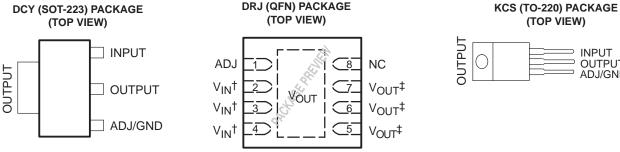
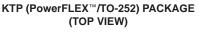
SLVS561A - DECEMBER 2004 - REVISED MARCH 2005

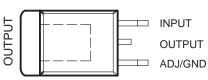
(TOP VIEW)

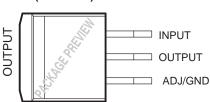

INPUT

OUTPUT

ADJ/GND


- 1.5 V, 1.8 V, 2.5 V, 3.3 V, 5 V, and Adjustable **Output Voltage Options**
- **Output Current of 800 mA**
- **Operates Down to 1.1-V Dropout**


- **Specified Dropout Voltage at Multiple Current Levels**
- 0.2% Line Regulation Maximum
- 0.4% Load Regulation Maximum


[†]V_{IN} pins (2, 3, 4) must be connected together. ‡ V_{OUT} pins (5, 6, 7) must be connected together.

KTE (PowerFLEX™) PACKAGE (TOP VIEW) \square IN TUTFUC OUT □ ADJ/GND

KTT (TO-263) PACKAGE (TOP VIEW)

description/ordering information

The TLV1117 is a positive low-dropout voltage regulator, designed to provide up to 800 mA of output current. The device is available in 1.5 V, 1.8 V, 2.5 V, 3.3 V, 5 V, and adjustable output voltage options. All internal circuitry is designed to operate down to 1-V input-to-output differential. Dropout voltage is specified at a maximum of 1.3 V at 800 mA, decreasing at lower load currents.

The low-profile surface-mount KTP package allows the device to be used in applications where space is limited. The TLV1117 requires a minimum of 10 μF of output capacitance for stability. Output capacitors of this size or larger normally are included in most regulator designs.

Unlike pnp-type regulators, where up to 10% of the output current is wasted as quiescent current, the quiescent current of the TLV1117 flows into the load, increasing efficiency.

The TLV1117C device is characterized for operation over the virtual junction temperature range of 0°C to 125°C, and the TLV1117I device is characterized for operation over the virtual junction temperature range of -40°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerFLEX is a trademark of Texas Instruments.

SLVS561A - DECEMBER 2004 - REVISED MARCH 2005

description/ordering information (continued)

TLV1117C ORDERING INFORMATION

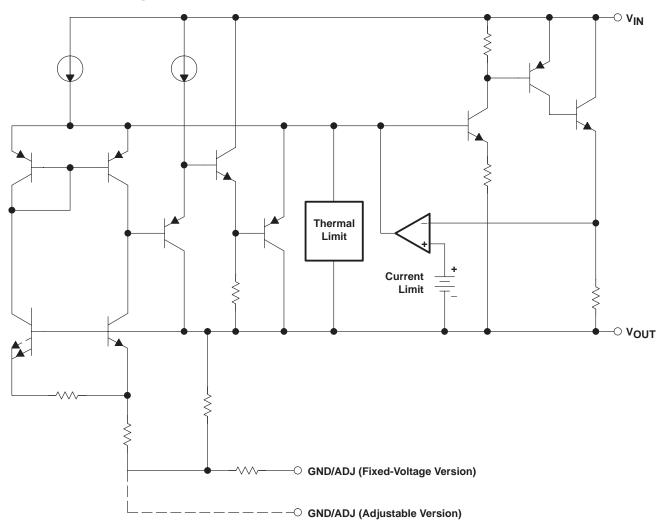
TJ	V _O TYP (V)	PACKAGE†		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		QFN (DRJ)	Reel of 1000	TLV1117-15CDRJR	PREVIEW
	1.5 V	SOT-223 (DCY)	Reel of 2500	TLV1117-15CDCYR	PREVIEW
		TO-263 (KTT)	Reel of 2000	TLV1117-15CKTTR	PREVIEW
		QFN (DRJ)	Reel of 1000	TLV1117-18CDRJR	PREVIEW
	1.8 V	SOT-223 (DCY)	Reel of 2500	TLV1117-18CDCYR	PREVIEW
		TO-263 (KTT)	Reel of 2000	TLV1117-18CKTTR	PREVIEW
		QFN (DRJ)	Reel of 1000	TLV1117-25CDRJR	PREVIEW
	2.5 V	SOT-223 (DCY)	Reel of 2500	TLV1117-25CDCYR	PREVIEW
		TO-263 (KTT)	Reel of 2000	TLV1117-25CKTTR	PREVIEW
	3.3 V	QFN (DRJ)	Reel of 1000	TLV1117-33CDRJR	PREVIEW
000 1- 40500		SOT-223 (DCY)	Reel of 2500	TLV1117-33CDCYR	PREVIEW
0°C to 125°C		TO-263 (KTT)	Reel of 2000	TLV1117-33CKTTR	PREVIEW
	5 V	QFN (DRJ)	Reel of 1000	TLV1117-50CDRJR	PREVIEW
		SOT-223 (DCY)	Reel of 2500	TLV1117-50CDCYR	PREVIEW
		TO-263 (KTT)	Reel of 2000	TLV1117-50CKTTR	PREVIEW
		PowerFLEX (KTE)	Reel of 2000	TLV1117CKTER	TLV1117C
		PowerFLEX/TO-252 [‡] (KTP)	Reel of 2000	TLV1117CKTPR	TV1117
		QFN (DRJ)	Reel of 1000	TLV1117CDRJR	PREVIEW
	ADJ	COT 202 (DOV)	Tube of 80	TLV1117CDCY	1/4
		SOT-223 (DCY)	Reel of 2500	TLV1117CDCYR	V4
		TO-220 (KCS)	Tube of 50	TLV1117CKCS	TLV1117C
		TO-263 (KTT)	Reel of 2000	TLV1117CKTTR	PREVIEW

