

STRUCTURE Silicon Monolithic Integrated Circuit

NAME OF PRODUCT DC-AC Inverter Control IC

TYPE BD9897FS

FUNCTION • 36V High voltage process

1ch control with Full-Bridge

· Lamp current and voltage sense feed back control

· Sequencing easily achieved with Soft Start Control

· Short circuit protection with Timer Latch

Under Voltage Lock Out

· Mode-selectable the operating or stand-by mode by stand-by pin

· Synchronous operating the other BD9897FS IC's

· BURST mode controlled by PWM and DC input

· Output liner Control by external DC voltage

○Absolute Maximum Ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Supply Voltage	Vcc	36	٧
BST pin	BST	40	V
SW pin	SW	36	٧
BST-SW voltage difference	BST-SW	7	٧
Operating Temperature Range	Topr	-40~+85	Ç
Storage Temperature Range	Tstg	-55∼+150	°C
Maximum Junction Temperature	Tjmax	+150	°C
Power Dissipation	Pd	950*	mW

*Pd derate at 7.6mW/°C for temperature above Ta = 25°C (When mounted on a PCB 70.0mm×70.0mm×1.6mm)

Operating condition

Parameter	Symbol	Limits	Unit
Supply voltage	Vcc	7.5~30.0	V
BST voltage	BST	4.0~36.0	٧
BST-SW voltage difference	BST-SW	4.0~6.5	٧
CT oscillation frequency	fcT	60~180	kHz
BCT oscillation frequency	fвст	0.05~1.00	kHz

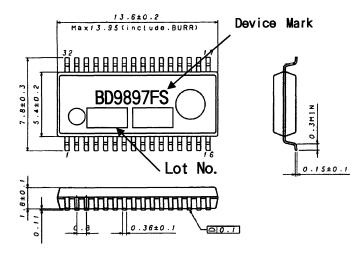
Status of this document

The Japanese version of this document is the official specification.

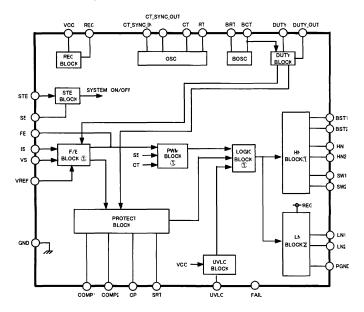
Please use the translation version of this document as a reference to expedite understanding of the official version.

If these are any uncertainty in translation version of this document, official version takes priority.

○ Electric Characteristics (Ta=25°C, VCC=24V)


Parameter			Limits			
T d ramoto.	Symbol	MIN.	TYP.	MAX.	Unit	Cond it i ons
((WHOLE DEVICE))						
Operating current	Icc1	_	7.2	13	mA	CT_SYNC_IN = OPEN
Stand-by current	Icc2	_	13.0	30.0	μΑ	
((STAND BY CONTROL))	Vest	2.0		VCC	V	I Suppose O N
Stand-by voltage H Stand-by voltage L	VstH VstL	2.0 -0.3		0.8	V	System ON System OFF
((UVLO BLOCK)))	VSIL	-0.3		0.0		System Or r
Operating voltage (VCC)	Vuv I oH	5.7	6.0	6.3	V	T
Hesteresis width (VCC)	⊿VCC_VuvIo	0.26	0.35	0.43	٧	
Operating voltage (UVLO)	Vuv I o2	2.179	2.25	2.321	٧	
Hesteresis width (UVL0)	⊿Vuvlo	0.074	0.098	0.122	٧	
((REG BLOCK))						
REG output voltage	VREG	5.68	5.80	5.92	٧	VCC>7.0V
REG source current	IREG	20.0	_	_	mA	
((OSC BLOCK))	l lest	1.35/(RT*7)	1.5/(RT*6)	1.65/(RT*5)	A	T
Active edge setting current Negative edge setting current	lact Ineg	lact×29	lact ×35	lact×41	A	
OSC Max voltage	VOSCH	1.8	2.0	2.2	v	fCT=120kHz
OSC Min voltage	VOSCL	0.35	0.45	0.60	v	fCT=120kHz
Soft start current	ISS	0.6	1.1	1.6	μΑ	
SRT ON resistance	RSRT		100	200	Ω	
((BOSC BLOCK))					-	
BOSC Max voltage	VBCTH	1.94	2.00	2.06	V	fBCT=0.3kHz
BOSC Min voltage	VBCTL	0,40	0.50	0,60	V	fBCT=0. 3kHz
BOSC constant current	IBCT	1.35/BRT	1.5/RT	1.65/RT	Ā	VBCT=0.2V
	fBCT	291	300	309	Hz	(BRT=33k Ω BCT=0.048 μF)
BOSC frequency ((FEED BACK BLOCK))	1001	231	300	303	nz_	(Bh1=33K \$2 BC1=0:040 µF)
	VIST	1.225	1, 250	1.275	l v	T
IS threshold voltage 1		1.225				
IS threshold voltage 2	VIS2	_	VREFIN	VIS①	٧	VREF applying voltage
VS threshold voltage	VVS	1.220	1.250	1.280	٧	
IS source current 1	1181	_	-	0.9	μA	DUTY=2.2V
IS source current 2	1182	32	50	68	μA	DUTY=0V IS=0.5V
VS source current	IVS VISCOMP①	-	-	0.9	μΑ	MODELNIN 1 OFW
IS COMP detect voltage ① IS COMP detect voltage ②	VISCOMP(2)	0.90	0.94 VREFIN×0.73	0.98	V V	VREFIN≥1.25V VREFIN<1.25V
VREF input voltage range	VREFIN	0.6	-	1.6	i v	No effect at VREF>1.25V
((DUTY BLOCK))		<u> </u>				
High voltage	VDUTY-OUTH	2.8	3.1	3.4	٧	
Low voltage	VDUTY-OUTL		-	0.5	٧	
DUTY-OUT sink resistance	RDUTY-OUTSink		150	300	Ω	
OUTY-OUT source resistance ((OUTPUT BLOCK))	RDUTY-0UTSouce	<u> </u>	250	_500	Ω	
LN output sink resistance	RsinkLN	_	1.5	3.0	Ω	1
LN output source resistance	RsourceLN		5	10	Ω	
HN output sink resistance	RsinkHN	_	2.5	5.0	Ω	VBST-VSW=5.0V
HN output source resistance	RsourceLN	_	5	10	Ω	VBST-VSW=5.0V
MAX DUTY	MAX DUTY	46.0	48.0	49.5	%	FOUT=60kHz
OFF period	TOFF	100	200	400	ns	(DT 4 71:0 07 005 5)
Drive output frequency ((TIMER LATCH BLOCK))	FOUT	58.5	60.0	61.5	kHz	(RT=4.7k Ω CT=235pF)
Timer Latch setting voltage	VCP	1.94	2.0	2.06	l v	1
Timer Latch setting vortage	ICP	0.40	0.55	0.70	μΑ	
((COMP CLOCK))						
COMP1 over voltage detect voltage	VCOMPH	2.460	2. 485	2.510	٧	VSS>2.2V
COMP2 over voltage detect voltage	VCOMP2_H	2.460	2.485	2.510	V	VSS>2.2V
COMP2 under voltage detect voltage ①	VCOMP_L_1	1.225	1.25	1.275	V	VSS > 2. 2V
COMIP2 under voltage detect voltage ② ((Synchronous Block))	VCOMP_L_2	0.606	0.625	0.644	٧	VSS < 2. 2V
			3.1	3.4	V	_
High voltage	VCT SYNCH	1 2.8				
High voltage	VCT_SYNCH VCT_SYNCI	2.8	3.1	-	+	
Low voltage	VCT_SYNCL	_	-	0.5	٧	
	VCT_SYNCL RCT_SYNC_SYNC			-	V Ω	
Low voltage CT_SYNC sink resistance	VCT_SYNCL	_	 150	0.5 300	٧	

(This product is not designed to be radiation-resistant.)


OPackage Dimensions

OPin Description

SSOP-A32 (Unit:mm)

OBlock Diagram

PIN No.	PIN NAME	FUNCTION
1	PGND	Ground for FET drivers
2	LN2	NMOS FET driver
3	HN2	NMOS FET driver
4	SW2	Lower rail voltage for HN2 output
-5	BST2	Boot-Strap input for HN2 output
6	CT_SYNC_IN	CT synchronous signal input pin
7	CT_SYNC_OUT	CT synchronous signal output pin
8	SRT	External resistor from SRT to RT for adjusting the triangle oscillator
9	RT	External resistor from SRT to RT for adjusting the triangle oscillator
10	СТ	External capacitor from CT to GND for adjusting the triangle oscillator
11	GND	GROUND
12	ВСТ	External capacitor from BCT to GND for adjusting the BURST triangle oscillator
13	BRT	External resistor from BRT to GND for adjusting the BURST triangle oscillator
14	DUTY	Control PWM mode and BURST mode
15	DUTY_OUT	BURST signal output pin
16	STB	Stand-by switch
17	CP	External capacitor from CP to GND for Timer Latch
18	FAIL	COMP2 under voltage protect clock output
19	VREF	Reference voltage input pin for Error amplifier
20	vs	Error amplifier input
21	IS	Error amplifier input
22	FB	Error amplifier output
23	SS	External capacitor from SS to GND for Soft Start Control
24	COMP2	Under, over voltage detect pin
25	COMP1	Over voltage detect pin
26	VCC	Supply voltage_input
27	UVL0	External Under Voltage Lock Out
28	REG	Internal regulator output
29	BST1	Boot-Strap input for HN1 output
30	SW1	Lower rail voltage for HN1 output
31	HN1	NMOS FET driver
32	LN1	NMOS FET driver

ONOTE FOR USE

- 1. When designing the external circuit, including adequate margins for variation between external devices and IC. Use adequate margins for steady state and transient characteristics.
- 2. The circuit functionality is guaranteed within of ambient temperature operation range as long as it is within recommended operating range. The standard electrical characteristic values cannot be guaranteed at other voltages in the operating ranges, however the variation will be small.
- 3. Mounting failures, such as misdirection or miscounts, may harm the device.
- 4. A strong electromagnetic field may cause the IC to malfunction.
- 5. The GND pin should be the location within ± 0.3 V compared with the PGND pin.
- 6. BD9897FS incorporate a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation of the thermal shutdown circuit is assumed.
- 7. Absolute maximum ratings are those values that, if exceeded, may cause the life of a device to become significantly shortened. Moreover, the exact failure mode caused by short or open is not defined. Physical countermeasures, such as a fuse, need to be considered when using a device beyond its maximum ratings.
- 8. About the external FET, the parasitic Capacitor may cause the gate voltage to change, when the drain voltage is switching. Make sure to leave adequate margin for this IC variation.
- 9. On operating Slow Start Control (SS is less than 2.2V), It does not operate Timer Latch.
- 1 0. By STB voltage, BD9897FS are changed to 2 states. Therefore, do not input STB pin voltage between one state and the other state $(0.8\sim2.0V)$.
- 1 1. The pin connected a connector need to connect to the resistor for electrical surge destruction. This IC is a monolithic IC which (as shown is Fig-1) has P* substrate and between the various pins. A P-N junction is formed from this P layer of each pin. For example, the relation between each potential is as follows,
 - (When GND > PinB and GND > PinA, the P-N junction operates as a parasitic diode.)
 - (When PinB > GND > PinA, the P-N junction operates as a parasitic transistor.)

Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits as well as operation faults and physical damage. Accordingly you must not use methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin.

- 1 2. This IC is a monolithic IC which (as shown is Fig-1)has P* substrate and between the various pins. A P-N junction is formed from this P layer of each pin. For example, the relation between each potential is as follows,
 - (When GND > PinB and GND > PinA, the P-N junction operates as a parasitic diode.)
 - (When PinB > GND > PinA, the P-N junction operates as a parasitic transistor.)

Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits as well as operation faults and physical damage. Accordingly you must not use methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin.

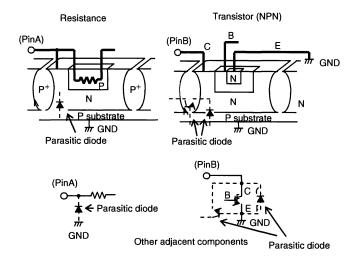


Fig-1 Simplified structure of a Bipolar IC

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUPOPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2007 ROHM CO.,LTD.

ROHM CO., LTD. 21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

oan TEL:+81-75-311-2121 FAX:+81-75-315-0172

