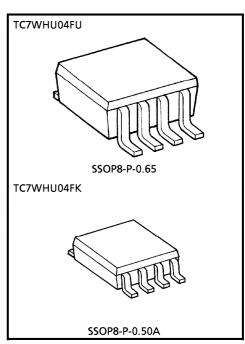
TOSHIBA TC7WHU04FU/FK

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7WHU04FU, TC7WHU04FK

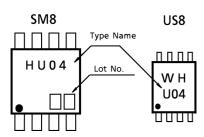
TRIPLE INVERTER

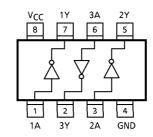

The TC7WHU04 is an advanced high speed CMOS INVERTER fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. Since the internal circuit is composed of a single stage inverter, it can be used in analog applications such as crystal oscillators. An input protection circuit ensures that 0 to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

FEATURES

•	High Speed	··· t _{pd} = 3.5ns (Typ.) at
•	Low Power Dissipation	$\dot{V}_{CC} = 5V$ $\cdots I_{CC} = 2\mu A \text{ (Max.) at}$ $Ta = 25^{\circ}C$

High Noise Immunity $V_{NIH} = V_{NIL} = 10\%$ V_{CC} (Min.)


- Power Down Protection is provided on all inputs.
- Balanced Propagation Delays \cdots $t_{pLH} = t_{pHL}$
- Wide Operating Voltage Range ··· \dot{V}_{CC} (opr) = 2~5.5V

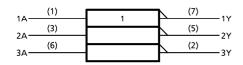

Weight

SSOP8-P-0.65 SSOP8-P-0.65 : 0.02g (Typ.) SSOP8-P-0.50A : 0.01g (Typ.)

MARKING

PIN ASSIGNMENT (TOP VIEW)

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.


 The products described in this document are subject to foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage Range	Vcc	-0.5~7.0	V	
DC Input Voltage	VIN	- 0.5~7.0	V	
DC Output Voltage	Vout	-0.5~V _{CC} +0.5	٧	
Input Diode Current	ΙΚ	– 20	mA	
Output Diode Current	^I ОК	± 20	mA	
DC Output Current	lout	± 25	mA	
DC V _{CC} /Ground Current	lcc	± 50	mA	
Power Dissination	D-	300 (SM8)	mW	
Power Dissipation	PD	200 (US8)		
Storage Temperature	T _{stg}	-65∼150	°C	
Lead Temperature (10 s)	TL	260	°C	

LOGIC DIAGRAM

TRUTH TABLE

Α	Y
L	Н
Н	L

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	VCC	2.0~5.5	V
Input Voltage	VIN	0~5.5	V
Output Voltage	Vout	0~V _{CC}	V
Operating Temperature	T _{opr}	- 40∼85	°C
Input Rise And Fall Time	dt/dv	$0 \sim 100 \text{ (V}_{CC} = 3.3 \pm 0.3 \text{V)}$	ns / V
input kise And Fair Time	dt/dv	$0 \sim 20 (V_{CC} = 5 \pm 0.5V)$	115 / V

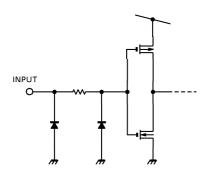
DC ELECTRICAL CHARACTERISTICS

CILA DA CTEDICTIC	CVMDOL	TEST CONDITION		Vcc	7	Ta = 25°0	<u> </u>	Ta = -4	.0∼85°C	UNIT
CHARACTERISTIC	SYMBOL			(S)	MIN.	TYP.	MAX.	MIN.	MAX.	
High-Level		_		2.0	1.7	_	_	1.7		V
Input Voltage	V _{IH}			3.0~ 5.5	VCC ×0.8	1	_	V _C C × 0.8	1	
Low-Level		V _{IL} —		2.0		1	0.30	_	0.30	
Input Voltage	VIL			3.0~ 5.5			V _C C × 0.2	_	V _{CC} ×0.2	V
			I _{OH} = -50μA	2.0	1.8	2.0	_	1.8	_	V
High Lovel	V _{ОН}	V _{IN} = V _{IL}		3.0	2.7	3.0	_	2.7	_	
High-Level Output Voltage				4.5	4.0	4.5	_	4.0		
Output Voltage		V _{IN} = GND	$I_{OH} = -4mA$	3.0	2.58	1	_	2.48	1	
		VIN = GND	$I_{OH} = -8mA$	4.5	3.94	1	_	3.80	l	
	V _{OL}	V _{IN} = V _{IH}	I _{OL} = 50μA	2.0	_	0.0	0.2	_	0.2	V
Low-Level				3.0	_	0.0	0.3	_	0.3	
Output Voltage				4.5	_	0.0	0.5	_	0.5	
Output Voltage		$V_{IN} = V_{CC}$	$I_{OL} = 4mA$	3.0	_		0.36	_	0.44	
			I _{OL} = 8mA	4.5	_	1	0.36	_	0.44	
Input Leakage Current	IN	V _{IN} = 5.5V or GND		0~ 5.5			± 0.1		± 1.0	μ A
Quiescent Supply Current	lcc	V _{IN} = V _{CC} o	V _{IN} = V _{CC} or GND		_	_	2.0	_	20.0	μΑ

AC	ELECTRICAL	CHARACTERISTICS	(Input $t_r = t_f = 3ns$)
----	-------------------	------------------------	----------------------------

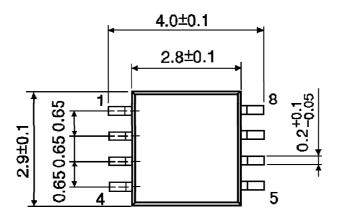
CHARACTERISTIC	SYMBOL	TEST C	TEST CONDITION		Ta = 25°C			Ta = -40~85°C		UNIT
CHARACTERISTIC	STIVIBUL	•	V _{CC} (V)	C _L (pF)	MIN.	TYP.	MAX.	MIN.	MAX.	
		_	3.3 ± 0.3	15	_	5.0	8.9	1.0	10.5	- ns
Propagation Delay	^t pLH ^t pHL			50	_	7.5	11.4	1.0	13.0	
Time			5.0 ± 0.5	15	_	3.5	5.5	1.0	6.5	
				50	_	5.0	7.0	1.0	8.0	
Input Capacitance	C _{IN}		_		_	5	10	_	10	рF
Power Dissipation	Coo	(Note 1)				11				рF
Capacitance	C _{PD}	(NOTE I)			_	''	_			PΓ

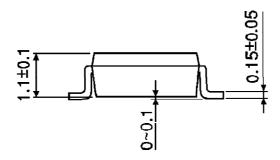
(Note 1): CpD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation:

ICC (opr) = CpD · VCC · fIN + ICC

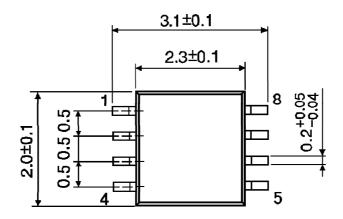
NOISE CHARACTERISTICS (Ta = 25°C, Input $t_r = t_f = 3ns$)

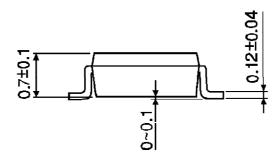

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{CC} (V)	TYP.	LIMIT	UNIT
Quiet Output Maximum Dynamic V _{OL}	V _{OLP}	C _L = 50pF	5.0	0.3	0.8	V
Quiet Output Minimum Dynamic V _{OL}	V _{OLV}	C _L = 50pF	5.0	-0.3	-0.8	V
Minimum High Level Dynamic Input Voltage	V _{IHD}	C _L = 50pF	5.0	_	4.0	V
Maximum Low Level Dynamic Input Voltage	V _{ILD}	C _L = 50pF	5.0	_	1.0	V


INPUT EQUIVALENT CIRCUIT

OUTLINE DRAWING SSOP8-P-0.65

Unit: mm





Weight: 0.02g (Typ.)

OUTLINE DRAWING SSOP8-P-0.50A

Unit: mm

Weight: 0.01g (Typ.)