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡] Complies with TO-252, variation AC.

SLVS561A - DECEMBER 2004 - REVISED MARCH 2005

TLV1117I ORDERING INFORMATION


TJ	V _O TYP (V)	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		QFN (DRJ)	Reel of 1000	TLV1117-15IDRJR	PREVIEW
	1.5 V	SOT-223 (DCY)	Reel of 2500	TLV1117-15IDCYR	PREVIEW
		TO-263 (KTT)	Reel of 2000	TLV1117-15IKTTR	PREVIEW
		QFN (DRJ)	Reel of 1000	TLV1117-18IDRJR	PREVIEW
	1.8 V	SOT-223 (DCY)	Reel of 2500	TLV1117-18IDCYR	PREVIEW
		TO-263 (KTT)	Reel of 2000	TLV1117-18IKTTR	PREVIEW
		QFN (DRJ)	Reel of 1000	TLV1117-25IDRJR	PREVIEW
	2.5 V	SOT-223 (DCY)	Reel of 2500	TLV1117-25IDCYR	PREVIEW
		TO-263 (KTT)	Reel of 2000	TLV1117-25IKTTR	PREVIEW
	3.3 V	QFN (DRJ)	Reel of 1000	TLV1117-33IDRJR	PREVIEW
-40°C to 125°C		SOT-223 (DCY)	Reel of 2500	TLV1117-33IDCYR	PREVIEW
-40°C to 125°C		TO-263 (KTT)	Reel of 2000	TLV1117-33IKTTR	PREVIEW
		QFN (DRJ)	Reel of 1000	TLV1117-50DRJR	PREVIEW
	5 V	SOT-223 (DCY)	Reel of 2500	TLV1117-50IDCYR	PREVIEW
		TO-263 (KTT)	Reel of 2000	TLV1117-50IKTTR	PREVIEW
		PowerFLEX (KTE)	Reel of 2000	TLV1117IKTER	TLV1117I
		PowerFLEX/TO-252 [‡] (KTP)	Reel of 2000	TLV1117IKTPR	TY1117
		QFN (DRJ)	Reel of 1000	TLV1117IDRJR	PREVIEW
	ADJ	COT 202 (DCV)	Tube of 80	TLV1117IDCY	1/0
		SOT-223 (DCY)	Reel of 2500	TLV1117IDCYR	V2
		TO-220 (KCS)	Tube of 50	TLV1117IKCS	TLV1117I
		TO-263 (KTT)	Reel of 2000	TLV1117IKTTR	PREVIEW

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

[‡] Complies with TO-252, variation AC.

SLVS561A - DECEMBER 2004 - REVISED MARCH 2005

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Continuous input voltage	. 20 V
Operating virtual junction temperature	150°C
Storage temperature range, T _{stg} –65°C to	150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SLVS561A - DECEMBER 2004 - REVISED MARCH 2005

package thermal data (see Note 1)

PACKAGE	BOARD	θ JP †	θЈС	θ JA
PowerFLEX (KTE)	High K, JESD 51-5	2.7°C/W		23°C/W
PowerFLEX/TO-252 (KTP)	High K, JESD 51-5	3°C/W		28°C/W
QFN (DRJ)	High K, JESD 51-5	TBD		TBD
SOT (DCY)	High K, JESD 51-7		4°C/W	53°C/W
TO-263 (KTT)	High K, JESD 51-5	TBD		TBD
TO-220 (KCS)	High K, JESD 51-5	3°C/W		19°C/W

[†] For packages with exposed thermal pads, such as QFN, PowerPAD, and PowerFLEX, θ_{JP} is defined as the thermal resistance between the die junction and the bottom of the exposed pad.

recommended operating conditions

			MIN†	MAX	UNIT
		TLV1117	2.7	15	
		TLV1117-15	2.9	15	V
.,	Input voltage	TLV1117-18	3.2	15	
VIN		TLV1117-25	3.9	15	
		TLV1117-33	4.7	15	
		TLV1117-50	6.4	15	
lout	Output current			0.8	Α
Τ.		TLV1117C	0	125	00
TJ	Operating virtual junction temperature range		-40	125	°C

The input-to-output differential across the regulator should provide for some margin against regulator operation at the maximum dropout (for a particular current value). This margin is needed to account for tolerances in both the input voltage (lower limit) and the output voltage (upper limit). The absolute minimum V_{IN} for a desired maximum output current can be calculated by the following:

NOTE 1: Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

VIN(min) = VOUT(max) + VDO(max @ rated current)

SLVS561A - DECEMBER 2004 - REVISED MARCH 2005

TLV1117C electrical characteristics, $T_J = 0^{\circ}C$ to 125°C, all typical values are at $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	MIN	TYP	MAX	UNIT		
	$V_{IN} - V_{OUT} = 2 \text{ V}, I_{OUT} = 10 \text{ mA}, T_J = 25^{\circ}\text{C}$	TI \/444.7	1.238	1.25	1.262		
	I_{OUT} = 10 mA to 800 mA, $V_{IN} - V_{OUT}$ = 1.4 V to 10 V	TLV1117	1.225	1.25	1.27		
	$V_{IN} = 3.5 \text{ V}, I_{OUT} = 10 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	TI \/4447.45	1.485	1.5	1.515		
	V_{IN} = 2.9 V to 10 V, I_{OUT} = 0 to 800 mA	TLV1117-15	1.47	1.5	1.53		
	$V_{IN} = 3.8 \text{ V}, I_{OUT} = 10 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	TI \/4447.40	1.782	1.8	1.818		
Outrout valtage No.	V_{IN} = 3.2 V to 10 V, I_{OUT} = 0 to 800 mA	TLV1117-18	1.764	1.8	1.836	.,	
Output voltage, VOUT	$V_{IN} = 4.5 \text{ V}, I_{OUT} = 10 \text{ mA}, T_J = 25^{\circ}\text{C}$	TI \/4447.05	2.475	2.5	2.525	V	
	V_{IN} = 3.9 V to 10 V, I_{OUT} = 0 to 800 mA	TLV1117-25	2.45	2.5	2.55		
	$V_{IN} = 5 \text{ V}, I_{OUT} = 10 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	TI \/4447.00	3.267	3.3	3.333		
	$V_{IN} = 4.75 \text{ V}$ to 10 V, $I_{OUT} = 0$ to 800 mA	TLV1117-33	3.235	3.3	3.365		
	$V_{IN} = 7 \text{ V}, I_{OUT} = 10 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	TI \/4447.50	4.95	5	5.05		
	V_{IN} = 6.5 V to 12 V, I_{OUT} = 0 to 800 mA	TLV1117-50	4.9	5	5.1		
	$I_{OUT} = 10 \text{ mA}, V_{IN} - V_{OUT} = 1.5 \text{ V to } 13.75 \text{ V}$	TLV1117		0.035	0.2	%	
	$I_{OUT} = 0 \text{ mA}, V_{IN} = 2.9 \text{ V to } 10 \text{ V}$	TLV1117-15		1	6		
Line memberies	$I_{OUT} = 0$ mA, $V_{IN} = 3.2$ V to 10 V	TLV1117-18		1	6		
Line regulation	$I_{OUT} = 0 \text{ mA}, V_{IN} = 3.9 \text{ V to } 10 \text{ V}$	TLV1117-25		1	6	mV	
	$I_{OUT} = 0$ mA, $V_{IN} = 4.75$ V to 15 V	TLV1117-33		1	6		
	$I_{OUT} = 0$ mA, $V_{IN} = 6.5$ V to 15 V	TLV1117-50		1	10		
	$I_{OUT} = 10$ mA to 800 mA, $V_{IN} - V_{OUT} = 3$ V	TLV1117		0.2	0.4	%	
	$I_{OUT} = 0$ to 800 mA, $V_{IN} = 2.9 \text{ V}$	TLV1117-15		1	10		
Load regulation	$I_{OUT} = 0$ to 800 mA, $V_{IN} = 3.2 \text{ V}$	TLV1117-18		1	10		
	$I_{OUT} = 0$ to 800 mA, $V_{IN} = 3.9 \text{ V}$	TLV1117-25		1	10	mV	
	$I_{OUT} = 0$ to 800 mA, $V_{IN} = 4.75 \text{ V}$	TLV1117-33		1	10		
	$I_{OUT} = 0$ to 800 mA, $V_{IN} = 6.5 \text{ V}$	TLV1117-50		1 1			
	I _{OUT} = 100 mA			1.1	1.2		
Dropout voltage, V _{DO} (see Note 2)	I _{OUT} = 500 mA			1.15	1.25	V	
(366 14016 2)	I _{OUT} = 800 mA		1.2	1.3			
Current limit	$V_{IN} - V_{OUT} = 5 \text{ V}, T_{J} = 25^{\circ}\text{C}^{\ddagger}$		0.8	1.2	1.5	Α	
Minimum load current	V _{IN} = 15 V	TLV1117		1.7	5	mA	
Quiescent current	V _{IN} ≤ 15 V	All fixed-voltage options		5	10	mA	
Thermal regulation	30 ms pulse, T _A = 25°C		0.01	0.1	%/W		
Ripple rejection	V _{IN} – V _{OUT} = 3 V, V _{ripple} = 1 V _{pp} , f = 120 Hz		60	78		dB	

[†] All characteristics are measured with a 10-μF capacitor across the input and a 10-μF capacitor across the output. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

NOTE 2: Dropout is defined as the V_{IN} to V_{OUT} differential at which V_{OUT} drops 100 mV below the value of V_{OUT} , measured at $V_{IN} = V_{OUT}(nom) + 1.5 \text{ V}$.

[‡] Current limit test specified under recommended operating conditions

SLVS561A - DECEMBER 2004 - REVISED MARCH 2005

TLV1117C electrical characteristics, T_J = 0°C to 125°C, all typical values are at T_J = 25°C (unless otherwise noted) (continued)

PARAMETER	TEST CONDITIONS†	MIN	TYP	MAX	UNIT
ADJUSTMENT pin current			80	120	μΑ
Change in ADJUSTMENT pin current	$I_{OUT} = 10 \text{ mA to } 800 \text{ mA}, V_{IN} - V_{OUT} = 1.4 \text{ V to } 10 \text{ V}$		0.2	5	μΑ
Temperature stability	T _J = full range		0.5		%
Long-term stability	1000 hrs, No load, T _A = 125°C		0.3		%
Output noise voltage (% of VOUT)	f = 10 Hz to 100 kHz		0.003		%

[†] All characteristics are measured with a 10-μF capacitor across the input and a 10-μF capacitor across the output. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

SLVS561A - DECEMBER 2004 - REVISED MARCH 2005

TLV1117I electrical characteristics, T_J = -40°C to 125°C, all typical values are at T_J = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT	
	$V_{IN} - V_{OUT} = 2 \text{ V}, I_{OUT} = 10 \text{ mA}, T_J = 25^{\circ}\text{C}$	TI \/444.7	1.238	1.25	1.262		
	$I_{OUT} = 10 \text{ mA to } 800 \text{ mA}, V_{IN} - V_{OUT} = 1.4 \text{ V to } 10 \text{ V}$	TLV1117	1.2	1.25	1.29		
	$V_{IN} = 3.5 \text{ V}, I_{OUT} = 10 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	TI \/444.7.45	1.485	1.5	1.515		
	$V_{IN} = 2.9 \text{ V to } 10 \text{ V}, I_{OUT} = 0 \text{ to } 800 \text{ mA}$	TLV1117-15	1.44	1.5	1.56		
	$V_{IN} = 3.8 \text{ V}, I_{OUT} = 10 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	TI V4447 40	1.782	1.8	1.818		
Output valtage Mana	$V_{IN} = 3.2 \text{ V to } 10 \text{ V}, I_{OUT} = 0 \text{ to } 800 \text{ mA}$	TLV1117-18	1.728	1.8	1.872	V	
Output voltage, VOUT	$V_{IN} = 4.5 \text{ V}, I_{OUT} = 10 \text{ mA}, T_{J} = 25^{\circ}\text{C}$	TI V4447 OF	2.475	2.5	2.525	V	
	$V_{IN} = 3.9 \text{ V to } 10 \text{ V}, I_{OUT} = 0 \text{ to } 800 \text{ mA}$	TLV1117-25	2.4	2.5	2.6		
	$V_{IN} = 5 \text{ V}, I_{OUT} = 10 \text{ mA}, T_J = 25^{\circ}\text{C}$	TI \/444.7 00	3.267	3.3	3.333		
	$V_{IN} = 4.75 \text{ V to } 10 \text{ V}, I_{OUT} = 0 \text{ to } 800 \text{ mA}$	TLV1117-33	3.168	3.3	3.432		
	$V_{IN} = 7 \text{ V, } I_{OUT} = 10 \text{ mA, } T_J = 25^{\circ}\text{C}$	TI V/4447 FO	4.95	5	5.05		
	$V_{IN} = 6.5 \text{ V to } 12 \text{ V}, I_{OUT} = 0 \text{ to } 800 \text{ mA}$	TLV1117-50	4.8	5	5.2		
	$I_{OUT} = 10 \text{ mA}, V_{IN} - V_{OUT} = 1.5 \text{ V to } 13.75 \text{ V}$	TLV1117		0.035	0.3	%	
	$I_{OUT} = 0$ mA, $V_{IN} = 2.9$ V to 10 V	TLV1117-15		1	4.5		
line menulation	$I_{OUT} = 0$ mA, $V_{IN} = 3.2$ V to 10 V	TLV1117-18		1	5.5		
Line regulation	$I_{OUT} = 0$ mA, $V_{IN} = 3.9$ V to 10 V	TLV1117-25		1	7.5	mV	
	$I_{OUT} = 0$ mA, $V_{IN} = 4.75$ V to 15 V	TLV1117-33		1	10		
	$I_{OUT} = 0$ mA, $V_{IN} = 6.5$ V to 15 V	TLV1117-50		1	15		
	$I_{OUT} = 10 \text{ mA to } 800 \text{ mA}, V_{IN} - V_{OUT} = 3 \text{ V}$	TLV1117		0.2	0.5	%	
	$I_{OUT} = 0$ to 800 mA, $V_{IN} = 2.9 \text{ V}$	TLV1117-15		1	7.5		
Load regulation	$I_{OUT} = 0$ to 800 mA, $V_{IN} = 3.2 \text{ V}$	TLV1117-18		1	9		
	$I_{OUT} = 0$ to 800 mA, $V_{IN} = 3.9 \text{ V}$	TLV1117-25		1	12.5	mV	
	$I_{OUT} = 0$ to 800 mA, $V_{IN} = 4.75 \text{ V}$	TLV1117-33		1	15		
	$I_{OUT} = 0$ to 800 mA, $V_{IN} = 6.5 \text{ V}$	TLV1117-50	V1117-50		20		
	I _{OUT} = 100 mA			1.1	1.3		
Dropout voltage, V _{DO} (see Note 2)	I _{OUT} = 500 mA			1.15	1.35	V	
,	I _{OUT} = 800 mA			1.2	1.4		
Current limit	$V_{IN} - V_{OUT} = 5 \text{ V, T}_{J} = 25^{\circ}\text{C}^{\ddagger}$		0.8	1.2	1.5	Α	
Minimum load current	V _{IN} = 15 V	TLV1117		1.7	5	mA	
Quiescent current	V _{IN} ≤ 15 V	All fixed- voltage options		5	15	mA	
Thermal regulation	30-ms pulse, $T_A = 25^{\circ}C$			0.01	0.1	%/W	
Ripple rejection	$V_{IN} - V_{OUT} = 3 \text{ V}, V_{ripple} = 1 V_{pp}, f = 120 \text{ Hz}$		60	75		dB	

