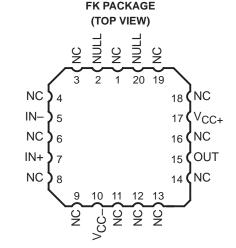
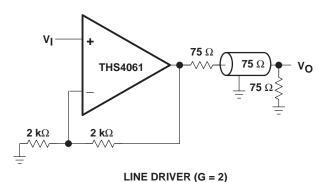

- High Speed
 - 180 MHz Bandwidth (G = 1, -3 dB)
 - 400 V/µs Slew Rate
 - 40-ns Settling Time (0.1%)
- High Output Drive, I_O = 115 mA (typ)
- Excellent Video Performance
 - 75 MHz 0.1 dB Bandwidth (G = 1)
 - 0.02% Differential Gain
 - 0.02° Differential Phase
- Very Low Distortion
 - THD = -72 dBc at f = 1 MHz
- Wide Range of Power Supplies
 - $V_{CC} = \pm 5 \text{ V to } \pm 15 \text{ V}$
- Available in Standard SOIC, MSOP PowerPAD™, JG, or FK Package
- Evaluation Module Available


description


The THS4061 and THS4062 are generalpurpose, single/dual, high-speed voltage feedback amplifiers ideal for a wide range of applications including video, communication, and imaging. The devices offer very good ac performance with 180-MHz bandwidth, 400-V/µs slew rate, and 40-ns settling time (0.1%). The THS4061/2 are stable at all gains for both inverting and noninverting configurations. These amplifiers have a high output drive capability of 115 mA and draw only 7.8 mA supply current per channel. Excellent professional video results can be obtained with the low differential gain/phase errors of 0.02%/0.02° and wide 0.1 db flatness to 75 MHz. For applications requiring low distortion, the THS4061/2 is ideally suited with total harmonic distortion of -72 dBc at f = 1 MHz.

THS4061

CAUTION: The THS4061 and THS4062 provide ESD protection circuitry. However, permanent damage can still occur if this device is subjected to high-energy electrostatic discharges. Proper ESD precautions are recommended to avoid any performance degradation or loss of functionality

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Insruments Incorporated.

	RELATED DEVICES
DEVICE	DESCRIPTION
THS4011/2	290-MHz Low Distortion High-Speed Amplifiers
THS4031/2	100-MHz Low Noise High Speed-Amplifiers
THS4061/2	180-MHz High-Speed Amplifiers

AVAILABLE OPTIONS

TA	NUMBER OF CHANNELS	PLASTIC SMALL OUTLINE† (D)	PLASTIC MSOP [†] (DGN)	CERAMIC DIP (JG)	CHIP CARRIER (FK)	MSOP SYMBOL	EVALUATION MODULES
0°C to	1	THS4061CD	THS4061CDGN	_	_	TIABS	THS4061EVM
70°C	2	THS4062CD	THS4062CDGN	_	_	TIABM	THS4062EVM
–40°C to	1	THS4061ID	THS4061IDGN	_	_	TIABT	_
85°C	2	THS4062ID	THS4062IDGN	_	_	TIABN	_
–55°C to 125°C	1	_	_	THS4061MJG	THS4061MFK	_	_

[†] The D and DGN packages are available taped and reeled. Add an R suffix to the device type (i.e., THS4061CDGNR).

functional block diagram

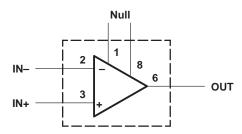


Figure 1. THS4061 - Single Channel

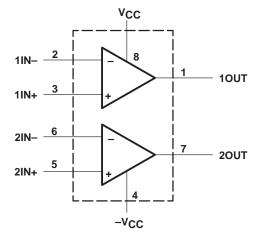


Figure 2. THS4062 - Dual Channel

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{CC} + to V _{CC}		33 V
Input voltage, V _I		±V _{CC}
Output current, IO		150 mA
Differential input voltage, V _{IO}		±4 V
Continuous total power dissipation		See Dissipation Rating Table
Maximum junction temperature, T _J		150°C
Operating free-air temperature, T _A :	C-suffix	0°C to 70°C
	I-suffix	–40°C to 85°C
	M-suffix	–55°C to 125°C
Storage temperature, T _{sta}		65°C to 150°C
	h) from case for 10 seconds, D and DGN p	
Lead temperature 1,6 mm (1/16 incl	h) from case for 60 seconds, JG package	300°C
Case temperature for 60 seconds, F	FK package	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	740 mW	6 mW/°C	475 mW	385 mW	_
DGN [‡]	2.14 W	17.1 mW/°C	1.37 W	1.11 W	_
JG	1057 mW	8.4 mW/°C	627 mW	546 mW	210 mW
FK	1375 mW	11 mW/°C	880 mW	715 mW	275 mW

