Data sheet acquired from Harris Semiconductor SCHS136C ## CD54/74HC85, CD54/74HCT85 # High Speed CMOS Logic 4-Bit Magnitude Comparator August 1997 - Revised February 2003 ## **Features** - · Buffered Inputs and Outputs - Typical Propagation Delay: 13ns (Data to Output at V_{CC} = 5V, C_L = 15pF, T_A = 25°C - Serial or Parallel Expansion Without External Gating - Fanout (Over Temperature Range) - Bus Driver Outputs 15 LSTTL Loads - Wide Operating Temperature Range . . . -55°C to 125°C - Balanced Propagation Delay and Transition Times - Significant Power Reduction Compared to LSTTL Logic ICs - HC Types - 2V to 6V Operation - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V - HCT Types - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, V_{IL}= 0.8V (Max), V_{IH} = 2V (Min) - CMOS Input Compatibility, $I_I \leq 1 \mu \text{A}$ at $V_{OL}, \, V_{OH}$ ## Description The 'HC85 and 'HC785 are high speed magnitude comparators that use silicon-gate CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits. These 4-bit devices compare two binary, BCD, or other monotonic codes and present the three possible magnitude results at the outputs (A > B, A < B, and A = B). The 4-bit input words are weighted (A0 to A3 and B0 to B3), where A3 and B_3 are the most significant bits. The devices are expandable without external gating, in both serial and parallel fashion. The upper part of the truth table indicates operation using a single device or devices in a serially expanded application. The parallel expansion scheme is described by the last three entries in the truth table. ## **Ordering Information** | PART NUMBER | TEMP. RANGE
(°C) | PACKAGE | |--------------|---------------------|--------------| | CD54HC85F3A | -55 to 125 | 16 Ld CERDIP | | CD54HCT85F3A | -55 to 125 | 16 Ld CERDIP | | CD74HC85E | -55 to 125 | 16 Ld PDIP | | CD74HC85M | -55 to 125 | 16 Ld SOIC | | CD74HC85M96 | -55 to 125 | 16 Ld SOIC | | CD74HC85NSR | -55 to 125 | 16 Ld SOP | | CD74HC85PW | -55 to 125 | 16 Ld TSSOP | | CD74HC85PWR | -55 to 125 | 16 Ld TSSOP | | CD74HCT85E | -55 to 125 | 16 Ld PDIP | | CD74HCT85M | -55 to 125 | 16 Ld SOIC | | CD74HCT85M96 | -55 to 125 | 16 Ld SOIC | #### NOTE: 1. When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. ### **Pinout** CD54HC85, CD54HCT85 (CERDIP) CD74HC85 (PDIP, SOIC, SOP, TSSOP) CD74HCT85 (PDIP, SOIC) TOP VIEW 16 V_{CC} B3 1 (A < B) IN 2 15 A3 (A = B) IN 3 14 B2 (A > B) IN 4 13 A2 (A > B) OUT 5 12 A1 (A = B) OUT 6 11 B1 (A < B) OUT 7 10 A0 9 B0 GND 8 # Functional Diagram ## TRUTH TABLE | COMPARING INPUTS | | | | CAS | CADING IN | PUTS | OUTPUTS | | | | | |------------------|---------------|----------|---------|-------|-----------|-------|---------|-------|-------|--|--| | A3, B3 | A2, B2 | A1, B1 | A0, B0 | A > B | A < B | A = B | A > B | A < B | A = B | | | | SINGLE DEVIC | E OR SERIES C | ASCADING | | | | | | | | | | | A3 > B3 | Х | Х | Х | Х | Х | х | Н | L | L | | | | A3 < B3 | Х | Х | Х | Х | Х | Х | L | Н | L | | | | A3 = B3 | A2 >B2 | Х | Х | Х | Х | Х | Н | L | L | | | | A3 = B3 | A2 < B2 | Х | Х | Х | Х | Х | L | Н | L | | | | A3 = B3 | A2 = B2 | A1 > B1 | Х | Х | Х | Х | Н | L | L | | | | A3 = B3 | A2 = B2 | A1 < B1 | Х | Х | Х | Х | L | Н | L | | | | A3 = B3 | A2 = B2 | A1 = B1 | A0 > B0 | Х | Х | Х | Н | L | L | | | | A3 = B3 | A2 = B2 | A1 = B1 | A0 < B0 | Х | Х | Х | L | Н | L | | | | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | Н | L | L | Н | L | L | | | | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | L | Н | L | L | Н | L | | | | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | L | L | Н | L | L | Н | | | | PARALLEL CA | ASCADING | | | • | | - | - | | | | | | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | Х | Х | Н | L | L | Н | | | | A3 = B3 | A2 = B2 | A1 = B1 | A0 = B0 | Н | Н | L | L | L | L | | | | A3 = B3 | A2 = B2S | A1 = B1 | A0 = B0 | L | L | L | Н | Н | L | | | NOTE: H = High Voltage Level, L = Low Voltage, Level, X = Don't Care ## **Absolute Maximum Ratings** | DC Supply Voltage, V _{CC} 0.5V to 7V | |---| | DC Input Diode Current, I _{IK} | | For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$ | | DC Output Diode Current, I _{OK} | | For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$ | | DC Output Source or Sink Current per Output Pin, IO | | For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$ ±25mA | | DC V _{CC} or Ground Current, I _{CC or} I _{GND} | ## **Thermal Information** | Package Thermal Impedance, θ_{JA} (see Note 2): | |--| | E Package | | M Package73 ^o C/W | | NS Package64°C/W | | PW Package | | Maximum Junction Temperature | | Maximum Storage Temperature Range65°C to 150°C | | Maximum Lead Temperature (Soldering 10s)300°C | | (SOIC - Lead Tips Only) | | | ## **Operating Conditions** | Temperature Range (T _A) | 55°C to 125°C | |---|-----------------------| | Supply Voltage Range, V _{CC} | | | HC Types | 2V to 6V | | HCT Types | | | DC Input or Output Voltage, V _I , V _O | 0V to V _{CC} | | Input Rise and Fall Time | | | 2V | 1000ns (Max) | | 4.5V | 500ns (Max) | | 6V | 400ns (Max) | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 2. The package thermal impedance is calculated in accordance with JESD 51-7. ## **DC Electrical Specifications** | | | TEST
CONDITIONS | | v _{cc} | 25°C | | | -40°C T | O 85°C | -55 ⁰ C T | | | |--|-----------------|------------------------------------|---------------------|-----------------|------|-----|------|---------|--------|----------------------|------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | | | | | | - | | | | | | | | High Level Input | V _{IH} | - | - | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | Voltage | | | | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | V | | | | | | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | V | | Low Level Input | V _{IL} | - | - | 2 | - | - | 0.5 | - | 0.5 | - | 0.5 | V | | Voltage | | | | 4.5 | - | - | 1.35 | - | 1.35 | - | 1.35 | V | | | | | | 6 | - | - | 1.8 | - | 1.8 | - | 1.8 | V | | High Level Output | V _{OH} | V _{IH} or V _{IL} | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | V | | Voltage
CMOS Loads | | | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | CIVIOS LUaus | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | V | | High Level Output | | | - | - | - | - | - | - | - | - | - | V | | Voltage
TTL Loads | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | TTL LUaus | | | -5.2 | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | V | | Low Level Output | V _{OL} | V _{IH} or V _{IL} | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Voltage
CMOS Loads | | | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | CIVIOS LUaus | | | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low Level Output
Voltage
TTL Loads | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | | 5.2 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | lı | V _{CC} or
GND | - | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μΑ | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μΑ | ## DC Electrical Specifications (Continued) | | | TE:
CONDI | _ | V _{CC} | | 25°C | | | -40°C TO 85°C | | -55°C TO 125°C | | |--|------------------|------------------------------------|---------------------|-----------------|------|------|------|------|---------------|-----|----------------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HCT TYPES | | | | | | | | | | | | | | High Level Input
Voltage | V _{IH} | - | - | 4.5 to
5.5 | 2 | - | - | 2 | - | 2 | - | V | | Low Level Input
Voltage | V _{IL} | - | - | 4.5 to
5.5 | - | - | 0.8 | - | 0.8 | - | 0.8 | V | | High Level Output
Voltage
CMOS Loads | V _{OH} | V _{IH} or V _{IL} | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | High Level Output
Voltage
TTL Loads | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | Low Level Output
Voltage
CMOS Loads | V _{OL} | V _{IH} or V _{IL} | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low Level Output
Voltage
TTL Loads | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | ΙΙ | V _{CC} and
GND | 0 | 5.5 | - | | ±0.1 | - | ±1 | - | ±1 | μΑ | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 5.5 | - | - | 8 | - | 80 | - | 160 | μΑ | | Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load
(Note) | Δl _{CC} | V _{CC}
-2.1 | - | 4.5 to
5.5 | - | 100 | 360 | - | 450 | - | 490 | μА | NOTE: For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA. ## **HCT Input Loading Table** | INPUT | UNIT LOADS | |-----------------------------|------------| | A0-A3, B0-B3 and (A = B) IN | 1.5 | | (A > B) IN, (A < B) IN | 1 | NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Table, e.g. 360 μ A max at 25 o C. ## Switching Specifications Input t_r , $t_f = 6ns$ | | | TEST | | 25°C | | -40°C TO
85°C | | -55°C TO
125°C | | | | |--|-------------------------------------|-----------------------|---------------------|------|-----|------------------|-----|-------------------|-----|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | | | | | | - | | | | - | | | Propagation Delay, | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 195 | - | 245 | - | 295 | ns | | A_n , B_n to $(A > B)$ OUT,
(A < B) OUT | | | 4.5 | - | - | 39 | - | 47 | - | 59 | ns | | (A < B) 001 | | C _L = 15pF | 5 | - | 16 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 33 | - | 42 | - | 50 | ns | | A_n , B_n to $(A = B)$ OUT | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 175 | - | 240 | - | 265 | ns | | | | | 4.5 | - | - | 35 | - | 44 | - | 53 | ns | | | | C _L = 15pF | 5 | - | 14 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 30 | - | 37 | - | 45 | ns | ## Switching Specifications Input t_r , t_f = 6ns (Continued) | | | TEST | | | 25°C | | -40°C TO
85°C | | -55°C TO
125°C | | | |--|-------------------------------------|-----------------------|---------------------|-----|------|-----|------------------|-----|-------------------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | (A > B) IN, (A < B) IN, (A = B) IN | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 140 | - | 175 | - | 210 | ns | | to $(A > B)$ OUT, $(A < B)$ OUT | | | 4.5 | - | - | 28 | - | 35 | - | 42 | ns | | | | C _L = 15pF | 5 | - | 11 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 24 | - | 30 | - | 36 | ns | | (A > B) IN to (A = B) OUT | t _{PLH} , t _{PHL} | C _L = 50pF | 2 | - | - | 120 | - | 150 | - | 180 | ns | | | | | 4.5 | - | - | 24 | - | 30 | - | 36 | ns | | | | C _L = 15pF | 5 | - | 9 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 20 | - | 26 | - | 31 | ns | | Power Dissipation Capacitance (Notes 3, 4) | C _{PD} | - | 5 | - | 24 | - | - | - | - | - | pF | | Output Transition Times | t _{TLH} , t _{THL} | C _L = 50pF | 2 | - | - | 75 | - | 95 | - | 110 | ns | | (Figure 1) | | | 4.5 | - | - | 15 | - | 19 | - | 22 | ns | | | | | 6 | - | - | 13 | - | 16 | - | 19 | ns | | Input Capacitance | C _{IN} | - | - | - | - | 10 | - | 10 | - | 10 | pF | | HCT TYPES | | | | | | | | | | | | | Propagation Delay, | t _{PLH} , t _{PHL} | C _L = 50pF | 4.5 | - | - | 37 | - | 46 | - | 56 | ns | | An, Bn to (A > B) OUT,
(A < B) OUT | | C _L = 15pF | 5 | - | 15 | - | - | - | - | - | ns | | An, Bn to $(A = B)$ OUT | t _{PLH} , t _{PHL} | C _L = 50pF | 4.5 | 1 | ı | 40 | 1 | 50 | - | 60 | ns | | | | C _L = 15pF | 5 | - | 17 | - | - | - | - | - | ns | | (A > B) IN, (A < B) IN, (A = B) IN | t _{PLH} , t _{PHL} | C _L = 50pF | 4.5 | - | - | 30 | - | 38 | - | 45 | ns | | to $(A > B)$ OUT, $(A < B)$ OUT | | C _L = 15pF | 5 | - | 12 | - | - | - | - | - | ns | | (A > B) IN to (A = B) OUT | t _{PLH} , t _{PHL} | C _L = 50pF | 4.5 | - | - | 31 | - | 39 | - | 47 | ns | | | | C _L = 15pF | 5 | - | 13 | - | - | - | - | - | ns | | Output Transition Times (Figure 1) | t _{TLH} , t _{THL} | C _L = 50pF | 4.5 | - | - | 15 | - | 19 | - | 22 | ns | | Power Dissipation Capacitance (Notes 3, 4) | C _{PD} | - | 5 | - | 26 | - | - | - | - | - | pF | | Input Capacitance | C _{IN} | - | - | - | - | 10 | - | 10 | - | 10 | pF | #### NOTES: - 3. $\ensuremath{\text{C}_{\text{PD}}}$ is used to determine the dynamic power consumption, per gate/package. - 4. $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where f_i = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage. ## Test Circuits and Waveforms FIGURE 1. HC AND HCU TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC FIGURE 2. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC #### Test Circuits and Waveforms GND (A > B) IN (A = B) IN v_{cc} (A < B) IN GND A0 A0 Α1 A1 A2 CD74HC85 CD74HCT85 A2 -LEAST SIGNIFICANT 4-BITS OF EACH WORD А3 -А3 B0 B0 -B1 **–** В1 (A > B) IN B2 -B2 (A = B) IN В3 В3 (A < B) IN Α4 A5 CD74HC85 A6 CD74HCT85 Α5 A6 · Α7 Α7 В4 B4 -B5 (A > B) OUT B5 · (A > B) IN B6 (A = B) OUT В6-(A = B) IN B7 (A < B) OUT B7 -(A < B) IN A0 A1 CD74HC85 A2 CD74HCT85 A2 MOST SIGNIFICANT 4-BITS OF EACH WORD А3 -А3 В0 -B0 B1 (A > B) OUT B1 OUTPUTS В2 B2 (A = B) OUT B3 (A < B) OUT В3 - #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2003, Texas Instruments Incorporated