T All characteristics are measured with a 10-μF capacitor across the input and a 10-μF capacitor across the output. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

NOTE 2: Dropout is defined as the V_{IN} to V_{OUT} differential at which V_{OUT} drops 100 mV below the value of V_{OUT} , measured at $V_{IN} = V_{OUT}$ (nom) + 1.5 V.

[‡] Current limit test specified under recommended operating conditions

SLVS561A - DECEMBER 2004 - REVISED MARCH 2005

TLV1117I electrical characteristics, T_J = 40°C to 125°C, all typical values are at T_J = 25°C (unless otherwise noted) (continued)

PARAMETER	TEST CONDITIONS [†]	MIN	TYP	MAX	UNIT
ADJUSTMENT pin current			80	120	μΑ
Change in ADJUSTMENT pin current	$I_{OUT} = 10 \text{ mA to } 800 \text{ mA}, V_{IN} - V_{OUT} = 1.4 \text{ V to } 10 \text{ V}$		0.2	10	μΑ
Temperature stability	T _J = full range		0.5		%
Long-term stability	1000 hrs, No load, T _A = 125°C		0.3		%
Output noise voltage (% of VOUT)	f = 10 Hz to 100 kHz		0.003	_	%

[†] All characteristics are measured with a 10-μF capacitor across the input and a 10-μF capacitor across the output. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

TYPICAL CHARACTERISTICS (GRAPHS PREVIEW)

Figure 1. Short-Circuit Current vs (V_{IN} – V_{OUT})

Figure 2. Load Regulation vs Temperature

Figure 3. Ripple Rejection vs Frequency (ADJ Version)

Figure 4. Ripple Rejection vs Current (ADJ Version)

Figure 5. Temperature Stability

Figure 6. ADJ Pin Current vs Temperature

Figure 7. TLV1117-25 Load Transient Response

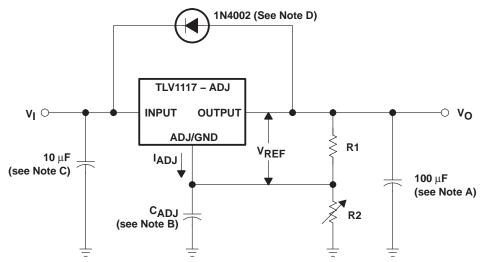

Figure 8. TLV1117-25 Line Transient Response

Figure 9. TLV1117-33 Load Transient Response

Figure 10. TLV1117-33 Line Transient Response

APPLICATION INFORMATION

Vour is calculated as:

$$V_{OUT} = V_{REF} \left(1 + \frac{R2}{R1} \right) + (I_{ADJ} \times R2)$$

Because $I_{AD,I}$ typically is 55 μ A, it is negligible in most applications.

- NOTES: A. Output capacitor selection is critical for regulator stability. The recommended minimum is $10-\mu F$ tantalum or $50-\mu F$ aluminum electrolytic, with either one having an ESR between $0.3~\Omega$ and $22~\Omega$. Larger C_{OUT} values benefit the regulator by improving transient response and loop stability.
 - B. CADJ can be used to improve ripple rejection. Ensure that the impedance of C_{ADJ} $\left(X_{CADJ} = \frac{1}{2\pi f_{ripple}C_{ADJ}}\right)$ is < R1 to prevent the ripple from being amplified. If C_{ADJ} is used, then a larger C_{OUT} is required (22- μ F tantalum or 150- μ F aluminum electrolytic).
 - C. C_{IN} is recommended if TLV1117 is not located near the power-supply filter.
 - D. An external diode is recommended to protect the regulator if the input instantaneously is shorted to GND.