[‡] The DGN package incorporates a PowerPAD on the underside of the device. This acts as a heatsink and must be connected to a thermal dissipation plane for proper power dissipation. Failure to do so can result in exceeding the maximum specified junction temperature, which could permanently damage the device.

recommended operating conditions

		MIN	NOM MAX	UNIT
Supply voltage Vee Land Vee	Dual supply	±4.5	±16	V
Supply voltage, V _{CC} + and V _{CC} -	Single supply	9	32]
	C-suffix	0	70	
Operating free-air temperature, TA	I-suffix	-40	85	°C
	M-suffix	-55	125]

electrical characteristics at T_A = 25°C, V_{CC} = ± 15 V, R_L = 150 Ω (unless otherwise noted)

dynamic performance

	PARAMETER	TEST CONDITIONS [†]	TEST CONDITIONS [†]			UNIT	
				MIN TYP	MAX		
		V _{CC} = ±5 V	Gain = 1	180		MHz	
	Dynamic performance small-signal bandwidth (–3 dB)	V _{CC} = ±15 V	Gain = -1	50		MHz	
BW		$V_{CC} = \pm 5 \text{ V}$	Gairr = -1	50		IVITZ	
	Bandwidth for 0.1 dB flatness	$V_{CC} = \pm 15 \text{ V}$	Gain = 1	75	MHz		
	Bandwidth for 0.1 dB flatness	V _{CC} = ±5 V	Gaiii = 1	20		1711172	
SR	Slew rate	$V_{CC} = \pm 15 \text{ V}$	Gain = -1	400		V/μs	
J SK	Siew rate	V _{CC} = ±5 V	Gaiii = -1	350			
	Settling time to 0.1%	$V_{CC} = \pm 15 \text{ V}, 5-\text{V step } (0 \text{ V to } 5 \text{ V})$	Gain = -1	40		ns	
 .	Settling time to 0.1%	$V_{CC} = \pm 5 \text{ V}, \qquad V_{O} = -2.5 \text{ V to } 2.5 \text{ V},$	Gairr = -1	40			
t _S	Settling time to 0.01%	$V_{CC} = \pm 15 \text{ V}, 5-\text{V step } (0 \text{ V to } 5 \text{ V})$	Gain = -1	140			
	Setting time to 0.01%	$V_{CC} = \pm 5 \text{ V}, \qquad V_{O} = -2.5 \text{ V to } 2.5 \text{ V},$] Gaiii = -1	150		ns	

[†] Full range = 0°C to 70°C for C suffix and -40°C to 85°C for I suffix

noise/distortion performance

	PARAMETER	TEST CONDITIONS [†]			THS4061C/I, THS4062C/I			UNIT
							MAX	
THD	Total harmonic distortion	f = 1 MHz				-72		dBc
٧n	Input voltage noise	f = 10 kHz,	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$			14.5		nV/√Hz
In	Input current noise	f = 10 kHz,	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$			1.6		pA/√Hz
	Differential raise array	Onin 0	NTCC 40 IDF are dislosted	V _{CC} = ±15 V		0.02 %		
	Differential gain error	Gain = 2,	NTSC, 40 IRE modulation	V _{CC} = ±5 V		0.02 %		
	Differential above some	Cain 0	NITCO 40 IDE modulation	V _{CC} = ±15 V		0.02°		
	Differential phase error	Gain = 2,	NTSC, 40 IRE modulation	$V_{CC} = \pm 5 \text{ V}$		0.06°		
	Channel-to-channel crosstalk (THS4062 only)	$V_{CC} = \pm 5 \text{ V c}$	or ±15 V, f = 1 MHz			65		dB

[†] Full range = 0°C to 70°C for C suffix and -40°C to 85°C for I suffix

dc performance

	PARAMETER	TEST CONDITIONS†			THS4061C/I, THS4062C/I		
						MAX	
	Open loop gain	$IVCC = \pm 15 V$, $VC = \pm 10 V$, $R_1 = 1 K\Omega$	T _A = 25°C	5	15		V/mV
			T _A = full range	4			V/IIIV
	Open loop gain	Voc = +5 V Vo = +2 5 V Pr = 1 k0	T _A = 25°C	2.5	8		V/mV
		$V_{CC} = \pm 5 \text{ V}, \qquad V_{O} = \pm 2.5 \text{ V}, R_{L} = 1 \text{ k}\Omega$	T _A = full range	2			
\/00	Input offset voltage	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	Ta - full rongo		2.5	8	mV
Vos	Offset drift	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	T _A = full range		15		μV/°C
I _{IB}	Input bias current	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	T _A = full range		3	6	μΑ
los	Input offset current	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	T _A = full range		75	250	nA
	Offset current drift	T _A = full range			0.3		nA/°C

