC3051SR2VM	VDE 0884, Surface Mount, Tape and Reel

Marking Information

Definitions	
1	Fairchild logo
2	Device number
3	VDE mark (Note: Only appears on parts ordered with VDE option - See order entry table)
4	One digit year code, e.g., '3'
5	Two digit work week ranging from '01' to ‘53'
6	Assembly package code

*Note - Parts that do not have the ' V ' option (see definition 3 above) that are marked with date code ' 325 ' or earlier are marked in portrait format.

Reflow Profile

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	$150^{\circ} \mathrm{C}$
Temperature Max. (Tsmax)	$200^{\circ} \mathrm{C}$
Time (t_{S}) from (Tsmin to Tsmax)	$60-120$ seconds
Ramp-up Rate (t_{L} to t_{P})	$3^{\circ} \mathrm{C} /$ second max.
Liquidous Temperature (T_{L})	$217^{\circ} \mathrm{C}$
Time (t_{L}) Maintained Above (T_{L})	$60-150$ seconds
Peak Body Package Temperature	$260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Time ($\left.\mathrm{t}_{\mathrm{P}}\right)$ within $5^{\circ} \mathrm{C}$ of $260^{\circ} \mathrm{C}$	30 seconds
Ramp-down Rate $\left(\mathrm{T}_{\mathrm{P}}\right.$ to $\left.\mathrm{T}_{\mathrm{L}}\right)$	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	8 minutes max.

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM ${ }^{\text {™ }}$	F-PFS ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {® }}$
Build it Now $^{\text {™ }}$	FRFET ${ }^{\text {® }}$	PowerXS ${ }^{\text {TM }}$	
CorePLUS ${ }^{\text {™ }}$	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop™	P wer
CorePOWERTM	Green FPS ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TinyBoost ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	Green FPSS ${ }^{\text {™ }}$ e-Series ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {TM }}$
CTL ${ }^{\text {TM }}$	Gmax ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {™ }}$	TinyLogic ${ }^{\text {® }}$
Current Transfer Logic ${ }^{\text {TM }}$	GTO ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TINYOPTOTM
EcoSPARK ${ }^{\text {® }}$	IntelliMAX ${ }^{\text {tM }}$	()	TinyPower ${ }^{\text {TM }}$
EfficentMax ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {™ }}$	$\bigcirc_{\text {тM }}$	TinyPWM ${ }^{\text {™ }}$
EZSWITCH ${ }^{\text {™ }}$	MegaBuck ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
[$7^{\text {TM * }}$	MICROCOUPLER ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
$E=$	MicroFET ${ }^{\text {m }}$	SMART START ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\text {TM* }}$
$\Gamma^{\text {® }}$	MicroPak ${ }^{\text {™ }}$	SPM ${ }^{\text {® }}$	μ SerDes ${ }^{\text {™ }}$
	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	M
Fairchild ${ }^{\text {® }}$	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	M
Fairchild Semiconductor ${ }^{\text {® }}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOT'm-3	SerDes
FACT Quiet Series ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-6	UHC ${ }^{\text {® }}$
$\mathrm{FACT}^{\text {® }}$	OPTOPLANAR ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM- }}$ -	Ultra FRFET ${ }^{\text {TM }}$
$\mathrm{FAST}^{\circledR}$		SupreMOS ${ }^{\text {TM }}$	UniFET ${ }^{\text {cm }}$
FastvCore ${ }^{\text {TM }}$		SyncFETTM	VCX ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	PDP SPM ${ }^{\text {TM }}$	Sync-Lock ${ }^{\text {TM }}$	VisualMax ${ }^{\text {TM }}$
FlashWriter ${ }^{\text {®* }}$ FPSTM	Power-SPM ${ }^{\text {™ }}$	كGESTEM ©*	XS $^{\text {™ }}$
FPS ${ }^{\text {™ }}$			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	\quad Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