Figure 11. Basic Adjustable Regulator

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp (3)
TLV1117-15CDCY	PREVIEW	SOT-223	DCY	4	80	TBD	Call TI	Call TI
TLV1117-15CDCYR	PREVIEW	SOT-223	DCY	4	2500	TBD	Call TI	Call TI
TLV1117-15CKCS	PREVIEW	TO-220	KCS	3	50	TBD	Call TI	Call TI
TLV1117-15IDCY	PREVIEW	SOT-223	DCY	4	80	TBD	Call TI	Call TI
TLV1117-15IDCYR	PREVIEW	SOT-223	DCY	4	2500	TBD	Call TI	Call TI
TLV1117-15IKCS	PREVIEW	TO-220	KCS	3	50	TBD	Call TI	Call TI
TLV1117-18CDCY	PREVIEW	SOT-223	DCY	4	80	TBD	Call TI	Call TI
TLV1117-18CDCYR	PREVIEW	SOT-223	DCY	4	2500	TBD	Call TI	Call TI
TLV1117-18CKCS	PREVIEW	TO-220	KCS	3	50	TBD	Call TI	Call TI
TLV1117-18IDCY	PREVIEW	SOT-223	DCY	4	80	TBD	Call TI	Call TI
TLV1117-18IDCYR	PREVIEW	SOT-223	DCY	4	2500	TBD	Call TI	Call TI
TLV1117-18IKCS	PREVIEW	TO-220	KCS	3	50	TBD	Call TI	Call TI
TLV1117-25CKTPR	PREVIEW	PFM	KTP	2	3000	TBD	Call TI	Call TI
TLV1117-33CDCY	PREVIEW	SOT-223	DCY	4	80	TBD	Call TI	Call TI
TLV1117-33CDCYR	PREVIEW	SOT-223	DCY	4	2500	TBD	Call TI	Call TI
TLV1117-33CKC	PREVIEW	TO-220	KC	3	50	TBD	Call TI	Call TI
TLV1117-33CKCS	PREVIEW	TO-220	KCS	3	50	TBD	Call TI	Call TI
TLV1117-33CKTT	PREVIEW	DDPAK/ TO-263	KTT	3	50	TBD	Call TI	Call TI
TLV1117-33CKTTR	PREVIEW	DDPAK/ TO-263	KTT	3	1000	TBD	Call TI	Call TI
TLV1117-33DCY	PREVIEW	SOT-223	DCY	4	80	TBD	Call TI	Call TI
TLV1117-33IKCS	PREVIEW	TO-220	KCS	3	50	TBD	Call TI	Call TI
TLV1117-50CDCY	PREVIEW	SOT-223	DCY	4	80	TBD	Call TI	Call TI
TLV1117-50CKCS	PREVIEW	TO-220	KCS	3	50	TBD	Call TI	Call TI
TLV1117-50CKTER	PREVIEW	PFM	KTE	3	2000	TBD	Call TI	Call TI
TLV1117-50CKTPR	PREVIEW	PFM	KTP	2	3000	TBD	Call TI	Call TI
TLV1117-50CKTT	PREVIEW	DDPAK/ TO-263	KTT	3	50	TBD	Call TI	Call TI
TLV1117-50CKTTR	PREVIEW	DDPAK/ TO-263	KTT	3		TBD	Call TI	Call TI
TLV1117-50DCYR	PREVIEW	SOT-223	DCY	4	2500	TBD	Call TI	Call TI
TLV1117CDCY	ACTIVE	SOT-223	DCY	4	80	TBD	CU	Level-2-235C-1 YEAR
TLV1117CDCYR	ACTIVE	SOT-223	DCY	4	2500	TBD	CU	Level-2-235C-1 YEAR
TLV1117CKC	PREVIEW	TO-220	KC	3	50	TBD	Call TI	Call TI
TLV1117CKCS	ACTIVE	TO-220	KCS	3	50	TBD	Call TI	Level-NC-NC-NC
TLV1117CKTER	ACTIVE	PFM	KTE	3	2000	TBD	Call TI	Level-1-220C-UNLIM
TLV1117CKTPR	ACTIVE	PFM	KTP	2	3000	TBD	Call TI	Level-1-220C-UNLIM
TLV1117IDCY	ACTIVE	SOT-223	DCY	4	80	TBD	CU	Level-2-235C-1 YEAR
TLV1117IDCYR	ACTIVE	SOT-223	DCY	4	2500	TBD	CU	Level-2-235C-1 YEAR
TLV1117IKCS	ACTIVE	TO-220	KCS	3	50	TBD	Call TI	Level-NC-NC-NC
TLV1117IKTER	ACTIVE	PFM	KTE	3	2000	TBD	Call TI	Level-1-220C-UNLIM
TLV1117IKTPR	ACTIVE	PFM	KTP	2	3000	TBD	Call TI	Level-1-220C-UNLIM

PACKAGE OPTION ADDENDUM

30-Mar-2005

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

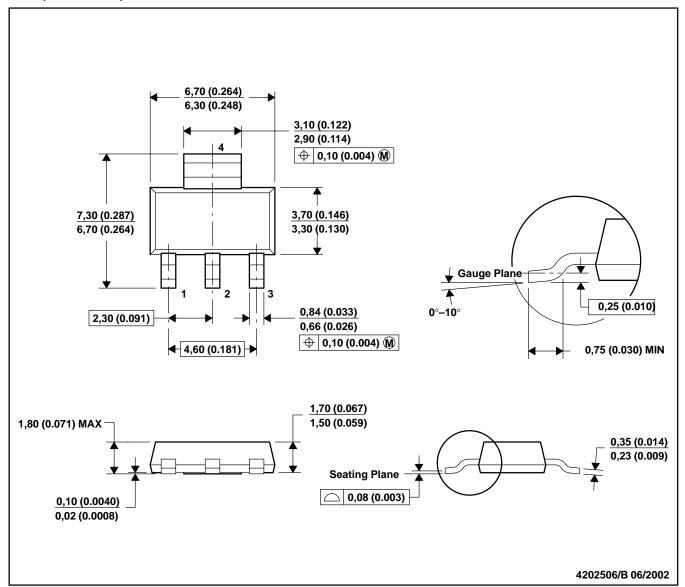
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

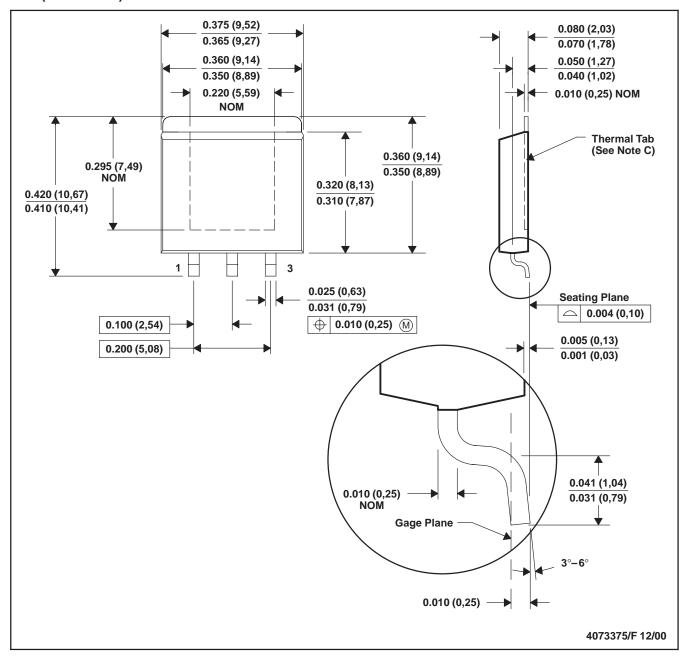
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DCY (R-PDSO-G4)

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters (inches).


B. This drawing is subject to change without notice.

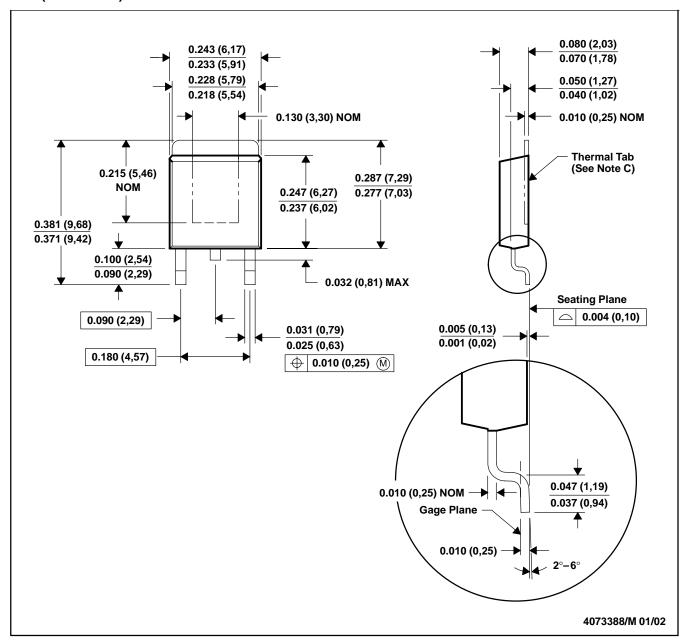
C. Body dimensions do not include mold flash or protrusion.

D. Falls within JEDEC TO-261 Variation AA.

KTE (R-PSFM-G3)

PowerFLEX™ PLASTIC FLANGE-MOUNT

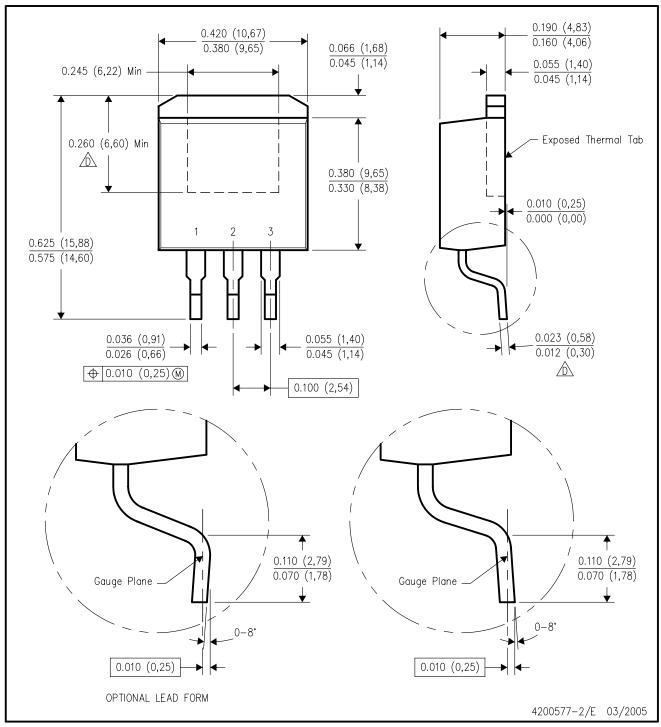
NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. The center lead is in electrical contact with the thermal tab.
- D. Dimensions do not include mold protrusions, not to exceed 0.006 (0,15).
- E. Falls within JEDEC MO-169

PowerFLEX is a trademark of Texas Instruments.

KTP (R-PSFM-G2)

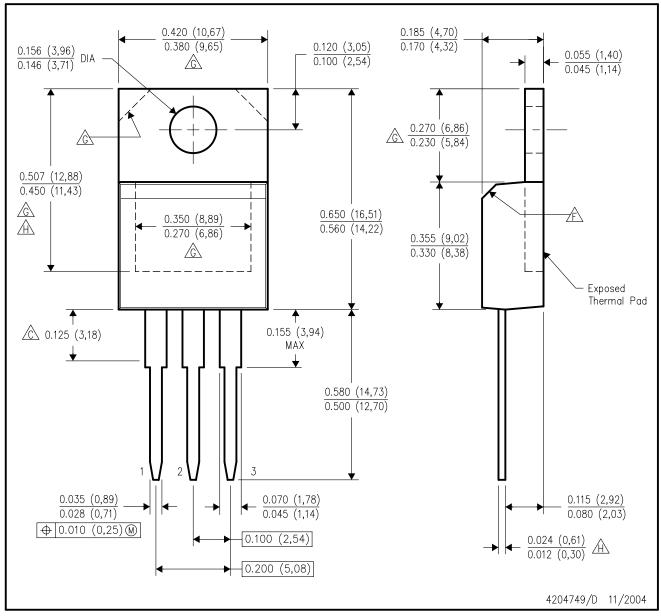
PowerFLEX™ PLASTIC FLANGE-MOUNT PACKAGE


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. The center lead is in electrical contact with the thermal tab.
 - D. Dimensions do not include mold protrusions, not to exceed 0.006 (0,15).
 - E. Falls within JEDEC TO-252 variation AC.

PowerFLEX is a trademark of Texas Instruments.

KTT (R-PSFM-G3)

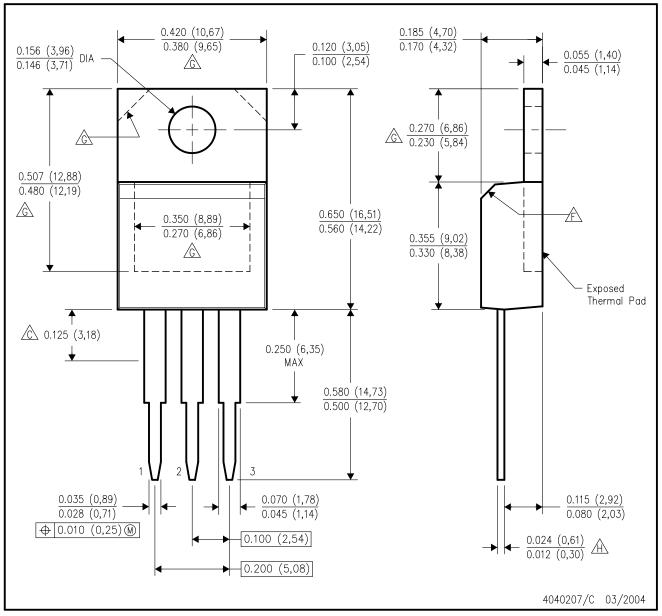
PLASTIC FLANGE-MOUNT PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion not to exceed 0.005 (0,13) per side.
- ∱ Falls within JEDEC TO-263 variation AA, except minimum lead thickness and minimum exposed pad length.

KCS (R-PSFM-T3)

PLASTIC FLANGE-MOUNT PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Lead dimensions are not controlled within this area.
- D. All lead dimensions apply before solder dip.
- E. The center lead is in electrical contact with the mounting tab.
- The chamfer is optional.
- Thermal pad contour optional within these dimensions.
- Falls within JEDEC T0—220 variation AB, except minimum lead thickness and minimum exposed pad length.

KC (R-PSFM-T3)

PLASTIC FLANGE-MOUNT PACKAGE

NOTES: A

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Lead dimensions are not controlled within this area.
- D. All lead dimensions apply before solder dip.
- E. The center lead is in electrical contact with the mounting tab.
- The chamfer is optional.
- Thermal pad contour optional within these dimensions.
- Falls within JEDEC TO-220 variation AB, except minimum lead thickness.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated