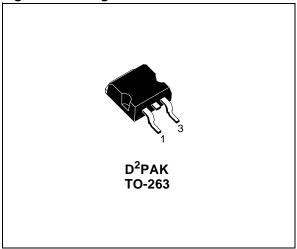


STB16PF06L P-CHANNEL 60V - 0.11Ω - 16A D2PAK STripFET™ MOSFET

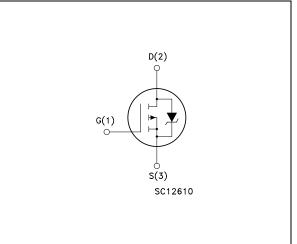
Table 1: General Features

TYPE	V_{DSS}	R _{DS(on)}	ID	Pw
STB16PF06L	60 V	< 0.125 Ω	16 A	70 W

- TYPICAL $R_{DS}(on) = 0.11 \Omega$
- LOW THRESHOLD DEVICE
- LOW GATE CHARGE


DESCRIPTION

This MOSFET is the latest development of STMicroelectronics unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalance characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.


APPLICATIONS

- MOTOR CONTROL
- DC-DC CONVERTERS

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

PART NUMBER MARKING		PACKAGE	PACKAGING	
STB16PF06LT4	B16PF06L	D ² PAK	TAPE & REEL	

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	60	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	60	V
V _{GS}	Gate-source Voltage	± 16	V
I _D	Drain Current (continuous) at T _C = 25°C	16	А
I _D	Drain Current (continuous) at T _C = 100°C	11.4	А
I _{DM} (•)	Drain Current (pulsed)	64	А
Ртот	Total Dissipation at $T_C = 25^{\circ}C$	70	W
	Derating Factor	0.4	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	20	V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	250	mJ
T _j T _{stg}	Operating Junction Temperature Storage Temperature	- 55 to 175	°C

Table 3: Absolute Maximum ratings

(•) Pulse width limited by safe operating area

(1) ISD \leq 16A, di/dt \leq 100Å/µs, VDD \leq V(BR)DSS, Tj \leq TJMAX.

(2) Starting $T_j = 25^{\circ}$ C, $I_D = 8 A$, $V_{DD} = 30 V$ Note:For the P-CHANNEL MOSFET actual polarity of voltages and current has to be reverse

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	2.14	°C/W
Rthj-PCB(#)	Thermal Resistance Junction-PCB Max	34	°C/W
TI	Maximum Lead Temperature For Soldering Purpose (1.6 mm frrom case, for 10sec)	300	°C

(#) When Mounted on 1 inch² FR-4 board, 2 oz of Cu

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) Table 5: On/Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0$	60			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating, T _C = 125 °C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 100 \mu A$	1.5			V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10V$, $I_D = 8 A$ $V_{GS} = 5V$, $I_D = 8 A$		0.11 0.130	0.125 0.165	Ω Ω

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 6: Dynamic

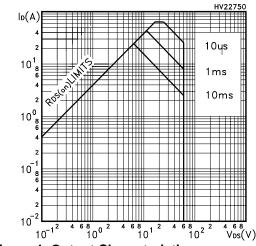
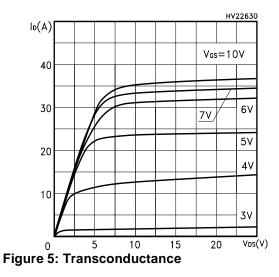

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
g fs	Forward Transconductance	V _{DS} = 10 V _, I _D = 3 A		7.2		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		630 121 49		pF pF pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	$\label{eq:VD} \begin{array}{l} V_{DD} = 30 \text{ V}, \text{ I}_{D} = 8 \text{ A}, \text{ R}_{G} = 4.7 \Omega \\ V_{GS} = 4.5 \text{ V} \\ (\text{Resistive Load}, \text{ Figure 1}) \end{array}$		129 90 25.5 19.5		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 48 \text{ V}, I_D = 16 \text{ A},$ $V_{GS} = 4.5 \text{V}$ (See test circuit, Figure 2)		11.4 5.2 4.7	15.5	nC nC nC