[†] Full range = 0°C to 70°C for C suffix and -40°C to 85°C for I suffix

electrical characteristics at T_A = 25 °C, V_{CC} = ± 15 V, R_L = 150 Ω (unless otherwise noted) (continued)

input characteristics

	PARAMETER		TEST CONDITIONS [†]			THS4061C/I, THS4062C/I		
					MIN	TYP	MAX	
V. 0.5	Common mode input voltage range	V _{CC} = ±15 V			±13.8	±14.1		V
VICR	Common-mode input voltage range	V _{CC} = ±5 V			±3.8	±4.3]
CMRR	Common mode rejection ratio	$V_{CC} = \pm 15 \text{ V},$	$V_{ICR} = \pm 12 V$	T _A = full range	70	110		dB
CIVIRR	Common mode rejection ratio	$V_{CC} = \pm 5 \text{ V},$	V _{ICR} = ±2.5 V		70	95		
R _I	Input resistance		•			1		МΩ
Ci	Input capacitance					2		pF

[†] Full range = 0°C to 70°C for C suffix and -40°C to 85°C for I suffix

output characteristics

PARAMETER		TEST CONDITIONS†			THS4061C/I, THS4062C/I		
				MIN	TYP	MAX	1
Va		V _{CC} = ±15 V	R _L = 250 Ω	±11.5	±12.5		V
	Output voltage owing	$V_{CC} = \pm 5 \text{ V}$	R _L = 150 Ω	±3.2	±3.5		v v
Vo	Output voltage swing	$V_{CC} = \pm 15 \text{ V}$	- R _L = 1 kΩ	±13	±13.5		V
		$V_{CC} = \pm 5 \text{ V}$		±3.5	±3.7		
	Output oursent	V _{CC} = ±15 V	B. 20.0	80	115		A
Ю	Output current	V _{CC} = ±5 V	$R_L = 20 \Omega$	50	75		mA
ISC	Short-circuit current	V _{CC} = ±15 V			150		mA
RO	Output resistance	Open loop			12		Ω

[†] Full range = 0°C to 70°C for C suffix and -40°C to 85°C for I suffix

power supply

	PARAMETER	TEST CONDITIONS [†]			THS4061C/I, THS4062C/I			
				MIN	TYP	MAX		
\/	Voc Supply voltage energting range	Dual supply				±16.5	V	
VCC	Supply voltage operating range	Single supply				33	V	
	Ovicement ourset (nor emplifier)	V _{CC} = ±15 V	T. full ronge		7.8	10.5	A	
lcc	Quiescent current (per amplifier)	V _{CC} = ±5 V	T _A = full range		7.3	10	mA	
PSRR	Dower cumply rejection ratio	V 15 V - 145 V	T _A = 25°C	70	78		dB	
PSRR POW	Power supply rejection ratio	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	T _A = full range	68			ub	

[†] Full range = 0°C to 70°C for C suffix and -40°C to 85°C for I suffix

SLOS234D – DECEMBER 1998 – REVISED FEBRUARY 2000

electrical characteristics at T_A = 25°C, V_{CC} = ± 15 V, R_L = 150 Ω (unless otherwise noted)

dynamic performance

	PARAMETER				THS4061M			UNIT	
	PARAMETER		TEST CONDITIONS†			TYP	MAX	UNIT	
	Unity-gain bandwidth	Closed loop,	$R_L = 1 k\Omega$	$V_{CC} = \pm 15 \text{ V}$	*140	180		MHz	
BW		$V_{CC} = \pm 15 \text{ V}$		Gain = 1		180		MHz	
	Dynamic performance small-signal	$V_{CC} = \pm 5 \text{ V}$		Gairr = 1		180		IVIHZ	
	bandwidth (-3 dB)	$V_{CC} = \pm 15 \text{ V}$		Gain = -1		50		MHz	
		$V_{CC} = \pm 5 \text{ V}$		Gairr = -1		50] IVITZ	
	Denoted the for 0.4 dD flaters	V _{CC} = ±15 V		Gain = 1		75		MHz	
	Bandwidth for 0.1 dB flatness	$V_{CC} = \pm 5 \text{ V}$		Gain = 1		20			
SR	Slew rate	V _{CC} = ±15 V	$R_L = 1 k\Omega$		*400	500		V/μs	
	Cottling time to 0.40/	$V_{CC} = \pm 15 \text{ V},$	5-V step (0 V to 5 V)	Gain = -1		40		ns	
١.	Settling time to 0.1%	$V_{CC} = \pm 5 \text{ V},$	$V_0 = -2.5 \text{ V to } 2.5 \text{ V},$	Gain = -1		40			
t _S	Sattling time to 0.019/	$V_{CC} = \pm 15 \text{ V},$	5-V step (0 V to 5 V)	Gain = -1		140		ns	
	Settling time to 0.01%	$V_{CC} = \pm 5 \text{ V},$	$V_0 = -2.5 \text{ V to } 2.5 \text{ V},$	Gaiii = -1		150			

[†] Full range = -55° C to 125°C for M suffix

noise/distortion performance

PARAMETER TEST CONDITIONS			TEST CONDITIONS [†]		THS4061M			UNIT	
FARAMETER		TEST CONDITIONS†			MIN	TYP	MAX	ONIT	
THD	Total harmonic distortion	f = 1 MHz				-72		dBc	
٧n	Input voltage noise	f = 10 kHz,	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$			14.5		nV/√ Hz	
In	Input current noise	f = 10 kHz,	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$			1.6		pA/√Hz	
	Differential gain array	Coin 2 Ni	ntial gain error Gain = 2, NTSC, 40 IRE Modulation $\frac{\text{VCC} = \pm 15 \text{ V}}{\text{CC}}$	V(V _{CC} = ±15 V		0.02		%
	Differential gain error	$V_{CC} = \pm 5 \text{ V}$		V _{CC} = ±5 V	0.02			70	
	Differential phase array	Ocio 2 NITCO 40 IDE Modulation		V _{CC} = ±15 V		0.02°			
	Differential phase error	Gain = 2, NTSC, 40 IRE Modulation	V _{CC} = ±5 V		0.06°				

[†] Full range = -55° C to 125°C for M suffix

dc performance

PARAMETER		TEST CONDITIONS†			THS4061M			UNIT
					MIN	TYP	MAX	UNIT
Open loop gain		$V_{CC} = \pm 15 \text{ V}, V_{O} = \pm 10 \text{ V}$	V , $R_L = 1 k\Omega$	Ta - full rongo	5	9		V/mV
		$V_{CC} = \pm 5 \text{ V}, \qquad V_O = \pm 2.5 \text{ V}, R_L = 1 \text{ k}\Omega$		T _A = full range	2.5	6		V/IIIV
	Input offset voltage	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$ R	P. – 1 kO	T _A = 25°C		2.5	8	mV
V _{IO}			$R_L = 1 k\Omega$	T _A = full range			9	mV
	Offset drift	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	$R_L = 1 k\Omega$	T _A = full range		15		μV/°C
I_{IB}	Input bias current	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	$R_L = 1 k\Omega$	T _A = full range		3	6	μΑ
IIO	Input offset current	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	$R_L = 1 k\Omega$	T _A = full range		75	250	nA
	Offset current drift	$V_{CC} = \pm 5 \text{ V or } \pm 15 \text{ V}$	$R_L = 1 k\Omega$	T _A = full range		0.3		nA/°C

[†] Full range = -55° C to 125°C for M suffix

^{*}This parameter is not tested.

electrical characteristics at T_A = full range, V_{CC} = ± 15 V, R_L = 1 k Ω (unless otherwise noted) (continued)

input characteristics

	PARAMETER	TEST COMPLICACT		THS4061M		
	PARAINETER	TEST CONDITIONS [†]	MIN	TYP	MAX	UNIT
VICR	Common-mode input voltage range	$V_{CC} = \pm 15 \text{ V}$	±13.8	±14.1		V
		$V_{CC} = \pm 5 V$	±3.8	±4.3		
CMRR	Common mode rejection ratio	$V_{CC} = \pm 15 \text{ V}, \qquad V_{ICR} = \pm 12 \text{ V}$	70	86		dB
CIVIKK	Common mode rejection ratio	$V_{CC} = \pm 5 \text{ V}, \qquad V_{ICR} = \pm 2.5 \text{ V}$	80	90		uБ
R _I	Input resistance			1		МΩ
Ci	Input capacitance			2		pF

[†] Full range = -55° C to 125°C for M suffix

output characteristics

PARAMETER		TEST CONDITIONS [†]		THS4061M			UNIT
				MIN	TYP	MAX	CIVIT
		V _{CC} = ±15 V	$R_L = 250 \Omega$	±12	±13.1		V
v _O	Output voltage ewing	V _{CC} = ±5 V	$R_L = 150 \Omega$	±3.2	±3.5		V
	Output voltage swing	V _{CC} = ±15 V	R _L = 1 kΩ	±13	±13.5		V
		V _{CC} = ±5 V		±3.5	±3.7		
1	Output oursest	V _{CC} = ±15 V	R _L = 20 Ω	70	115		mA
10	Output current	V _{CC} = ±5 V		50	75		
ISC	Short-circuit current	V _{CC} = ±15 V	T _A = 25°C		150		mA
RO	Output resistance	Open loop			12		Ω

[†] Full range = -55°C to 125°C for M suffix

power supply

PARAMETER		TEST SOMBITIONS!		THS4061M			UNIT
	PARAMETER	TEST CONDITIONS†		MIN	TYP	MAX	UNIT
Vac	Supply voltage operating range	Dual supply		±4.5		±16.5	V
VCC	Supply voltage operating range	Single supply		9		33	ľ
	Quiescent current	$V_{CC} = \pm 15 \text{ V}$	1A = 25°C		7.8	9	mA
		$V_{CC} = \pm 5 \text{ V}$			7.3	8.5	
ICC		V _{CC} = ±15 V				11	IIIA
		$V_{CC} = \pm 5 \text{ V}$	T _A = full range			10.5	
PSRR	Power supply rejection ratio	V _{CC} = ±5 V or ±15 V	T _A = 25°C	76	80		dB
PSKK			T _A = full range	74	78		ub

[†] Full range = -55° C to 125°C for M suffix

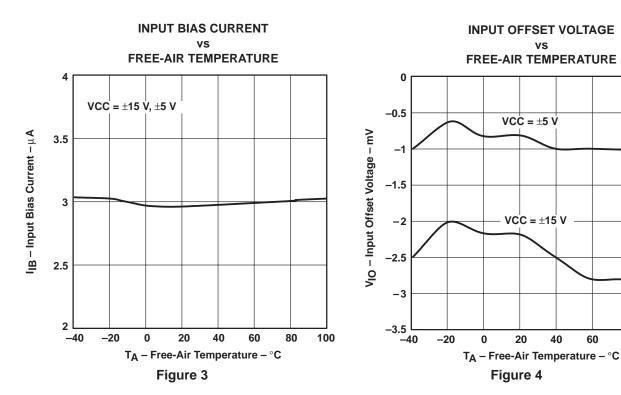
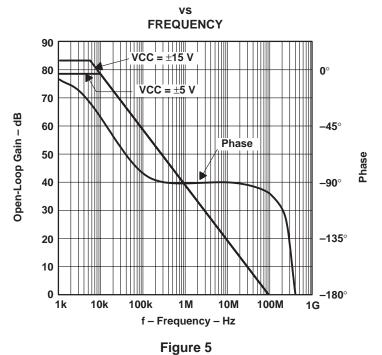
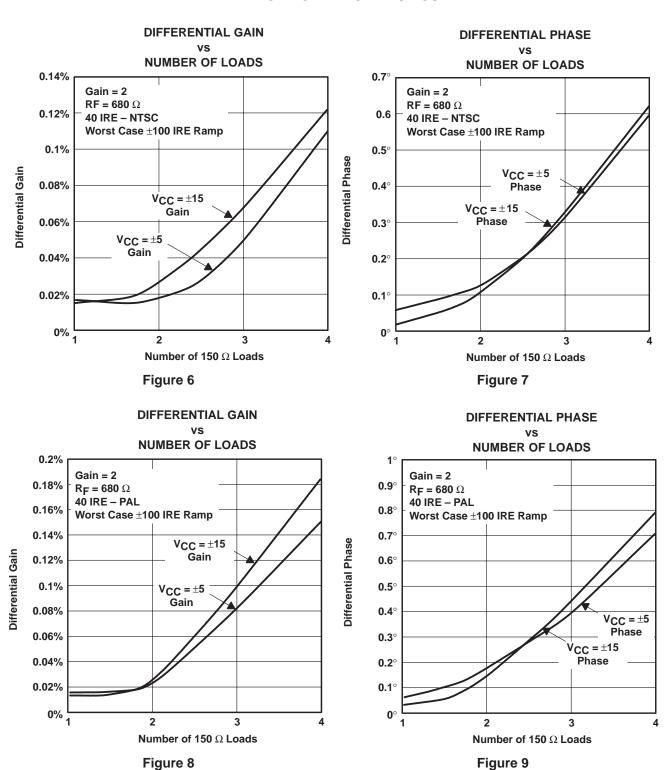

TYPICAL CHARACTERISTICS

			FIGURE
l _{IB}	Input bias current	vs Free-air temperature	3
VIO	Input offset voltage	vs Free-air temperature	4
	Open-loop gain	vs Frequency	5
	Phase	vs Frequency	5
	Differential gain	vs Number of loads	6, 8
	Differential phase	vs Number of loads	7, 9
	Closed-loop gain	vs Frequency	10, 11
	Output Amplitude	vs Frequency	12, 13
CMRR	Common-mode rejection ratio	vs Frequency	14
PSRR	Dower cumby rejection retio	vs Frequency	15
PSKK	Power-supply rejection ratio	vs Free-air temperature	16
V _{O(PP)}	Output voltage swing	vs Supply voltage	17
Icc	Supply current	vs Free-air temperature	18
Env	Noise spectral density	vs Frequency	19
THD	Total harmonic distortion	vs Frequency	20, 21


80

100

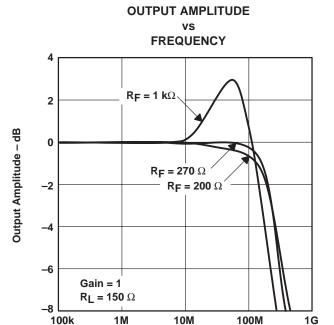

TYPICAL CHARACTERISTICS

OPEN-LOOP GAIN AND PHASE

TYPICAL CHARACTERISTICS

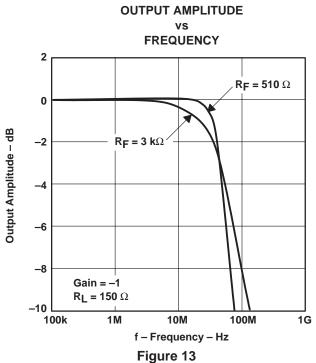


CLOSED-LOOP GAIN

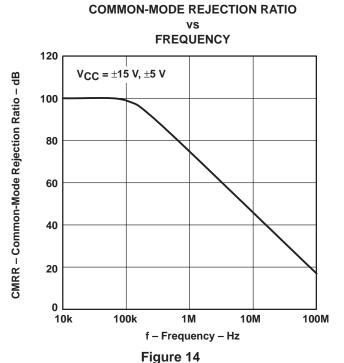

FREQUENCY

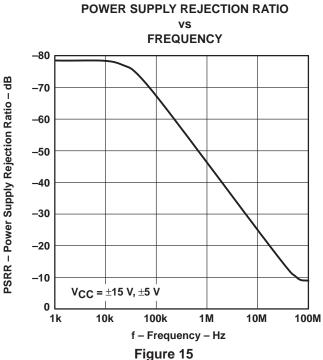
TYPICAL CHARACTERISTICS

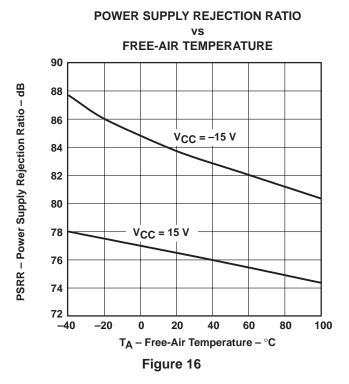
5

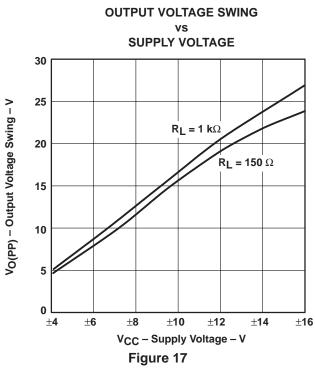


0 Closed-Loop Gain - dB -5 -10 $V_{CC} = \pm 15 \text{ V}, \pm 5 \text{ V}$ Gain = -1 -15 $R_F = 510 \Omega$ $R_L = 150 \Omega$ -20 100k 1M 10M 100M 1G f - Frequency - Hz Figure 11

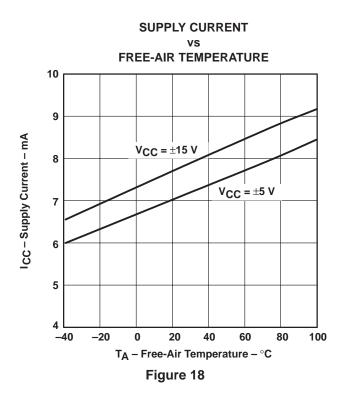


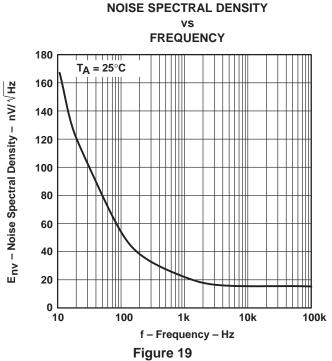

f - Frequency - Hz

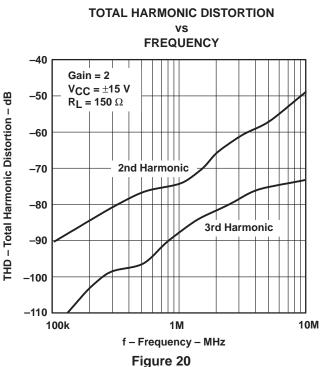

Figure 12

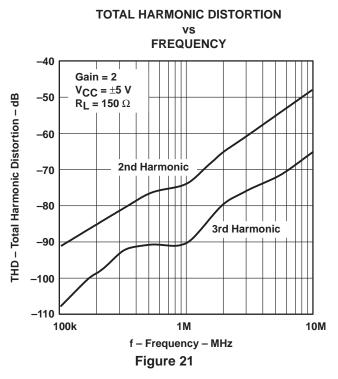


TYPICAL CHARACTERISTICS









TYPICAL CHARACTERISTICS

theory of operation

The THS406x is a high speed, operational amplifier configured in a voltage feedback architecture. It is built using a 30-V, dielectrically isolated, complementary bipolar process with NPN and PNP transistors possessing f_{TS} of several GHz. This results in an exceptionally high performance amplifier that has a wide bandwidth, high slew rate, fast settling time, and low distortion. A simplified schematic is shown in Figure 22.

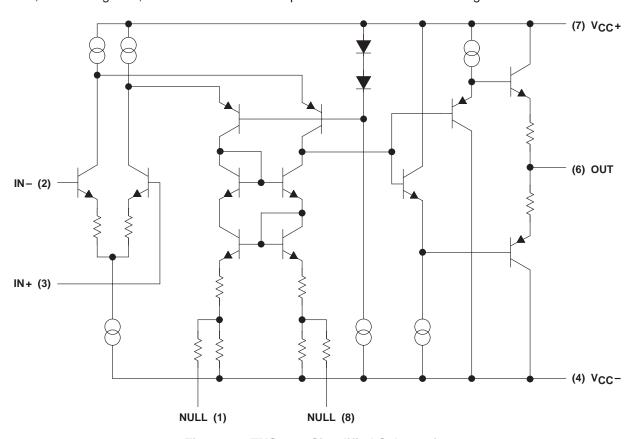


Figure 22. THS4061 Simplified Schematic

offset nulling

The THS4061 has very low input offset voltage for a high-speed amplifier. However, if additional correction is required, an offset nulling function has been provided. By placing a potentiometer between terminals 1 and 8 and tying the wiper to the negative supply, the input offset can be adjusted. This is shown in Figure 23.

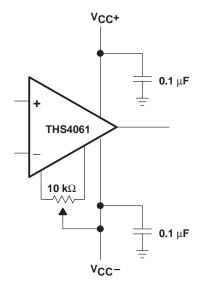


Figure 23. Offset Nulling Schematic

optimizing unity gain response

Internal frequency compensation of the THS406x was selected to provide very wideband performance yet still maintain stability when operated in a noninverting unity gain configuration. When amplifiers are compensated in this manner there is usually peaking in the closed loop response and some ringing in the step response for very fast input edges, depending upon the application. This is because a minimum phase margin is maintained for the G=+1 configuration. For optimum settling time and minimum ringing, a feedback resistor of $270\,\Omega$ should be used as shown in Figure 24. Additional capacitance can also be used in parallel with the feedback resistance if even finer optimization is required.

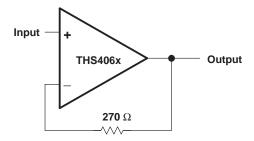


Figure 24. Noninverting, Unity Gain Schematic

driving a capacitive load

Driving capacitive loads with high performance amplifiers is not a problem as long as certain precautions are taken. The first is to realize that the THS406x has been internally compensated to maximize its bandwidth and slew rate performance. When the amplifier is compensated in this manner, capacitive loading directly on the output will decrease the device's phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series with the output of the amplifier, as shown in Figure 25. A minimum value of 20 Ω should work well for most applications. For example, in 75- Ω transmission systems, setting the series resistor value to 75 Ω both isolates any capacitance loading and provides the proper line impedance matching at the source end.

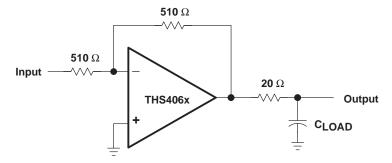


Figure 25. Driving a Capacitive Load

circuit layout considerations

In order to achieve the levels of high frequency performance of the THS406x, it is essential that proper printed-circuit board high frequency design techniques be followed. A general set of guidelines is given below. In addition, a THS406x evaluation board is available to use as a guide for layout or for evaluating the device performance.

- Ground planes It is highly recommended that a ground plane be used on the board to provide all
 components with a low inductive ground connection. However, in the areas of the amplifier inputs and
 output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distances increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets Sockets are not recommended for high-speed operational amplifiers. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation.
- Short trace runs/compact part placements Optimum high frequency performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier.

circuit layout considerations (continued)

 Surface-mount passive components – Using surface-mount passive components is recommended for high-frequency amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout, thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible.

evaluation board

An evaluation board is available for the THS4061 (literature number SLOP226) and THS4062 (literaure number SLOP235). This board has been configured for very low parasitic capacitance in order to realize the full performance of the amplifier. A schematic of the evaluation board is shown in Figure 26. The circuitry has been designed so that the amplifier may be used in either an inverting or noninverting configuration. To order the evaluation board contact your local TI sales office or distributor. For more detailed information, refer to the THS4061 EVM User's Manual (literature number SLOU038) or the THS4062 EVM User's Manual (literature number SLOU040)

