- Eight D-Type Flip-Flops in a Single Package
- 3-State Bus-Driving True Outputs
- Full Parallel Access for Loading
- Buffered Control Inputs
- Package Options Include Plastic Small-Outline (SOIC) and Shrink Small-Outline (SSOP) Packages, Ceramic Chip Carriers, and Plastic and Ceramic DIPs

description

These 8 -bit flip-flops feature 3 -state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The eight flip-flops of the'F374 are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels that were set up at the data (D) inputs.
A buffered output enable ($\overline{\mathrm{OE}}$) input can be used to place the eight outputs in either a normal logic state (high or low) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.
The output enable ($\overline{\mathrm{OE}})$ input does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
The SN74F374 is available in Tl's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.
The SN54F374 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74F374 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each flip-flop)

INPUTS			$\begin{gathered} \hline \text { OUTPUT } \\ \mathrm{Q} \end{gathered}$
$\overline{\mathrm{OE}}$	CLK	D	
L	\uparrow	H	H
L	\uparrow	L	L
L	Hor L	x	Q_{0}
H	X	x	z

logic symbol \dagger

logic diagram (positive logic)

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \ddagger

\ddagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The input voltage ratings may be exceeded provided the input current ratings are observed.
recommended operating conditions

		SN54F374			SN74F374			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8			0.8	V
IIK	Input clamp current			-18			-18	mA
IOH	High-level output current			-3			-3	mA
IOL	Low-level output current			20			24	mA
T_{A}	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

SN54F374, SN74F374
 OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
 WITH 3-STATE OUTPUTS

SDFSO77A - D2932, MARCH 1987 - REVISED OCTOBER 1993
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
NOTE 2: I ICCZ is measured with $\overline{\mathrm{OE}}$ at 4.5 V and all other inputs grounded.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}= \end{aligned}$	$5 \mathrm{~V},$	SN5	374	SN7	374	
									UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {f clock }}$	Clock frequency		0	100	0	60	0	70	MHz
	Pulse duration	CLK high	7		7		7		
tw		CLK low	6		6		6		
	Setup time data before CLK \uparrow	High	2		2.5		2		
	Setup tire, data before CLK	Low	2		2		2		
		High	2		2		2		
th	Hold time, data after CLK	Low	2		2.5		2		ns

SDFS077A - D2932, MARCH 1987 - REVISED OCTOBER 1993

switching characteristics (see Note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \hline{ }^{\prime} \mathrm{F} 374 \end{gathered}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAX } \dagger \end{aligned}$				UNIT
						SN5	374	SN74	374	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }_{\text {f max }}$			100			60		70		MHz
tPLH	CLK	Q	3.2	6.1	8.5	3.2	10.5	3.2	10	ns
tPHL			3.2	6.1	8.5	3.2	11	3.2	10	
tPZH	$\overline{\mathrm{OE}}$	Q	1.2	8.6	11.5	1.2	14	1.2	12.5	ns
tPZL			1.2	5.4	7.5	1.2	10	1.2	8.5	
tPHZ	$\overline{\mathrm{OE}}$	Q	1.2	4.9	7	1.2	8	1.2	8	ns
tPLZ			1.2	3.9	5.5	1.2	7.5	1.2	6.5	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 3: Load circuits and waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