Table 7: Source Drain Diode


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				16 64	A A
V _{SD} (1)	Forward On Voltage	$I_{SD} = 8 \text{ A}, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 16 \text{ A}, \text{ di/dt} = 100 \text{A/}\mu\text{s}$ $V_{DD} = 20 \text{V}, \text{ T}_{\text{j}} = 150^{\circ}\text{C}$ (see test circuit, Figure 3)		48.5 87.3 3.6		ns nC A

Note: 1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %. 2. Pulse width limited by safe operating area.

Figure 3: Safe Operating Area

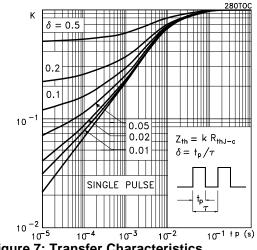


Figure 4: Output Characteristics

Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

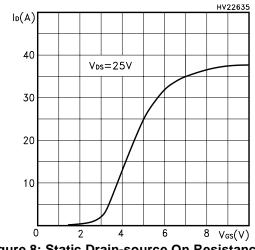
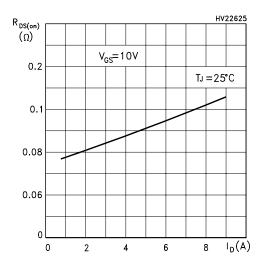



Figure 8: Static Drain-source On Resistance

لرک

Figure 9: Gate Charge vs Gate-source Voltage

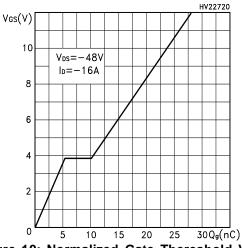


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

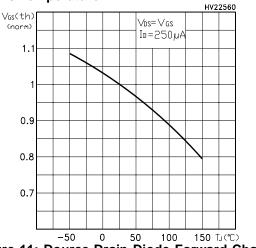
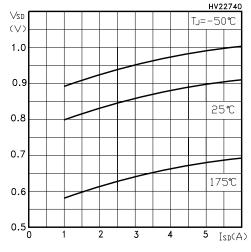



Figure 11: Dource-Drain Diode Forward Characteristics

<u>____</u>

Figure 12: Capacitance Variations

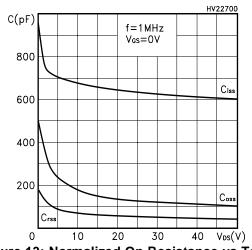
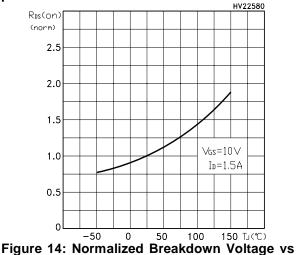



Figure 13: Normalized On Resistance vs Temperature

Temperature

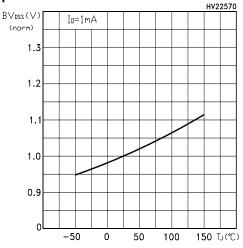


Figure 15: Unclamped Inductive Load Test Circuit

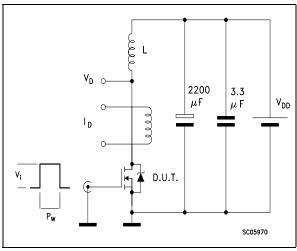


Figure 16: Switching Times Test Circuit For Resistive Load

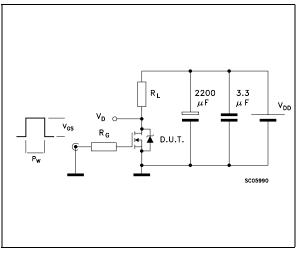
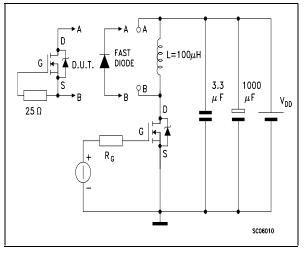
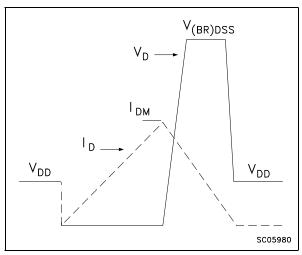
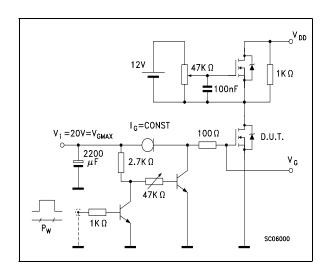
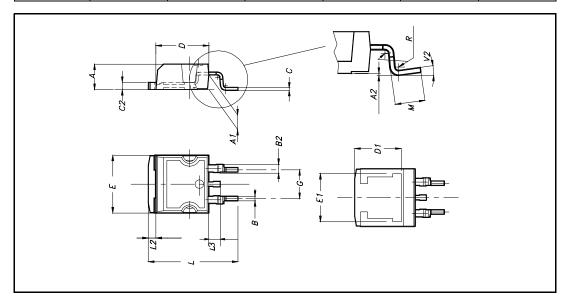
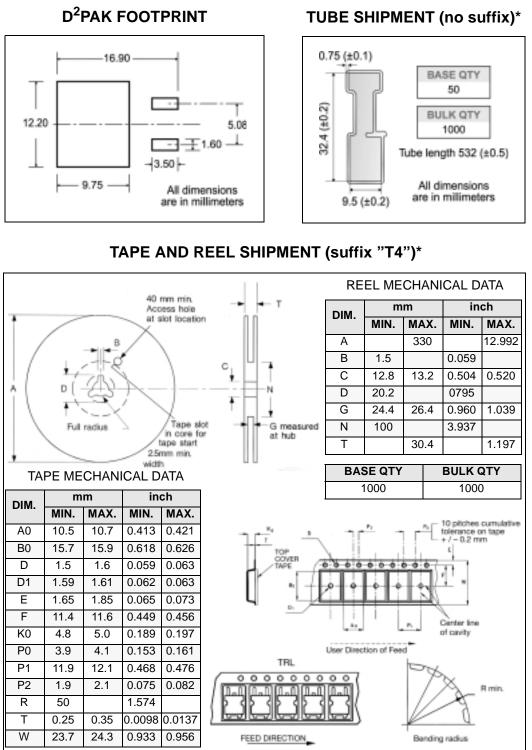



Figure 17: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 18: Unclamped Inductive Wafeform


Figure 19: Gate Charge Test Circuit



ĹŢ

D²PAK MECHANICAL DATA

DIM.		mm.			inch			
DIN.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.		
А	4.4		4.6	0.173		0.181		
A1	2.49		2.69	0.098		0.106		
A2	0.03		0.23	0.001		0.009		
В	0.7		0.93	0.027		0.036		
B2	1.14		1.7	0.044		0.067		
С	0.45		0.6	0.017	0.0			
C2	1.23		1.36	0.048	0.0			
D	8.95		9.35	0.352		0.368		
D1		8			0.315			
E	10		10.4	0.393				
E1		8.5			0.334			
G	4.88		5.28	0.192		0.208		
L	15		15.85	0.590		0.625		
L2	1.27		1.4	0.050		0.055		
L3	1.4		1.75	0.055		0.068		
М	2.4		3.2	0.094		0.126		
R		0.4			0.015			
V2	0°		4º					

ÁŢ/.

on sales type

Table 8: Revision History

Date	Revision	Description of Changes
13/Sep/2004	1	First Release.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

ĹŢ/,