

18-BIT, 500-kHz, UNIPOLAR INPUT, MICROPOWER SAMPLING ANALOG-TO-DIGITAL CONVERTER WITH PARALLEL INTERFACE

FEATURES

- 500-kHz Sample Rate
- 18-Bit NMC Ensured Over Temperature
- Zero Latency
- Low Power: 110 mW at 500 kHz
- Unipolar Input Range
- Onboard Reference Buffer
- High-Speed Parallel Interface
- Wide Digital Supply
- 8-/16-/18-Bit Bus Transfer
- 48-Pin TQFP Package

APPLICATIONS

- Medical Instruments
- Optical Networking
- Transducer Interface
- High Accuracy Data Acquisition Systems
- Magnetometers

DESCRIPTION

The ADS8383 is an 18-bit, 500 kHz A/D converter. The device includes a 18-bit capacitor-based SAR A/D converter with inherent sample and hold. The ADS8383 offers a full 18-bit interface, a 16-bit option where data is read using two read cycles or an 8-bit bus option using three read cycles.

The ADS8383 is available in a 48-lead TQFP package and is characterized over the industrial -40° C to 85° C temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLAS005B - DECEMBER 2002 - REVISED MAY 2003

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

MODEL	MAXIMUM INTEGRAL LINEARITY (LSB)	MAXIMUM DIFFERENTIAL LINEARITY (LSB)	NO MISSING CODES RESOLU- TION (BIT)	PACKAGE TYPE	PACKAGE DESIGNATOR	TEMPER- ATURE RANGE	ORDERING INFORMATION	TRANS- PORT MEDIA QUANTITY
	140	0.7	47	48 Pin		–40°C to	ADS8383IPFBT	Tape and reel 250
ADS8383I	±10	-2~7	17	TQFP	PFB	85°C	ADS8383IPFBR	Tape and reel 1000
	17	4.05	40	48 Pin		–40°C to	ADS8383IBPFBT	Tape and reel 250
ADS8383IB	±7	-1~2.5	18	TQFP	PFB	85°C	ADS8383IBPFBR	Tape and reel 1000

NOTE: For the most current specifications and package information, refer to our website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted⁽¹⁾

			UNIT
\/_//	+IN to AGND		+VA + 0.1 V
Voltage	-IN to AGND		0.5 V
	+VA to AGND		–0.3 V to 7 V
Voltage range	+VBD to BDGN	D	–0.3 V to 7 V
	+VA to +VBD		-0.3 V to 2.5 V
Digital input voltag	e to BDGND		-0.3 V to +VBD + 0.3 V
Digital output voltage to BDGND			-0.3 V to +VBD + 0.3 V
Operating free-air temperature range, TA			-40°C to 85°C
Storage temperatu	ure range, T _{stg}		–65°C to 150°C
Junction temperat	ure (Tj max)		150°C
	Powerdissipati	on	(T _J Max – T _A)/θ _{JA}
TQFP package	θ_{JA} thermal imp	pedance	86°C/W
		Vapor phase (60 sec)	215°C
Lead temperature, soldering		Infrared (15 sec)	220°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SPECIFICATIONS

T_A = -40°C to 85°C, +VA = 5 V, +VBD = 3 V or 5 V, V_{ref} = 4.096 V, f_{SAMPLE} = 500 kHz (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analog Input						
Full-scale input voltage (see Note 1)	+ININ	0		Vref	V	
		+IN	-0.2		V _{ref} + 0.2	
Absolute input voltage		-IN	-0.2		0.2	V
Input capacitance				45		pF
Input leakage current				1		nA
SystemPerformance						
Resolution				18		Bits
	10000001	(+IN – –IN) < 0.5 FS	18			
No missing codes	ADS8383I	(+IN – –IN) ≥ 0.5 FS	17			Bits
	ADS8383IB		18		$\begin{array}{c c} & V_{\text{ref}} + 0.2 \\ & 0.2 \\ \hline \\ 45 \\ 1 \\ \hline \\ 18 \\ \hline \\ 18 \\ \hline \\ 18 \\ \hline \\ 18 \\ \hline \\ 10 \\ -2/3 \\ 7 \\ \hline \\ -2/3 \\ 7 \\ \hline \\ 2 \\ 3 \\ 7 \\ \hline \\ 10 \\ -2/3 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$	
		(+IN − −IN) < 0.125 FS	-4		4	
Integral linearity (see Notes 2 and 3)	ADS8383I	(+IN − −IN) < 0.5 FS	-6		6	LSB (18 bit)
		(+IN – –IN) ≥ 0.5 FS	-10		10	
	ADS8383IB		-7	-2/3	7	
		(+IN − −IN) < 0.125 FS	-1		2	
	ADS8383I	(+IN − −IN) < 0.5 FS	-1		3	LSB (18 bi
Differentiallinearity		(+IN – –IN) ≥ 0.5 FS	-2		7	
	ADS8383IB		-1	-1/1.4	2.5	
0 % · · · · · · · · ·	ADS8383I		-1	±0.5	1	.,
Offset error (see Note 4)	ADS8383IB		-0.75	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.75	mV
	ADS8383I	V _{ref} = 4.096 V	-0.1		$\begin{array}{c c} V_{\text{ref}} + 0.2 \\ 0.2 \\ \hline 1 \\ \hline 0.2 \\ \hline 18 \\ \hline 0.2 \\$	%FS
Gain error (see Note 4)	ADS8383IB	V _{ref} = 4.096 V	-0.06		0.06	%FS
Noise				60		μV RMS
Power supply rejection ratio		At 3FFFFh output code		75		dB
SamplingDynamics						
Conversion time					1.5	μs
Acquisition time			0.4			μs
Throughputrate					500	kHz
Aperture delay				4		ns
Aperture jitter				15		ps
Step response				150		ns
Over voltage recovery				150		ns

(1) Ideal input span, does not include gain or offset error.
(2) LSB means least significant bit
(3) This is endpoint INL, not best fit.
(4) Measured relative to an ideal full-scale input (+IN – –IN) of 4.096 V

SPECIFICATIONS (CONTINUED) $T_A = -40^{\circ}C$ to 85°C, +VA = +5 V, +VBD = 3 V or 5 V, $V_{ref} = 4.096$ V, $f_{SAMPLE} = 500$ kHz (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
DynamicCharacteristics							
	ADS8383I			-110			
	ADS8383IB	V _{IN} = 4 V _{pp} at 1 kHz	-112				
	ADS8383I			-98			
AD30303ID	ADS8383IB	$v_{IN} = 4 v_{pp}$ at 10 kHz		-108			
			-98		dB		
	ADS8383IB	$V_{IN} = 4 V_{pp}$ at 50 kHz		-99			
	ADS8383I			-90			
	ADS8383IB	$V_{IN} = 4 V_{pp}$ at 100 kHz	-112 -98 -108 -98 -99 -99 -91 -91 87 88 87 87 87 87 87 87 87 87				
	ADS8383I			87			
	ADS8383IB	∇ IN = 4 V _{pp} at 1 kHz		88			
	ADS8383I			87			
Pignal to point ratio (CNID) (and Note 1	ADS8383IB	- V _{IN} = 4 V _{pp} at 10 kHz		87			
Signal to noise ratio (SNR) (see Note 1)	ADS8383I			87		dB	
	ADS8383IB	$V_{IN} = 4 V_{pp}$ at 50 kHz		87			
	ADS8383I			87		I	
	ADS8383IB	$V_{IN} = 4 V_{pp}$ at 100 kHz		87			
	ADS8383I			86			
	ADS8383IB	V _{IN} = 4 V _{pp} at 1 kHz		87			
	ADS8383I			86			
	ADS8383IB	$V_{IN} = 4 V_{pp}$ at 10 kHz		86			
	ADS8383I			86		dB	
	ADS8383IB	- V _{IN} = 4 V _{pp} at 50 kHz		86			
	ADS8383I			85			
	ADS8383IB	$V_{IN} = 4 V_{pp}$ at 100 kHz	91 87 88 87 87 87 87 87 87 87 87				
	ADS8383I			110			
	ADS8383IB	V _{IN} = 4 V _{pp} at 1 kHz		112		1	
	ADS8383I			98			
Sourious free dynamic range (SEDR)	ADS8383IB	V _{IN} = 4 V _{pp} at 10 kHz	pp at 1 kHz -112 pp at 10 kHz -98 pp at 10 kHz -99 pp at 50 kHz -99 pp at 100 kHz -91 pp at 100 kHz -91 pp at 100 kHz -91 pp at 100 kHz 87 pp at 10 kHz 87 pp at 10 kHz 87 pp at 10 kHz 87 pp at 50 kHz 87 pp at 100 kHz 86 pp at 100 kHz 85 pp at 100 kHz 98 pp at 100 kHz 94 3 3				
(see Note 1)	ADS8383I				dB		
urious free dynamic range (SFDR)	ADS8383IB	$V_{IN} = 4 V_{pp}$ at 50 kHz		98			
	ADS8383I			90			
	ADS8383IB	V _{IN} = 4 V _{pp} at 100 kHz		94			
-3dB Small signal bandwidth				3		MHz	
Voltage Reference Input							
Reference voltage at REFIN, V _{ref}			2.5	4.096	4.2	V	
Reference resistance (see Note 2)			-			kΩ	
Reference current drain		f _S = 500 kHz			1	mA	
Bias Input		0					
Bias input range			2	2.048	21	V	
Bias input drift			-			%FS	
					<u>-</u> 0	, or C	

(1) Calculated on the first nine harmonics of the input frequency (2) Can vary $\pm 20\%$

SPECIFICATIONS (CONTINUED)

 $T_A = -40^{\circ}C$ to 85°C, +VA = +5 V, +VBD = 3 V or 5 V, $V_{ref} = 4.096$ V, $f_{SAMPLE} = 500$ kHz (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital Input/Output						
Logicfamily				CMOS		
	VIH	IIH = 5 μA	+VBD-1		+V _{BD} + 0.3	
	VIL	IIL = 5 μA	-0.3		0.8	.,
Logic level	∨он	I _{OH} = 2 TTL loads	+V _{BD} -0.6			V
	VOL	$I_{OL} = 2 TTL loads$			0.4	
Data format			Straight Binary			
Power Supply Requir	ements					
-	+VBD (see Notes 1 and 2)		2.95	3.3	5.25	V
Power supply voltage	+VA (see Note 2)		4.75	CMOS +V _{BD} + 0. 0. 0. Straight Binary 3.3 5.2 5 5.2 22 2 110 13	5.25	V
Supply current, 500-kH	Iz sample rate (see Note 3)			22	26	mA
Power dissipation, 500	-kHz sample rate (see Note 3)			110	130	mW
Temperature Range			•			
Operatingfree-air			-40		85	°C

(1) The difference between +VA and +VBD should be no less than 2.3 V, i.e. if +VA is 5.5 V, +VBD should be at least 2.95 V. (2) +VBD \ge +VA - 2.3 V

(3) This includes only +VA current. +VBD current is typical 1 mA with 5 pF load capacitance on all output pins.

TIMING CHARACTERISTICS

All specifications typical at -40° C to 85° C, +VA = +VBD = 5 V (see Notes 1, 2, and 3)

	PARAMETER	MIN	TYP	MAX	UNIT
^t CONV	Conversion time			1.5	μs
^t ACQ	Acquisition time	0.4			μs
^t pd1	CONVST low to conversion started (BUSY high)	10		50	ns
^t pd2	Propagation delay time, End of conversion to BUSY low	10		20	ns
^t w1	Pulse duration, CONVST low	40			ns
^t su1	Setup time, CS low to CONVST low	20			ns
^t w2	Pulse duration, CONVST high	20			ns
	CONVST falling edge jitter			10	ps
t _{w3}	Pulse duration, BUSY signal low	Min(t _{ACQ})		1	μs
t _{w4}	Pulse duration, BUSY signal high			1.52	μs
^t h1	Hold time, First data bus data transition (RD low, or CS low for read cycle, or BYTE or BUS18/16 input changes) after CONVST low	40			ns
^t d1	Delay time, CS low to RD low	0			ns
t _{su2}	Setup time, RD high to CS high	0			ns
tw5	Pulse duration, RD low time	50			ns
t _{en}	Enable time, \overline{RD} low (or \overline{CS} low for read cycle) to data valid			20	ns
^t d2	Delay time, data hold from RD high	5			ns
^t d3	Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid	10		20	ns
^t w6	RD high	20			ns
^t h2	Hold time, last \overline{RD} (or \overline{CS} for read cycle) rising edge to \overline{CONVST} falling edge	125			ns
^t pd4	Propagation delay time, BUSY falling edge to next \overline{RD} (or \overline{CS} for read cycle) falling edge	Max(t _{d5})			ns
t _{d4}	Delay time, BYTE edge to BUS18/16 edge skew	0			ns
t _{su3}	Setup time, BYTE or BUS18/16 rising edge to \overline{RD} falling edge	10			ns
t _{h3}	Hold time, BYTE or BUS18/ $\overline{16}$ falling edge to $\overline{\text{RD}}$ falling edge	10			ns
^t dis	Disable time, RD High (CS high for read cycle) to 3-stated data bus			20	ns
td5	Delay time, BUSY low to MSB data valid			30	ns
t _{su4}	Setup time, BYTE or BUS18/16 change before BUSY falling edge	10		20	μs

(1) All input signals are specified with $t_f = t_f = 5$ ns (10% to 90% of +VBD) and timed from a voltage level of (V_{IL} + V_{IH})/2. (2) See timing diagrams. (3) All timing are measured with 20 pF equivalent loads on all data bits and BUSY pins.

TIMING CHARACTERISTICS

All specifications typical at -40° C to 85° C, +VA = 5 V, +VBD = 3 V (see Notes 1, 2, and 3)

	PARAMETER	MIN	TYP	MAX	UNIT
^t CONV	Conversion time			1.5	μs
t _{ACQ}	Acquisition time	0.4			μs
^t pd1	CONVST low to conversion started (BUSY high)	10		50	ns
^t pd2	Propagation delay time, end of conversion to BUSY low	10		20	ns
^t w1	Pulse duration, CONVST low	40			ns
t _{su1}	Setup time, CS low to CONVST low	20			ns
tw2	Pulse duration, CONVST high	20			ns
	CONVST falling edge jitter			10	ps
t _{w3}	Pulse duration, BUSY signal low	Min(t _{ACQ})		1	μs
t _{w4}	Pulse duration, BUSY signal high			1.52	μs
^t h1	Hold time, first data bus transition ($\overline{\text{RD}}$ low, or $\overline{\text{CS}}$ low for read cycle, or BYTE or BUS 18/16 input changes) after CONVST low	40			ns
^t d1	Delay time, CS low to RD low	0			ns
t _{su2}	Setup time, RD high to CS high	0			ns
tw5	Pulse duration, RD low	50			ns
t _{en}	Enable time, \overline{RD} low (or \overline{CS} low for read cycle) to data valid			30	ns
t _{d2}	Delay time, data hold from RD high	10			ns
td3	Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid	10		30	ns
tw6	Pulse duration, RD high time	20			ns
th2	Hold time, last \overline{RD} (or \overline{CS} for read cycle) rising edge to \overline{CONVST} falling edge	125			ns
^t pd4	Propagation delay time, BUSY falling edge to next $\overline{\text{RD}}$ (or $\overline{\text{CS}}$ for read cycle) falling edge	Max(td5)			ns
td4	Delay time, BYTE edge to BUS18/16 edge skew	0			ns
t _{su3}	Setup time, BYTE or BUS18/16 rising edge to \overline{RD} falling edge	10			ns
t _{h3}	Hold time, BYTE or BUS18/16 falling edge to RD falling edge	10			ns
t _{dis}	Disable time, \overline{RD} High (\overline{CS} high for read cycle) to 3-stated data bus			30	ns
t _{d5}	Delay time, BUSY low to MSB data valid delay time			40	ns
t _{su4}	Setup time, BYTE or BUS18/16 change before BUSY falling edge	10		30	μs

(1) All input signals are specified with $t_f = t_f = 5$ ns (10% to 90% of +VBD) and timed from a voltage level of (V_{IL} + V_{IH})/2. (2) See timing diagrams. (3) All timing are measured with 10 pF equivalent loads on all data bits and BUSY pins.

PIN ASSIGNMENTS

NC - No connection.

TERMINAL FUNCTIONS

NAME	NO.	I/O	DESCRIPTION						
AGND	5, 8, 11, 12, 14, 15, 44, 45	_	Analogground	Analog ground					
BDGND	25	_	Digital ground fo	or bus interface di	nital supply				
BIAS	2	1	Bias to internal of		giaioappiy				
BUSY	36	0			ersion is in progre	SS.			
BUS18/16	38	1		8	lecting 18-bit or 1		ansfer.		
			0: Data bits outp 1: Last two data a) the	but on the 18-bit d bits D[1:0] from 1 low byte pins DE	ata bus pins DB[1 8-bit wide bus ou 8[9:2] if BYTE = 0 B[17:10] if BYTE	17:0]. Itput on:			
BYTE	39	I	0: No fold back	t. Used for 8-bit b :2] of the 16 mos	us reading. t significant bits is	folded back to h	igh byte of the 16	most significant	
CONVST	40	Ι	Convert start						
CS	42	Ι	Chip select						
				8-Bit Bus		16-B	it Bus	18-Bit Bus	
Data Bus			BYTE = 0	BYTE = 1	BYTE = 1	BYTE = 0	BYTE = 0	BYTE = 0	
			BUS18/16 = 0	BUS18/16=0	BUS18/16 = 1	BUS18/16 = 0	BUS18/16 = 1	BUS18/16 = 0	
DB17	16	0	D17 (MSB)	D9	Allones	D17 (MSB)	Allones	D17 (MSB)	
DB16	17	0	D16	D8	Allones	D16	Allones	D16	
DB15	18	0	D15	D7	Allones	D15	Allones	D15	
DB14	19	0	D14	D6	Allones	D14	Allones	D14	
DB13	20	0	D13	D5	Allones	D13	Allones	D13	
DB12	21	0	D12	D4	Allones	D12	Allones	D12	
DB11	22	0	D11	D3	D1	D11	Allones	D11	
DB10	23	0	D10	D2	D0(LSB)	D10	Allones	D10	
DB9	26	0	D9	Allones	Allones	D9	Allones	D9	
DB8	27	0	D8	Allones	Allones	D8	Allones	D8	
DB7	28	0	D7	Allones	Allones	D7	Allones	D7	
DB6	29	0	D6	Allones	Allones	D6	Allones	D6	
DB5	30	0	D5	Allones	Allones	D5	Allones	D5	
DB4	31	0	D4	Allones	Allones	D4	Allones	D4	
DB3	32	0	D3	Allones	Allones	D3	D1	D3	
DB2	33	0	D2	Allones	Allones	D2	D0 (LSB)	D2	
DB1	34	0	D1	Allones	Allones	D1	Allones	D1	
DB0	35	0	D0 (LSB)	Allones	Allones	D0 (LSB)	Allones	D0 (LSB)	
–IN	7	I	Inverting input c	hannel					
+IN	6	Ι	Noninverting inp	out channel					
NC	3	-	No connection						
REFIN	1	Ι	Reference input						
REFM	47, 48	I	Referencegrour	nd.					
RD	41	Ι	Synchronization	pulse for the par	allel output.				
+VA	4, 9, 10, 13, 43, 46	-	Analog power si	upplies, 5-V dc					
+VBD	24, 37	-	Digital power su	pply for bus					

TIMING DIAGRAMS

†Signal internal to device

Figure 1. Timing for Conversion and Acquisition Cycles With $\overline{\text{CS}}$ and $\overline{\text{RD}}$ Toggling

SLAS005B - DECEMBER 2002 - REVISED MAY 2003

[†]Signal internal to device

NOTE: RD cannot be tied to BDGND. Three read cycles are required at power on.

SLAS005B - DECEMBER 2002 - REVISED MAY 2003

[†]Signal internal to device

Figure 3. Timing for Conversion and Acquisition Cycles With CS Tied to BDGND, RD Toggling

†Signal internal to device

NOTE: RD cannot be tied to BDGND. Three read cycles are required at power on.

Figure 4. Timing for Conversion and Acquisition Cycles With $\overline{\text{CS}}$ and $\overline{\text{RD}}$ Held at BDGND After Power-On Initialization - Auto Read

SLAS005B - DECEMBER 2002 - REVISED MAY 2003

TYPICAL CHARACTERISTICS[†]

SLAS005B - DECEMBER 2002 - REVISED MAY 2003

ADS8383

SLAS005B - DECEMBER 2002 - REVISED MAY 2003

SLAS005B - DECEMBER 2002 - REVISED MAY 2003

SLAS005B - DECEMBER 2002 - REVISED MAY 2003

APPLICATION INFORMATION

MICROCONTROLLER INTERFACING

ADS8383 to 8-Bit Microcontroller Interface

Figure 37 shows a parallel interface between the ADS8383 and a typical microcontroller using the 8-bit data bus.

The BUSY signal is used as a falling-edge interrupt to the microprocessor.

Figure 37. ADS8383 Application Circuitry

PRINCIPLES OF OPERATION

The ADS8383 is a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The architecture is based on charge redistribution which inherently includes a sample/hold function. See Figure 37 for the application circuit for the ADS8383.

The conversion clock is generated internally. The conversion time of 1.6 μ s is capable of sustaining a 500-kHz throughput.

The analog input is provided to two input pins: +IN and –IN. When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected from any internal function.

REFERENCE

The ADS8383 can operate with an external 4.096-V reference for a corresponding full-scale range of 4.096 V. **BIASING THE ADS8383**

The ADS8383 requires an external 2.048-V bandgap reference to generate the bias currents for internal circuitry. Figure 38 shows the internal circuitry used to generate the bias currents. The bias generation circuit also pumps 100 μ A (150 μ A max) out from the BIAS pin. The bandgap used should be capable of sinking 100 μ A (150 μ A max) while holding the voltage on the pin steady. Table 1 shows the specification of the bandgap used to drive the BIAS pin of the ADS8383.

Figure 38. Bias Current Generation

Table	1.	Bias	Specifications
-------	----	------	-----------------------

PARAMETER	MIN	TYP	MAX	UNITS
Output Voltage	2	2.048	2.1	V
Isink		100	150	μA

Any common bandgap like REF3020 can be used to drive the BIAS pin of the ADS8383. Figure 39 shows how REF3020 can be used with the ADS8383. A 1 μ F decoupling capacitor is recommended between pins 2 and AGND of the ADS8383 for optimal performance.

Figure 39. Using the REF3020 to Drive the ADS8383 BIAS Pin

ANALOG INPUT

When the converter enters the hold mode, the voltage difference between the +IN and –IN inputs is captured on the internal capacitor array. The voltage on the –IN input is limited between –0.2 V and 0.2 V, allowing the input to reject small signals which are common to both the +IN and –IN inputs. The +IN input has a range of –0.2 V to V_{ref} + 0.2 V. The input span (+IN – (–IN)) is limited to 0 V to V_{ref} .

