

8W+8W+15W TRIPLE AMPLIFIER

PRODUCT PREVIEW

- 8+8W (RL = 8Ω) + 15W (RL = 4Ω) OUTPUT POWER @THD = 10%, Vcc = 25V
- INDEPENDENT MUTE FOR CENTER CHANNEL AND MAIN CHANNELS
- NO TURN-ON TURN-OFF POP NOISE
- NO BOUCHEROT CELL
- SINGLE SUPPLY RANGING UP TO 35V
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION
- INTERNALLY FIXED GAIN
- SOFT CLIPPING
- CLIPWATT 15 PACKAGE

DESCRIPTION

The TDA7497SA is a triple 8+8+15W class AB power amplifier assembled in the @ Clipwatt 15 package, specially designed for high quality sound, TV applications.

BLOCK DIAGRAM

Features of the TDA7497SA include mute and St-By functions, independently controller for main and center channels.

September 2003

This is preliminary information on a new product now in development. Details are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	DC Supply Voltage	35	V
P _{tot}	Total Power Dissipation (Tamb = 70°C)	30	W
T _{amb}	Ambient Operating Temperature (1)	0 to 70	°C
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

(1) Operation between -20 to 85 °C guaranteed by correlation with 0 to 70°C.

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Parameter	Value	Unit	
R _{th j-case}	Thermal Resistance Junction-case	Typ.=1.5 max = 2.5	°C/W	
R _{th j-amb}	Thermal Resistance Junction-ambient	max = 48	°C/W	

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage Range		11		30	V
Iq	Total Quiescent Current			60	100	mA
Vo	Quiescent Output Voltage		11.5	12.5	13.5	V
P _{O_L/R}	Output Power Left / RightChannels	THD = 10%; RL = 8Ω; THD = 1%; RL = 8Ω;	6 5	8 6		W W
Po_c	Output Power Center Channel	$\label{eq:thdef} \begin{array}{l} THD = 10\%; \ RL = 4\Omega \\ THD = 1\%; \ RL = 4\Omega \end{array}$	12 10	15 12		W W
THD	Total Harmonic Distortion	P _O = 1W; f = 1KHz;			0.4	%
I _{peak L/R}	Output Peak Current	(internally limited)		2.0		A
I _{peak} C	Output Peak Current Central Channel	(internally limited)		2.5		A
GV	Closed Loop Gain		28.5	29.5	30.5	dB
ΔGV	L/R Voltage GainMatching		-1		1	dB
BW				0.6		MHz
e _N	Total Output Noise	f = 20Hz to 22KHz		60	150	μV
SR	Slew Rate		5	8		V/µs
R _i	Input Resistance		22.5	30		KΩ
SVR	Supply Voltage Rejection	f = 1kHzCSVR = 470mF; VRIP = 1Vrms	50	60		dB
Τ _M	Thermal Muting			150		°C
Τs	Thermal Shut-down			160		°C
MUTE &	INPUT SELECTION FUNCTION	NS				
V _{MUTE1}	Mute 1 ON threshold (L/R/C)		3.5			V
	Mute 1 OFF threshold (L/R/C)				1.5	V
V _{MUTE2}	Mute 2 ON threshold (center)		3.5			V
	Mute 2 OFF threshold (center)				1.5	V
A _{MUTE}	Mute Attenuation		50	65		dB
I _{muteBIAS}	Mute bias currentMute1/Mute2	Mute		1	5	μΑ
		St-By		0.2	2	μΑ

ELECTRICAL CHARACTERISTCS (Refer to the test circuit $V_S = 25V$; $R_g = 50\Omega$; f = 1KHz; $T_{amb} = 25^{\circ}C$)

Figure 1. PC Board and Component Layout

Figure 2. Output Power vs Supply Voltage

Figure 4. THD+N vs Output Power

HEAT SINK DIMENSIONING:

In order to avoid the thermal protection intervention, that is placed approximatively at $T_j = 150^{\circ}$ C, it is important the dimensioning of the Heat Sinker R_{Th} (°C/W).

The parameters that influence the dimensioning are:

- Maximum dissipated power for the device (Pdmax)
- Max thermal resistance Junction to case ($R_{Th j-c}$)
- Max. ambient temperature Tamb max
- Quiescent current Iq (mA)

Example:

V_{CC} = 28V, R_{load} = 80hm (left/right), Rload = 40hm (centre), R_{Th j-c} = 2.5°C/W , T_{amb max} = 50°C

 $P_{dmax} = (N^{\circ} \text{ channels}) \cdot \frac{V_{cc}^{2}}{2\Pi^{2} \cdot R_{load}} + I_{q} \cdot V_{cc}$ $P_{dmax} = 2 \cdot (3.95) + 1 \cdot (7.9) + 1.2 = 17W$

(Heat Sinker)
$$R_{Th c-a} = \frac{150 - T_{amb max}}{P_{d max}} - R_{Th j-c} = \frac{150 - 50}{17} - 2.5 = 3.3^{\circ}C/W$$

In figure 6 is shown the Power derating curve for the device.

Figure 6. Power derating curve

Clipwatt Assembling Suggestions

The suggested mounting method of Clipwatt on external heat sink, requires the use of a clip placed as much as possible in the plastic body center, as indicated in the example of figure 7.

A thermal grease can be used in order to reduce the additional thermal resistance of the contact between package and heatsink.

A pressing force of 7 - 10 Kg gives a good contact and the clip must be designed in order to avoid a maximum contact pressure of 15 Kg/mm2 between it and the plastic body case.

As example , if a 15Kg force is applied by the clip on the package , the clip must have a contact area of 1mm2 at least.

Figure 7. Example of right placement of the clip

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			3.2			0.126	
В			1.05			0.041	
С		0.15			0.006		
D		1.55			0.061		
E	0.49		0.55	0.019		0.022	
F	0.67		0.73	0.026		0.029	
G	1.14	1.27	1.4	0.045	0.050	0.055	
G1	17.57	17.78	17.91	0.692	0.700	0.705	
H1		12			0.480		
H2		18.6			0.732		
H3	19.85			0.781			
L		17.95			0.707		
L1		14.45			0.569		
L2	10.7	11	11.2	0.421	0.433	0.441	
L3		5.5			0.217		
М		2.54			0.100		
M1		2.54			0.100		

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com