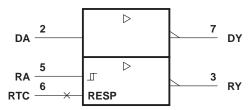
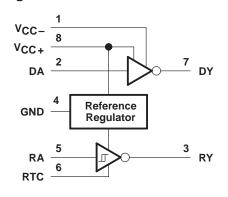
SLLS017C - JULY 1986 - REVISED MAY 1995

- Meets or Exceeds the Requirements of ANSI EIA/TIA-232-E and ITU Recommendation V.28
- 10-mA Current Limited Output
- Wide Range of Supply Voltage V_{CC} = 4.5 V to 15 V
- Low Power . . . 130 mW
- Built-In 5-V Regulator
- Response Control Provides: Input Threshold Shifting Input Noise Filtering
- Power-Off Output Resistance . . . 300 Ω Typ
- Driver Input TTL Compatible


description

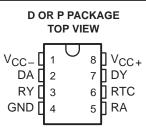
The SN75155 monolithic line driver and receiver is designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by ANSI EIA/TIA-232-E. A response control input is provided for the receiver. A resistor or a resistor and a bias voltage can be connected between the response control input and ground to provide noise filtering. The driver used is similar to the SN75188. The receiver used is similar to the SN75189A.


logic diagram

The SN75155 is characterized for operation from 0°C to 70°C.

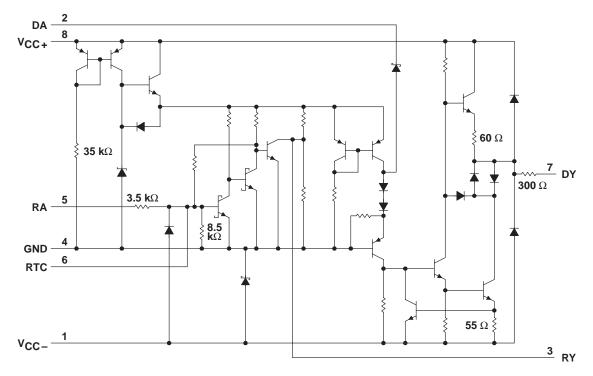
logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1995, Texas Instruments Incorporated

SLLS017C - JULY 1986 - REVISED MAY 1995

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC+} (see Note 1)	15 V
Supply voltage, V _{CC} (see Note 1)	15 V
Input voltage range, V _I : Driver	
Receiver	
Output voltage range (driver), V _O	
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE							
PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING				
D	725 mW	5.8 mW/°C	464 mW				
Р	1000 mW	8.0 mW/°C	640 mW				

SLLS017C - JULY 1986 - REVISED MAY 1995

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}	4.5	12	15	V
Supply voltage, V _{CC} _	-4.5	-12	-15	V
Output voltage, driver, V _{O(D)}			±15	V
Input voltage, receiver, VI(R)	-25		25	V
High-level input voltage, driver, V _{IH}	2			V
Low-level input voltage, driver, VIL			0.8	V
Response control current			±5.5	mA
Output current, receiver, IO(R)			24	mA
Operating free-air temperature, T _A	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

total device

	PARAMETER		TEST CONDITION	S	MIN TYP [†]	MAX	UNIT
		V _{CC +} = 5 V,	$V_{CC-} = -5 V$	V _{I(D)} = 2 V,	6.3	8.1	mA
ІССН+	High-level supply current	V _{CC +} = 9 V,	V_{CC} = -9 V	$V_{I(R)} = 2.3 V,$	9.1	11.9	
		V _{CC +} = 12 V,	$V_{CC-} = -12 V$	Output open	10.4	14	
		$V_{CC+} = 5 V,$	$V_{CC-} = -5 V$	V _{I(D)} = 0.8 V,	2.5	3.4	mA
ICCL+	Low-level supply current	V _{CC +} = 9 V,	$V_{CC} = -9 V$	$V_{I(R)} = 0.6 V,$	3.7	5.1	
		$V_{CC+} = 12V,$	$V_{CC-} = -12 V$	Output open	4.1	5.6	
1.0.0	Supply surrent	V _{CC +} = 5 V,	VCC - = 0	V _{I(R)} = 2.3 V,	4.8	6.4	mA
ICC+	Supply current	V _{CC +} = 9 V,	VCC - = 0	$V_{I(D)} = 0$	6.7	9.1	
		V _{CC +} = 5 V,	V_{CC} = -5 V	V _{I(D)} = 2 V,	-2.4	-3.1	
Іссн-	High-level supply current	V _{CC +} = 9 V,	VCC-=-9 V	$V_{I(R)} = 2.3 V$	-3.9	-4.9	mA
	Vcc	V _{CC +} = 12 V,	$V_{CC-} = -12 V$	Output open	-4.8	-6.1	
		V _{CC +} = 5 V,	$V_{CC} = -5 V$	VI(D) = 0.8 V,	-0.2	-0.35	
ICCL-		V _{CC +} = 9 V,	V _{CC} -=-9 V	$V_{I(R)} = 0.6 V,$	-0.25	-0.4	mA
		V _{CC +} = 12 V,	$V_{CC-} = -12 V$	Output open	-0.27	-0.45	

[†] All typical values are at $T_A = 25^{\circ}C$.

SLLS017C - JULY 1986 - REVISED MAY 1995

electrical characteristics over recommended operating free-air temperature range, $V_{CC+} = 12$ V, $V_{CC-} = -12$ V (unless otherwise noted)

driver section

	PARAMETER	TES	CONDITIONS		MIN	түр†	MAX	UNIT
			V _{CC+} = 5 V,	$V_{CC-} = -5 V$	3.2	3.7		
VOH	High-level output voltage	$V_{IL} = 0.8 \text{ V}, \text{ R}_{L} = 3 \text{ k}\Omega$	V _{CC+} = 9 V,	$V_{CC} = -9 V$	6.5	7.2		V
			$V_{CC+} = 12 V,$	$V_{CC-} = -12 V$	8.9	9.8		
			V _{CC+} = 5 V,	$V_{CC-} = -5 V$		-3.6	-3.2	
VOL	Low-level output voltage (see Note 2)	$V_{IH} = 2 V$, $R_L = 3 k\Omega$	V _{CC+} = 9 V,	VCC - = -9 V		-7.1	-6.4	V
			V _{CC+} = 12 V,	$V_{CC-} = -12 V$		-9.7	-8.8	
Iн	High-level input current	VI = 7 V					5	μΑ
۱ _{IL}	Low-level input current	$V_{I} = 0$				-0.73	-1.2	mA
IOS(H)	High-level short-circuit output current	$V_{I} = 0.8 V$, $V_{O} = 0$			-7	-12	-14.5	mA
IOS(L)	Low-level short-circuit output current	$V_{I} = 2 V, \qquad V_{O} = 0$			6.5	11.5	15	mA
rO	Output resistance with power off	$V_{O} = -2 V$ to 2 V				300		Ω

receiver section (see Figure 1)

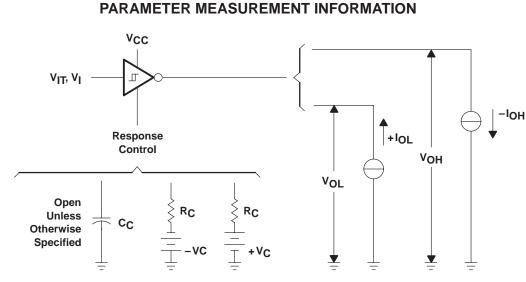
	PARAMETER		TEST CONDITIO	ONS	MIN	TYP†	MAX	UNIT
VIT+	Positive-going input threshhold voltage				1.2	1.9	2.3	V
VIT-	Negative-going input threshhold voltage				0.6	0.95	1.2	V
V _{hys}	Hystresis voltage (V _{IT +} – V _{IT –})				0.6			V
	High-level output voltage	VI = 0.6 V,	$V_{CC+} = 5 V,$	V_{CC} = -5 V	3.7	4.1	4.5	
V _{O(H)}		I _{OH} = 10 μA	V _{CC+} = 12 V,	$V_{CC-} = -12 V$	4.4	4.7	5.2	V
		$V_{I} = 0.6 V,$ $I_{OH} = 0.4 mA$	$V_{CC+} = 5 V,$	$V_{CC-} = -5 V$	3.1	3.4	3.8	
			$V_{CC+} = 12 V,$	$V_{CC-} = -12 V$	3.6	4	4.5	
V _{O(L)}	Low-level output voltage	V _I = 2.3 V,	I _{OL} = 24 mA			0.2	0.3	V
	lish laval input ourrant	V _I = 2 5 V			3.6	6.7	10	mA
ΊН	High-level input current	VI = 3 V			0.43	0.67	1	mA
		$V_{I} = -25 V$			-3.6	-6.7	-10	mA
۱L	Low-level input current	$V_{I} = -3 V$			-0.43	-0.67	-1	mA
IOS	Short-circuit output current	$V_{I} = 0.6 V$				-2.8	-3.7	mA

[†] All typical values are at $T_A = 25^{\circ}C$.