The input current on the analog inputs depends upon a number of factors: sample rate, input voltage, and source impedance. Essentially, the current into the ADS8383 charges the internal capacitor array during the sample period. After this capacitance has been fully charged, there is no further input current. The source of the analog input voltage must be able to charge the input capacitance (45 pF) to an 18-bit settling level within the acquisition time (400 ns) of the device. When the converter goes into the hold mode, the input impedance is greater than 1 G Ω .

Care must be taken regarding the absolute analog input voltage. To maintain the linearity of the converter, the +IN and -IN inputs and the span (+IN - (-IN)) should be within the limits specified. Outside of these ranges, the converter's linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass filters should be used.

Care should be taken to ensure that the output impedance of the sources driving the +IN and –IN inputs are matched. If this is not observed, the two inputs could have different setting times. This may result in offset error, gain error, and linearity error which changes with temperature and input voltage.

DIGITAL INTERFACE

Timing And Control

See the timing diagrams in the specifications section for detailed information on timing signals and their requirements.

The ADS8383 uses an internal oscillator generated clock which controls the conversion rate and in turn the throughput of the converter. No external clock input is required.

Conversions are initiated by bringing the CONVST pin low for a minimum of 20 ns (after the 20 ns minimum requirement has been met, the CONVST pin can be brought high), while CS is low. The ADS8383 switches from the sample to the hold mode on the falling edge of the CONVST command. A clean and low jitter falling edge of this signal is important to the performance of the converter. The BUSY output is brought high immediately following CONVST going low. BUSY stays high through the conversion process and returns low when the conversion has ended.

Sampling starts with the falling edge of the BUSY signal when \overline{CS} is tied low or starts with the falling edge of \overline{CS} when BUSY is low.

Both $\overline{\text{RD}}$ and $\overline{\text{CS}}$ can be high during and before a conversion with one exception ($\overline{\text{CS}}$ must be low when $\overline{\text{CONVST}}$ goes low to initiate a conversion). Both the $\overline{\text{RD}}$ and $\overline{\text{CS}}$ pins are brought low in order to enable the parallel output bus with the conversion.

Reading Data

The ADS8383 outputs full parallel data in straight binary format as shown in Table 2. The parallel <u>output is</u> active when CS and RD are both low. There is a minimal quiet zone requirement around the falling edge of CONVST. This is 125 ns prior to the falling edge of CONVST and 40 ns after the falling edge. No data read should be attempted within this zone. Any other combination of CS and RD sets the parallel output to 3-state. BYTE and BUS18/16 are used for multiword read operations. BYTE is used whenever lower bits on the bus are output on the higher byte of the bus. BUS18/16 is used whenever the last two bits on the 18-bit bus is output on either bytes of the higher 16-bit bus. Refer to Table 2 for ideal output codes.

DESCRIPTION ANALOG VAL				
FULL SCALE RANGE	V _{ref}	DIGITAL OUTPUT STRAIGHT BINAR		
Least significant bit (LSB)	V _{ref} /262144	BINARY CODE	HEX CODE	
Full scale	V _{ref} – 1 LSB	11 1111 1111 1111 1111	3FFFF	
Midscale	V _{ref} /2	10 0000 0000 0000 0000	20000	
Midscale – 1 LSB	V _{ref} /2-1LSB	01 1111 1111 1111 1111	1FFFF	
Zero	0 V	00 0000 0000 0000 0000	00000	

Table 2. Ideal Input Voltages and Output Codes

The output data is a full 18-bit word (D17–D0) on DB17–DB0 pins (MSB–LSB) if both BUS18/16 and BYTE are low.

The result may also be read on a 16-bit bus by using only pins DB17–DB2. In this case two reads are necessary: the first as before, leaving both BUS18/16 and BYTE low and reading the 16 most significant bits (D17–D2) on pins DB17–DB2, then bringing BUS18/16 high while holding BYTE low. When BUS18/16 is high, the lower two bits (D1–D0) appear on pins DB3–DB2.

The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB17–DB10. In this case three reads are necessary: the first as before, leaving both BUS18/16 and BYTE low and reading the 8 most significant bits on pins DB17–DB10, then bringing BYTE high while holding BUS18/16 low. When BYTE is high, the medium bits (D9–D2) appear on pins DB17–DB10. The last read is done by bringing BUS18/16 high while holding BYTE high. When BUS18/16 is high, the lower two bits (D1–D0) appear on pins DB11–DB10. The last read cycle is not necessary if only the first 16 most significant bits are of interest.

All of these multiword read operations can be performed with multiple active \overline{RD} (toggling) or with \overline{RD} held low for simplicity. This is referred to as the AUTO READ operation. Note that \overline{RD} may not be tied to BDGND permanently due to the requirement of power-on initialization.

ВУТЕ	BUS18/16	DATA READ OUT				
		DB17-DB12	DB11-DB10	DB9–DB4	DB3–DB2	DB1–DB0
High	High	All One's	D1-D0	All One's	All One's	All One's
Low	High	All One's	All One's	All One's	D1-D0	All One's
High	Low	D9–D4	D3–D2	All One's	All One's	All One's
Low	Low	D17–D12	D11–D10	D9–D4	D3–D2	D1-D0

Table 3. Conversion Data Read Out

POWER-ON INITIALIZATION

At first power on there are three read cycles required (RD must be toggled three times). If conversion cycle is attempted before these intialization read cycles, the first three conversion cycles will not produce valid results. This is used to load factory trimming data for a specific device to assure high accuracy of the converter. Because of this requirement, the RD pin cannot be tied permanently to BDGND. System designers can still achieve the AUTO READ function if the power-on requirement is satisfied.

LAYOUT

For optimum performance, care should be taken with the physical layout of the ADS8383 circuitry.

As the ADS8383 offers single-supply operation, it will often be used in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the higher the switching speed, the more difficult it is to achieve good performance from the converter.

The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground connections and digital inputs that occur just prior to latching the output of the analog comparator. Thus, driving any single conversion for an n-bit SAR converter, there are at least n *windows* in which large external transient voltages can affect the conversion result. Such glitches might originate from switching power supplies, nearby digital logic, or high power devices.

The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the external event.

On average, the ADS8383 draws very little current from an external reference as the reference voltage is internally buffered. If the reference voltage is external and originates from an op amp, make sure that it can drive the bypass capacitor or capacitors without oscillation. A 0.1- μ F bypass capacitor is recommended from pin 1 (REFIN) directly to pin 48 (REFM). REFM and AGND should be shorted on the same ground plane under the device.

The AGND and BDGND pins should be connected to a clean ground point. In all cases, this should be the analog ground. Avoid connections which are too close to the grounding point of a microcontroller or digital signal processor. If required, run a ground trace directly from the converter to the power supply entry point. The ideal layout consists of an analog ground plane dedicated to the converter and associated analog circuitry.

As with the AGND connections, +VA should be connected to a 5-V power supply plane or trace that is separate from the connection for digital logic until they are connected at the power entry point. Power to the ADS8383 should be clean and well bypassed. A 0.1- μ F ceramic bypass capacitor should be placed as close to the device as possible. See Table 4 for the placement of the capacitor. In addition, a 1- μ F to 10- μ F capacitor is recommended. In some situations, additional bypassing may be required, such as a 100- μ F electrolytic capacitor or even a Pi filter made up of inductors and capacitors—all designed to essentially low-pass filter the 5-V supply, removing the high frequency noise.

POWER SUPPLY PLANE		CONVERTER DIGITAL SIDE	
SUPPLY PINS	CONVERTER ANALOG SIDE		
Pin pairs that require shortest path to decoupling capacitors	(4,5), (8,9), (10,11), (13,15), (43,44), (45,46)	(24,25)	
Pins that require no decoupling	12, 14	37	

Table 4. Power Supply Decoupling Capacitor Placement

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated