## SIEMENS

Dynamic Differential Hall Effect Sensor IC
TLE 4923

Bipolar IC

## Features

- Advanced performance
- Higher sensitivity
- Symmetrical thresholds
- High piezo resistivity
- Reduced power consumption
- South and north pole pre-induction possible
- AC coupled
- Digital output signal

- Two-wire interface
- Large temperature range
- Large airgap
- Low cut-off frequency
- Protection against reversed polarity

| Type | Ordering Code | Package |
| :--- | :--- | :--- |
| $\boldsymbol{\nabla}$ TLE 4923 | Q62705-K408 | P-SSO-3-6 |

New type
The differential Hall effect sensor TLE 4923 is compatible to the TLE 4921-3U, except for having a 2 -wire interface. The TLE 4923 provides high sensitivity, a superior stability over temperature and symmetrical thresholds in order to achieve a stable duty cycle. TLE 4923 is particularly suitable for rotational speed detection and timing applications of ferromagnetic toothed wheels such as in anti-lock braking systems, transmissions, crankshafts, etc. The integrated circuit (based on Hall effect) provides a digital signal output with frequency proportional to the speed of rotation. Unlike other rotational sensors differential Hall ICs are not influenced by radial vibration within the effective airgap of the sensor and require no external signal processing.

## Pin Configuration

(top view)


Figure 1

Pin Definitions and Functions

| Pin No. | Symbol | Function |
| :--- | :--- | :--- |
| 1 | $V_{S}$ | Supply voltage |
| 2 | GND | Ground |
| 3 | $C$ | Capacitor |

$\qquad$


Figure 2 Block Diagram

## Functional Description

The Differential Hall sensor IC detects the motion and position of ferromagnetic and permanent magnet structures by measuring the differential flux density of the magnetic field. To detect ferromagnetic objects the magnetic field must be provided by a back biasing permanent magnet (south or north pole of the magnet attached to the rear unmarked side of the IC package).
Using an external capacitor the generated Hall voltage signal is slowly adjusted via an active high pass filter with low frequency cut-off. This causes the output to switch into a biased mode after a time constant is elapsed. The time constant is determined by the external capacitor. Filtering avoids aging and temperature influence from Schmitt-trigger input and eliminates device and magnetic offset.
The TLE 4923 can be exploited to detect toothed wheel rotation in a rough environment. Jolts against the toothed wheel and ripple have no influence on the output signal.
The on and off state of the IC are indicated by high and low current consumption.

## Circuit Description (see Figure 2)

The TLE 4923 is comprised of a supply voltage reference, a pair of Hall probes spaced at 2.5 mm , differential amplifier, filter for offset compensation, Schmitt-trigger, and a switched current source.
The TLE 4923 was designed to have a wide range of application parameter variations. Differential fields up to $\pm 40 \mathrm{mT}$ can be detected without influence to the switching performance. The pre-induction field can either come from a magnetic south or north pole, whereby the field strength up to 500 mT or more will not influence the switching points ${ }^{11}$. The improved temperature compensation enables a superior sensitivity and accuracy over the temperature range. Finally, the optimized piezo compensation and the integrated dynamic offset compensation enable easy manufacturing and elimination of magnet offsets.
Protection is provided at the input/supply (pin 1) for reverse polarity.

[^0]Absolute Maximum Ratings

| Parameter | Symbol | Limit Values |  | Unit | Remarks |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | min. | max. |  |  |
| Supply voltage | $V_{\mathrm{S}}$ | $-18^{1)}$ | 24 | V |  |
| Capacitor voltage | $V_{\mathrm{C}}$ | -0.3 | 3 | V |  |
| Junction temperature | $T_{\mathrm{J}}$ |  | 150 | ${ }^{\circ} \mathrm{C}$ | 5000 h |
| Junction temperature | $T_{\mathrm{j}}$ |  | 160 | ${ }^{\circ} \mathrm{C}$ | 2500 h |
| Junction temperature | $T_{\mathrm{j}}$ |  | 170 | ${ }^{\circ} \mathrm{C}$ | 500 h |
| Junction temperature | $T_{\mathrm{j}}$ |  | 190 | ${ }^{\circ} \mathrm{C}$ | 4 h |
| Storage temperature | $T_{\mathrm{S}}$ | -40 | 150 | ${ }^{\circ} \mathrm{C}$ |  |
| Thermal resistance | $R_{\text {th } \mathrm{JA}}$ |  | 190 | $\mathrm{~K} / \mathrm{W}$ | ${ }^{2)}$ |

1) Reverse current drawn by the device $<10 \mathrm{~mA}$
${ }^{2)}$ Can be reduced significantly by further packaging process, e. g. overmolding.
The device is ESD protected up to 2 kV ( HL test procedure)
Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Range

| Parameter | Symbol | Limit Values |  | Unit | Remarks |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | min. | max. |  |  |  |
| Supply voltage | $V_{\mathrm{S}}$ | 4.5 | 18 | V |  |
| Junction temperature | $T_{\mathrm{j}}$ | -40 | 190 | ${ }^{\circ} \mathrm{C}$ |  |
| Pre-induction | $B_{0}$ | -500 | 500 | mT | At Hall probe; <br> independent of <br> magnet <br> orientation |
| Differential induction | $\Delta B$ | -40 | 40 | mT |  |

Note: Unless otherwise noted, all temperatures refer to junction temperature. In the operating range the functions given in the circuit description are fulfilled.

## AC/DC Characteristics

The device characteristics listed below are guaranteed in the full operating range.

| Parameter | Symbol | Limit Values |  |  | Unit | Test Condition | Test Circuit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | min. | typ. | max. |  |  |  |
| Supply current | $I_{\text {S }}$ | $\begin{aligned} & 3.1 \\ & 8.1 \end{aligned}$ | $\begin{aligned} & 4.1 \\ & 10.5 \end{aligned}$ | $\begin{aligned} & 5.3 \\ & 13.6 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |  | $\begin{array}{\|l\|} 1 \\ 1 \end{array}$ |
| Supply current difference | $I_{\text {son }}-I_{\text {soff }}$ | 5.0 | 6.4 | 8.3 | mA |  | 1 |
| Supply current ratio | $\begin{aligned} & I_{\text {SON }} / \\ & I_{\text {SOFF }} \end{aligned}$ | 2 | 2.4 | 3 |  |  | 1 |
| Center of switching points: $\left(\Delta B_{\mathrm{OP}}+\Delta B_{\mathrm{RP}}\right) / 2$ | $\Delta B_{\mathrm{m}}$ | -0.5 | 0 | 0.5 | mT | $\begin{aligned} & \Delta B=2.0 \mathrm{mT}, \\ & f^{2}=200 \mathrm{~Hz}, \\ & -40^{\circ} \mathrm{C}<T_{\mathrm{j}} \leq \\ & 150^{\circ} \mathrm{C}^{1)}{ }^{2)^{2}} \end{aligned}$ | 2 |
| Center of switching points: $\left(\Delta B_{\mathrm{OP}}+\Delta B_{\mathrm{RP}}\right) / 2$ | $\Delta B_{\mathrm{m}}$ | -0.7 | 0 | 0.7 | mT | $\begin{aligned} & \Delta B=2.0 \mathrm{mT}, \\ & f=200 \mathrm{~Hz}, \\ & 150^{\circ} \mathrm{C}<T_{\mathrm{j}}< \\ & \left.190^{\circ} \mathrm{C}\right)^{1)} \mathrm{l} \end{aligned}$ | 2 |
| Hysteresis | $\Delta B_{\text {hy }}$ | 1 | 1.5 | 2.2 | mT | $\begin{aligned} & \Delta B=2.0 \mathrm{mT}, \\ & \left.f=200 \mathrm{~Hz}^{3}\right)^{\prime} \end{aligned}$ | 2 |
| Current rise time | $t_{\mathrm{r}}$ |  |  | 0.5 | $\mu \mathrm{s}$ |  | 2 |
| Current fall time | $t_{\text {f }}$ |  |  | 0.5 | $\mu \mathrm{s}$ |  | 2 |
| Delay time ${ }^{4)}$ | $\begin{array}{\|l\|} \hline t_{\text {dop }} \\ t_{\text {drp }} \\ t_{\text {dop }}-t_{\mathrm{drp}} \\ \hline \end{array}$ |  |  | $\begin{aligned} & 25 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$ | $\begin{aligned} & f=10 \mathrm{kHz}, \\ & \Delta B=5 \mathrm{mT} \end{aligned}$ | 2 |
| Filter input resistance | $R_{\text {C }}$ | 35 | 43 | 52 | $\mathrm{k} \Omega$ | $25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ | 1 |
| Filter sensitivity to $\Delta B$ | $S_{\text {C }}$ |  | 8.5 |  | $\begin{aligned} & \mathrm{mV} / \\ & \mathrm{mT} \\ & \hline \end{aligned}$ | $25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ | 1 |
| Filter bias voltage | $V_{\text {c }}$ | 1.6 | 2.0 | 2.4 | V | $\Delta B=0$ | 1 |
| Frequency | $f$ | 5) |  | 10000 | Hz | $\Delta B=5 \mathrm{mT}$ | 2 |
| Resistivity against mechanical stress (piezo) ${ }^{6)}$ | $\begin{aligned} & \Delta B_{\mathrm{m}} \\ & \Delta B_{\mathrm{Hy}} \end{aligned}$ | $\begin{aligned} & -0.1 \\ & -0.1 \end{aligned}$ |  | $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & \mathrm{mT} \\ & \mathrm{mT} \end{aligned}$ | $\mathrm{F}=2 \mathrm{~N}$ | 2 |

AC/DC Characteristics (cont'd)
The device characteristics listed below are guaranteed in the full operating range.

| Parameter | Symbol | Limit Values |  |  | Unit | Test Condition | Test Circuit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | min. | typ. | max. |  |  |  |
| Power Supply Rejection Ratio (PSRR) | $V_{\text {PSRR }}$ | 10 |  |  | V | $V_{\mathrm{S}}$ modulated with $V_{\text {PSRR }}$, <br> $f_{\text {PSRR }}=10 \mathrm{kHz}$, <br> $t_{\mathrm{r}, \mathrm{fPSRR}}=1 \mu \mathrm{~s}$, $\Delta B=0$, <br> only 1 transition may occur | $2^{7}$ |

1) For $\Delta B$ values larger than $\pm 10 \mathrm{mT}$ this value may exceed the limits as follows: $\left|\Delta B_{\mathrm{m}}\right|<|0.05 \times \Delta B|$
${ }^{2)}$ Leakage currents at pin 3 should be avoided. The bias shift of $B_{\mathrm{m}}$ caused by a leakage current $I_{\mathrm{L}}$ can be calculated by: $\Delta B_{\mathrm{m}}=\frac{I_{\mathrm{L}} \times R_{\mathrm{C}}(\mathrm{T})}{S_{\mathrm{C}}(\mathrm{T})}$. See also the typical curves on page 17.
2) Differential pre-induction (e.g. by magnetic misalignment) has to be smaller than 20 mT .
3) For definition see Figure 6.
4) Depends on filter capacitor $C_{\mathrm{F}}$. The cut-off frequency is given as $f=\frac{1}{2 \times \pi \times R_{\mathrm{C}} \times C_{\mathrm{F}}}$. The switching points are guaranteed over the whole frequency range, but amplitude modification and phase shift have to be taken into account due to the $1^{\text {st }}$ order highpass filter.
5) For definition see Figure 7.
6) For definition see Figure 5.

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$ and the given supply voltage.


Figure 3 Test Circuit 1


Figure 4 Test Circuit 2
$\qquad$


Figure 5


Figure 6 Definition of Delay Times (switching points related to initial measurement $@ \Delta B=2 \mathrm{mT} ; f=200 \mathrm{~Hz}$ )


Figure 7 Setup for Piezo Measurements

## Application Notes

Two possible applications are shown in Figure 10 and Figure 11 (Toothed and Magnet Wheel).
Two-wire application is shown in Figure 12.

## Gear Tooth Sensing

In the case of ferromagnetic toothed wheel applications the IC has to be biased by the south or north pole of a permanent magnet (e.g. $\mathrm{SmCo}_{5}$ (Vacuumschmelze VX170) with the dimensions $8 \mathrm{~mm} \times 5 \mathrm{~mm} \times 3 \mathrm{~mm}$ ) which should cover both Hall probes.
The maximum air gap depends on:

- the magnetic field strength (magnet used; pre-induction) and
- the tooth wheel that is used (dimensions, material, etc.; resulting differential field).
a centered distance of Hall probes
b Hall probes to IC surface
L IC surface to tooth wheel
$\mathrm{a}=2.5 \mathrm{~mm}$
$\mathrm{b}=0.3 \mathrm{~mm}$


Figure 8 Sensor Spacing

Conversion DIN - ASA

$$
m=25.4 \mathrm{~mm} / \mathrm{p}
$$

$$
T=25.4 \mathrm{~mm} \mathrm{CP}
$$

| DIN |  |
| :--- | :--- |
| $d$ | diameter $(\mathrm{mm})$ |
| $z$ | number of teeth |
| $m$ | module $m=d / z(\mathrm{~mm})$ |
| $T$ | pitch $T=\pi \times m(\mathrm{~mm})$ |

ASA
$p \quad$ diameter pitch $p=z / d$ (inch)
$\mathrm{PD} \quad$ pitch diameter $\mathrm{PD}=z / p$ (inch)
CP circular pitch $\mathrm{CP}=1$ inch $\times \pi / p$

Figure 9 Tooth Wheel Dimensions
$\qquad$


Figure 10 TLE 4923, with Ferromagnetic Toothed Wheel


Figure 11 TLE 4923, with Magnet Wheel
$\qquad$


Figure 12 Application Circuit
$\qquad$


Operate point: $\mathrm{B} 2-\mathrm{B} 1<\Delta B_{\mathrm{OP}}$ switches the output ON
Release point: $\mathrm{B} 2-\mathrm{B} 1>\Delta B_{\mathrm{RP}}$ switches the output OFF $\left(\begin{array}{l}\text { high } \\ \text { low }\end{array}\right.$ current $) ~ \$$

$$
\Delta B_{\mathrm{RP}}=\Delta B_{\mathrm{OP}}+\Delta B_{\mathrm{HY}}
$$

The magnetic field is defined as positive if the south pole of the magnet shows towards the rear side of the IC housing.

Figure 13 System Operation

If not otherwise specified, all curves reflect typical values at $\boldsymbol{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ and $V_{\mathrm{S}}=12 \mathrm{~V}$.

Supply Current and Supply Current Difference versus Supply Voltage


Supply Current and Supply Current Difference versus Temperature


Minimum Switching Field versus Frequency


Mean Value of Switching Induction


Hysteresis versus Temperature


Delay Time ${ }^{1)}$ versus Differential Field


1) Switching points related to initial measurement $@ \Delta B=2 \mathrm{mT}, f=200 \mathrm{~Hz}$

Delay Time ${ }^{1)}$ versus Temperature


Rise and Fall Time versus Temperature


Capacitor Voltage versus Temperature

AED02481


Filter Sensitivity versus Temperature


Filter Input Resistance versus
Temperature


Delay Time $t_{\text {pon }}$ for Power ON versus Temperature


1) Calculated values for minimum and maximum filter
resistance, $C_{F}$ at room temperature.

Threshold Shift versus Filter Leakage


## Package Outline



## Sorts of Packing

Package outlines for tubes, trays etc. are contained in our


[^0]:    1) Differential bias fields exceeding $\pm 20 \mathrm{mT}$, e. g. caused by a misaligned magnet, should be avoided.