NOTE 2: The algebraic limit system, in which the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic voltage levels only (e.g., if -8.8 V is the maximum, the typical value is a more negative value).

SLLS017C - JULY 1986 - REVISED MAY 1995

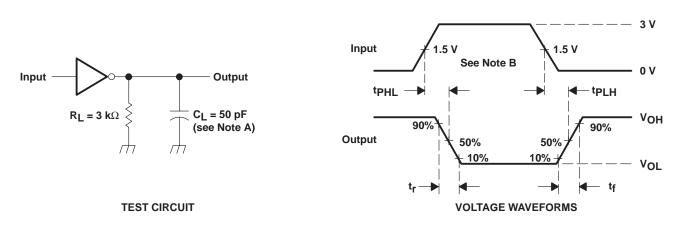
switching characteristics over recommended operating free-air temperature range, $V_{CC+} = 5 V$, $V_{CC-} = -5 V$, $C_L = 50 pF$ (unless otherwise noted)


driver section (see Figure 2)

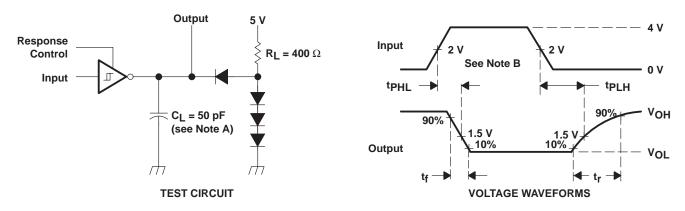
PARAMETER		TEST CONDITIONS	MIN	түр†	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high level output	$P_{\rm L} = 2 k \Omega$		250	480	20
t _{PHL}	Propagation delay time, high- to low level output	$R_{L} = 3 k\Omega$		80	150	ns
+	t _r Output rise time	$R_L = 3 k\Omega$		67	180	ns
^r		$R_L = 3 k\Omega$ to 7 k Ω , $C_L = 2500 pF$		2.4	3	μs
	Output fall time	$R_L = 3 k\Omega$		48	160	ns
tf	Output fall time	$R_L = 3 k\Omega$ to 7 k Ω , $C_L = 2500 pF$		1.9	3	μs

receiver section (see Figure 3)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
^t PLH	Propagation delay time, low- to high level output	$R_1 = 400 \Omega$		175	245	ns
^t PHL	Propagation delay time, high- to low level output	RL = 400 \$2		37	100	115
tr	Output rise time	R _L = 400 Ω		255	360	ns
t _f	Output fall time	R _L = 400 Ω		23	50	ns


[†] All typical values are at $T_A = 25^{\circ}C$.

SLLS017C - JULY 1986 - REVISED MAY 1995

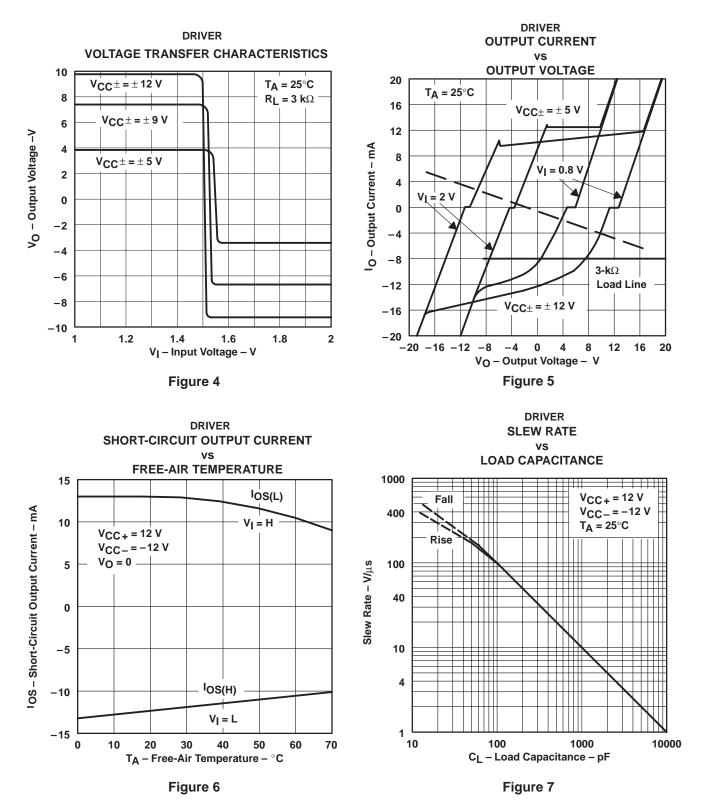


PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

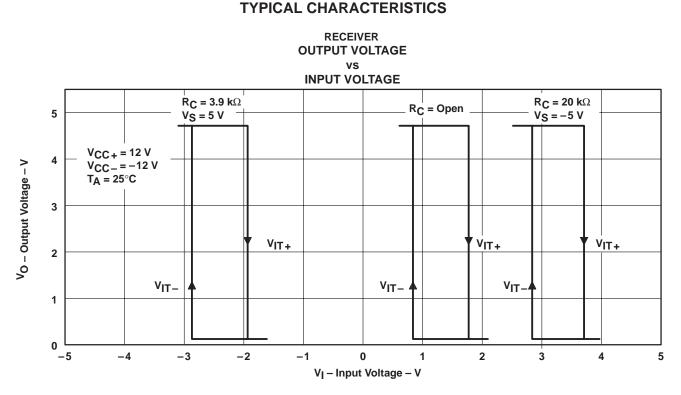
B. The input waveform is supplied by a generator with the following characteristics: $Z_O = 50 \Omega$, $t_W = 1 \mu s$, $t_f \le 10 ns$.

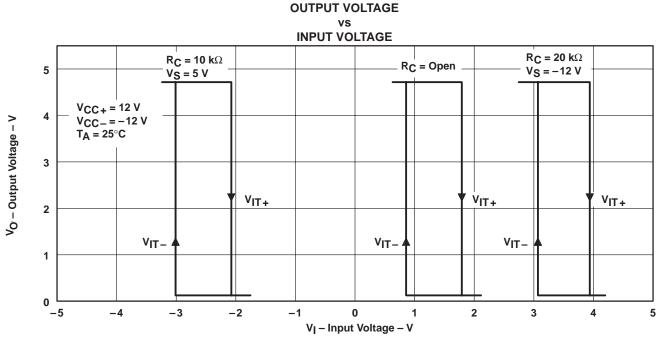
Figure 2. Driver Section Switching Test Circuit and Voltage Waveforms


NOTES: A. CL includes probe and jig capacitance.

B. The input waveform is supplied by a generator with the following characteristics: $Z_0 = 50 \Omega$, $t_w = 1 \mu s$, $t_f \le 10 ns$.

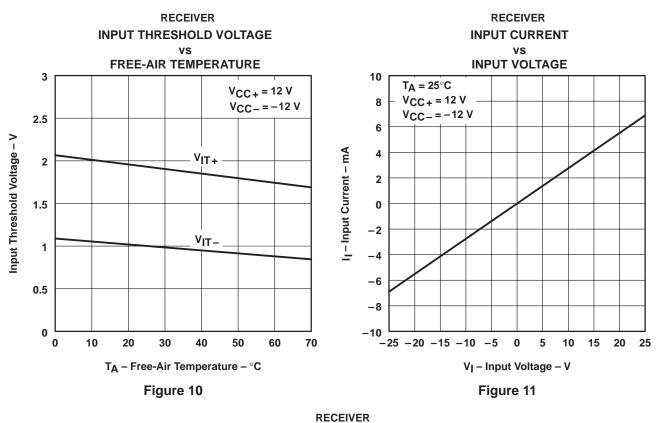
Figure 3. Receiver Section Switching Test Circuit and Voltage Waveforms


SLLS017C - JULY 1986 - REVISED MAY 1995


TYPICAL CHARACTERISTICS

SLLS017C - JULY 1986 - REVISED MAY 1995

Figure 8



RECEIVER

Figure 9

SLLS017C - JULY 1986 - REVISED MAY 1995

TYPICAL CHARACTERISTICS

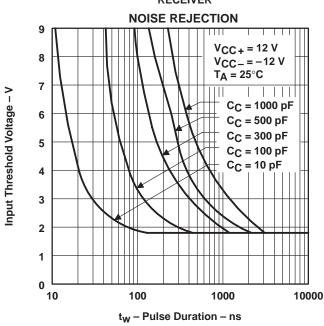


Figure 12

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated