BC556B, BC557, A, B, C, BC558B, C

Amplifier Transistors
 PNP Silicon

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC556 BC557 BC558	$V_{\text {CEO }}$	$\begin{aligned} & -65 \\ & -45 \\ & -30 \end{aligned}$	Vdc
Collector-Base Voltage BC556 BC557 BC558	$\mathrm{V}_{\mathrm{CBO}}$	$\begin{aligned} & -80 \\ & -50 \\ & -30 \end{aligned}$	Vdc
Emitter-Base Voltage	VEBO	-5.0	Vdc
Collector Current - Continuous - Peak	$\begin{aligned} & \text { IC } \\ & \text { ICM } \end{aligned}$	$\begin{aligned} & -100 \\ & -200 \end{aligned}$	mAdc
Base Current - Peak	IBM	-200	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{gathered} 625 \\ 5.0 \end{gathered}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~mW}}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 1.5 \\ & 12 \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating and Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	83.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ON Semiconductor ${ }^{\text {T }}$
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
BC556B	TO-92	5000 Units/Box
BC556BRL1	TO-92	2000/Tape \& Reel
BC556BZL1	TO-92	2000/Ammo Pack
BC557	TO-92	5000 Units/Box
BC557ZL1	TO-92	2000/Ammo Pack
BC557A	TO-92	5000 Units/Box
BC557AZL1	TO-92	2000/Ammo Pack
BC557B	TO-92	5000 Units/Box
BC557BRL1	TO-92	2000/Tape \& Reel
BC557BZL1	TO-92	2000/Ammo Pack
BC557C	TO-92	5000 Units/Box
BC557CZL1	TO-92	2000/Ammo Pack
BC558B	TO-92	5000 Units/Box
BC558BRL	TO-92	2000/Tape \& Reel
BC558BRL1	TO-92	2000/Tape \& Reel
BC558BZL1	TO-92	2000/Ammo Pack
BC558C	TO-92	5000 Units/Box
BC558CRL1	TO-92	2000/Tape \& Reel
BC558ZL1	TO-92	2000/Ammo Pack
BC558CZL1	TO-92	2000/Ammo Pack

BC556B, BC557, A, B, C, BC558B, C

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=-2.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\begin{aligned} & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \end{aligned}$	$\mathrm{V}_{\text {(BR) }}$ CEO	$\begin{aligned} & -65 \\ & -45 \\ & -30 \end{aligned}$	-	-	V
Collector-Base Breakdown Voltage ($\mathrm{I} \mathrm{C}=-100 \mu \mathrm{Adc}$)	$\begin{aligned} & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \end{aligned}$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	$\begin{aligned} & -80 \\ & -50 \\ & -30 \end{aligned}$	-	-	V
Emitter-Base Breakdown Voltage $(\mathrm{I} E=-100 \mu \mathrm{Adc}, \mathrm{I} \mathrm{C}=0)$	BC556 BC557 BC558	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	$\begin{aligned} & -5.0 \\ & -5.0 \\ & -5.0 \end{aligned}$	-	-	V
Collector-Emitter Leakage Current $\begin{aligned} & \left(\mathrm{V}_{\text {CES }}=-40 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {CES }}=-20 \mathrm{~V}\right) \end{aligned}$ $\left(\mathrm{V}_{\mathrm{CES}}=-20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \\ & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \end{aligned}$	ICES	-	$\begin{gathered} -2.0 \\ -2.0 \\ -2.0 \\ - \\ - \end{gathered}$	$\begin{aligned} & -100 \\ & -100 \\ & -100 \\ & -4.0 \\ & -4.0 \\ & -4.0 \end{aligned}$	nA $\mu \mathrm{A}$

BC556B, BC557, A, B, C, BC558B, C

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

ON CHARACTERISTICS

DC Current Gain $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=-10 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}\right) \end{aligned}$ $\left(\mathrm{I}_{\mathrm{C}}=-100 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}\right)$	A Series Device B Series Devices C Series Devices BC557 A Series Device B Series Devices C Series Devices A Series Device B Series Devices C Series Devices	hFE	$\begin{gathered} - \\ - \\ 120 \\ 120 \\ 180 \\ 420 \\ - \\ - \end{gathered}$	$\begin{gathered} 90 \\ 150 \\ 270 \\ - \\ 170 \\ 290 \\ 500 \\ 120 \\ 180 \\ 300 \end{gathered}$		-
Collector-Emitter Saturation Voltage ($\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{mAdc}$) ($\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=$ see Note 1) ($\mathrm{I} \mathrm{C}=-100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-5.0 \mathrm{mAdc}$)		$\mathrm{V}_{\text {CE }}$ (sat)		$\begin{gathered} -0.075 \\ -0.3 \\ -0.25 \end{gathered}$	$\begin{array}{r} -0.3 \\ -0.6 \\ -0.65 \end{array}$	V
Base-Emitter Saturation Voltage $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{mAdc}\right) \\ & \left(\mathrm{I} \mathrm{C}=-100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-5.0 \mathrm{mAdc}\right) \end{aligned}$		$\mathrm{V}_{\text {BE }}$ (sat)		$\begin{aligned} & -0.7 \\ & -1.0 \end{aligned}$	-	V
Base-Emitter On Voltage $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=-2.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{IC}=-10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}\right) \end{aligned}$		$V_{B E}$ (on)	-0.55	$\begin{gathered} -0.62 \\ -0.7 \end{gathered}$	$\begin{aligned} & -0.7 \\ & -0.82 \end{aligned}$	V

SMALL-SIGNAL CHARACTERISTICS

$\begin{aligned} & \text { Current-Gain - Bandwidth Product } \\ & \quad\left(\mathrm{IC}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}\right) \end{aligned}$	$\begin{aligned} & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \end{aligned}$	${ }^{\text {T }}$	-	$\begin{aligned} & 280 \\ & 320 \\ & 360 \end{aligned}$	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{I} \mathrm{C}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$		Cob	-	3.0	6.0	pF
$\begin{aligned} & \text { Noise Figure } \\ & \quad\left(\mathrm{I} \mathrm{C}=-0.2 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{~V},\right. \\ & \mathrm{RS}_{\mathrm{S}}=2.0 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz}, \Delta \mathrm{f}=200 \mathrm{~Hz} \text {) } \end{aligned}$	$\begin{aligned} & \text { BC556 } \\ & \text { BC557 } \\ & \text { BC558 } \end{aligned}$	NF	-	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	dB
Small-Signal Current Gain $\left(\mathrm{IC}=-2.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}\right)$	BC557 A Series Device B Series Devices C Series Devices	$\mathrm{hfe}^{\text {f }}$	$\begin{aligned} & 125 \\ & 125 \\ & 240 \\ & 450 \end{aligned}$	-	$\begin{aligned} & 900 \\ & 260 \\ & 500 \\ & 900 \end{aligned}$	-

Note 1: $\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}$ on the constant base current characteristics, which yields the point $\mathrm{I}_{\mathrm{C}}=-11 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=-1.0 \mathrm{~V}$.

BC556B, BC557, A, B, C, BC558B, C
BC557/BC558

Figure 1. Normalized DC Current Gain

Figure 3. Collector Saturation Region

Figure 5. Capacitances

Figure 2. "Saturation" and "On" Voltages

Figure 4. Base-Emitter Temperature Coefficient

Figure 6. Current-Gain - Bandwidth Product

BC556B, BC557, A, B, C, BC558B, C
BC556

Figure 7. DC Current Gain

Figure 9. Collector Saturation Region

Figure 11. Capacitance

Figure 8. "On" Voltage

Figure 10. Base-Emitter Temperature Coefficient

Figure 12. Current-Gain - Bandwidth Product

BC556B, BC557, A, B, C, BC558B, C

Figure 13. Thermal Response

Figure 14. Active Region - Safe Operating Area

The safe operating area curves indicate $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}$ limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 14 is based upon $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}=150^{\circ} \mathrm{C}$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $\mathrm{T}_{\mathrm{J}(\mathrm{pk})} \leq 150^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

BC556B, BC557, A, B, C, BC558B, C

PACKAGE DIMENSIONS

TO-92
(TO-226)
CASE 29-11
ISSUE AL

NOTES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIMETERS	
DIM	IIN	MAX	MIN	MAX
A	0.175	0.205	4.45	5.20
B	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500	---	12.70	---
L	0.250	---	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	---	2.54
R	0.115	---	2.93	---
V	0.135	---	3.43	---

STYLE 17:
PIN 1. COLLECTOR
2. BASE
3. EMITTER

BC556B, BC557, A, B, C, BC558B, C

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