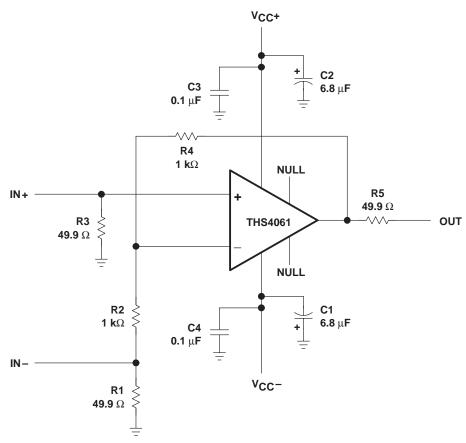
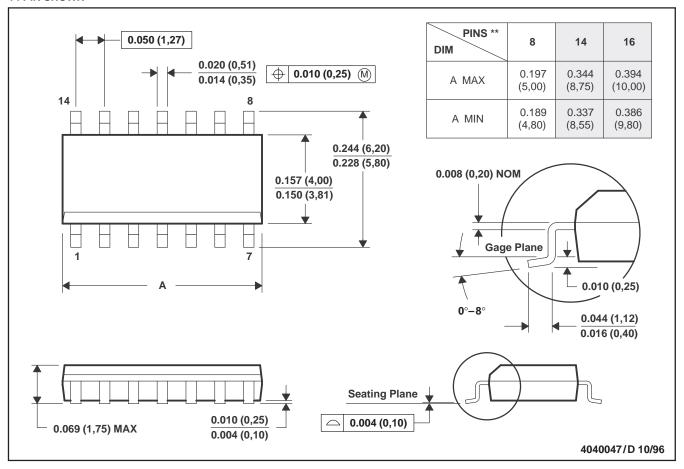


Figure 26. THS4061 Evaluation Board Schematic

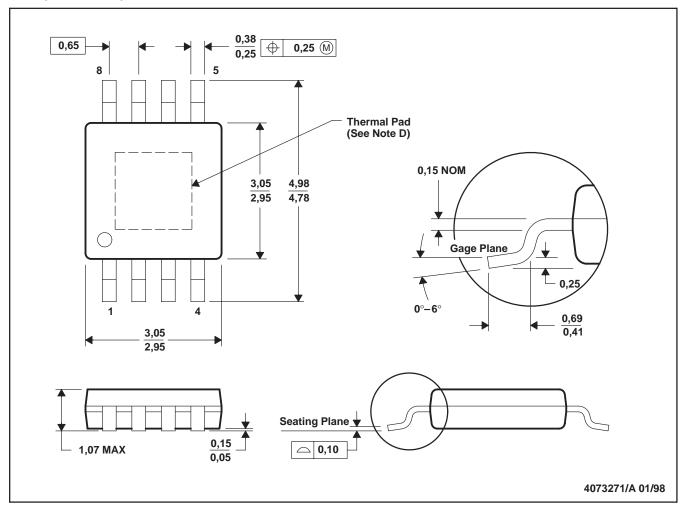

SLOS234D - DECEMBER 1998 - REVISED FEBRUARY 2000

MECHANICAL INFORMATION

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012

MECHANICAL INFORMATION

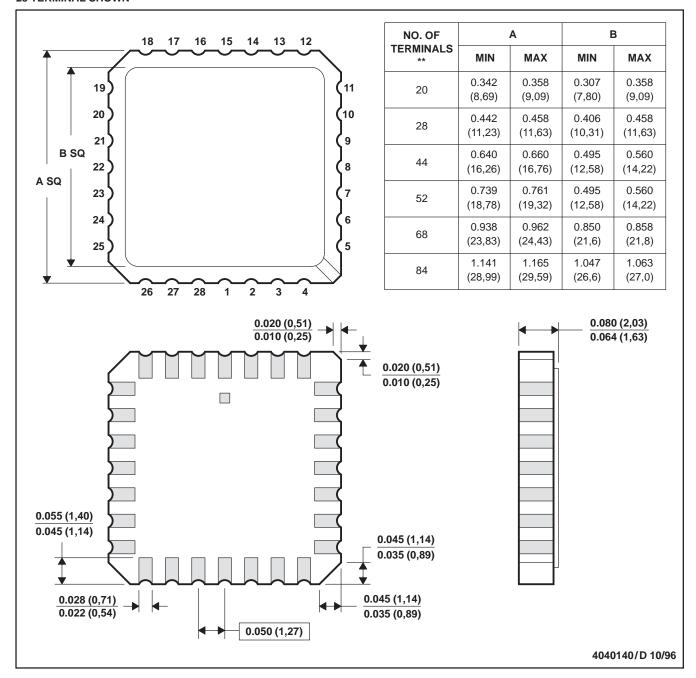
DGN (S-PDSO-G8)

PowerPAD™ PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions include mold flash or protrusions.
- D. The package thermal performance may be enhanced by attaching an external heat sink to the thermal pad. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.
- E. Falls within JEDEC MO-187

PowerPAD is a trademark of Texas Instruments Incorporated.



MECHANICAL INFORMATION

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

MECHANICAL INFORMATION

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL-STD-1835 GDIP1-T8

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated