DATA SHEET

TDA8601
 RGB/YUV and fast blanking switch

File under Integrated Circuits, IC02

FEATURES

- YUV/RGB and fast blanking switch
- 3-state output
- Selectable clamp:
- passive (with diodes) or
- active clamp
- Bandwidth greater than 22 MHz
- Fully ESD protected
- Latch-up free.

APPLICATIONS

- Standard and high definition television sets
- Peri-television sets.

GENERAL DESCRIPTION

The device is intended for switching between two RGB or YUV video sources. The outputs can be set to a high-impedance state to enable parallel connection of several devices.

A HIGH level on SEL (pin 5) selects the video inputs of Channel 2. The IOCNTR control pin (pin 16) defines the 3-state outputs and clamp inputs:

- HIGH = 3-state outputs (also for test; active clamp)
- LOW = passive clamp at the video inputs (diode)
- Sandcastle: the video signal is clamped with an active clamp during the sync pulse.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage		7.2	8.0	8.8	V
G_{v}	voltage gain		-0.5	0	+0.5	dB
B	bandwidth	at 3 dB	22	-	-	MHz
α_{ct}	crosstalk attenuation between two video channels	$\mathrm{f}_{\mathrm{i}}=5 \mathrm{MHz}$	-60	-	-	dB
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature		0	-	70	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

TYPE	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA8601	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-1
TDA8601T	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1

BLOCK DIAGRAM

MKA 732
Fig. 1 Block diagram.

PINNING

SYMBOL	PIN	DESCRIPTION
V $_{P}$	1	supply voltage (8 V)
VIDIa1	2	video input a (channel 1)
VIDIb1	3	video input b (channel 1)
VIDIc1	4	video input c (channel 1)
SEL	5	channel selection
VIDIa2	6	video input a (channel 2)
VIDIb2	7	video input b (channel 2)
VIDIc2	8	video input c (channel 2)
GND	9	ground
VIDOc	10	video output c
VIDOb	11	video output b
VIDOa	12	video output a
FBO	13	fast blanking output signal
FBI2	14	fast blanking input signal (channel 2)
FBI1	15	fast blanking input signal (channel 1)
IOCNTR	16	control of video input or video output

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{P}	supply voltage	-0.3	+12	V
$\mathrm{~V}_{\mathrm{i}}$	input voltage (pins 2 to 4 and 6 to 8) referenced to ground	0	8.8	V
$\mathrm{~T}_{\mathrm{j}}$	junction temperature	-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	IC storage temperature	-55	+150	${ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

ESD in accordance with "MIL STD 883C"- "Method 3015":

1. Human body model: $1500 \Omega, 100 \mathrm{pF}, 3$ pulses positive and 3 pulses negative on each pin with respect to ground. Class 2: 2000 to 3999 V.
2. Machine model: $0 \Omega, 200 \mathrm{pF}, 3$ pulses positive and 3 pulses negative on each pin with respect to ground. The IC withstands 200 V .

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$\mathrm{R}_{\text {th } j \text {-a }}$	thermal resistance from junction to ambient in free air		
	DIP16	70	K/W
	SO16	115	K/W

OPERATING CHARACTERISTICS

The operating characteristics are the conditions within the IC when it is functional; these conditions can have any value. For example, condition V_{IL} (pin 5) is fixed at 0.5 V . The IC will then operate over the full temperature range and supply voltage range.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage		7.2	8.0	8.8	V
Video inputs (pins 1 to 3 and 6 to 8)						
$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}$	input video signal amplitude (peak-to-peak value)	R, G, B signals	-	0.7	1	V
		Y signal; active clamp	-	1	1.4	V
		-(B-Y) signal; active clamp	-	1.05	1.5	V
		-(R - Y) signal; active clamp	-	1.33	1.9	V
C_{i}	input clamp capacitor		-	47	-	nF
Control inputs (pins 5 and 16)						
V_{IH}	HIGH level input voltage (pin 5)	$\mathrm{I}_{\mathrm{H}}=10 \mu \mathrm{~A}$	0.9	-	V_{P}	V
$\mathrm{V}_{\text {IL }}$	LOW level input voltage (pin 5)	$\mathrm{I}_{\mathrm{IL}}=-10 \mu \mathrm{~A}$	-	-	0.5	V
V_{IH}	HIGH level input voltage (pin 16)	$\mathrm{I}_{1 \mathrm{H}}=10 \mu \mathrm{~A}$	2.0	-	V_{P}	V
$\mathrm{V}_{\text {IL }}$	LOW level input voltage (pin 16)	$\mathrm{I}_{\mathrm{IL}}=-10 \mu \mathrm{~A}$	-	-	0.8	V
$\mathrm{V}_{\text {sc }}$	sandcastle input voltage level (pin 16)	zero level	-	-	1.1	V
		blanking level	2.0	-	3.1	V
		clamp level	3.9	-	5.5	V
t_{w}	clamp pulse width	SECAM mode	-	3.6	-	$\mu \mathrm{s}$
		PAL mode	-	2.5	-	$\mu \mathrm{s}$
Fast blanking inputs (pins 14 and 15)						
V_{IH}	HIGH level input voltage		0.95	-	V_{P}	V
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-	-	0.5	V
Video outputs (pins 10 to 12)						
C_{L}	output load capacitor		-	40	100	pF
R_{L}	output load resistor	note 1	1	-	-	$\mathrm{k} \Omega$

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Fast blanking output (pin 13) | | | | | | |
| C_{L} | output load capacitor | | - | 40 | 100 | pF |
| R_{L} | output load resistor | note 1 | 1 | - | - | $\mathrm{k} \Omega$ |

Note

1. For the DIP16 package, the thermal resistance is lower. The minimum value for the output load resistor is 270Ω.

CHARACTERISTICS

The typical values are given for $\mathrm{V}_{\mathrm{P}}=8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} . \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$; no load resistor; measured in application circuit of Fig. 8 over full supply voltage and temperature range; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
Ip	supply current	no resistive load on the outputs	-	33	40	mA
SVRR	supply voltage rejection ratio	$\mathrm{f}_{\mathrm{i}}=40 \mathrm{~Hz}$ to 50 kHz ; note 1	-	-	-36	dB
		$\mathrm{f}_{\mathrm{i}}=40 \mathrm{~Hz}$; note 1	-	-51	-36	dB
Video inputs (pins 1 to 3 and 4 to 6)						
R_{i}	input resistance	for each type of clamp	10	-	-	$\mathrm{k} \Omega$
$\mathrm{C}_{\mathrm{i}(\text { max })}$	maximum input capacitance		-	3	-	pF
$\mathrm{V}_{\text {clamp }}$	input clamping voltage level	$\mathrm{I}_{\mathrm{i}}=-50 \mathrm{~mA}$; passive clamp	1.05	1.21	1.35	V
		$\mathrm{I}_{\mathrm{i}}=50 \mathrm{~mA}$; active clamp; $\mathrm{V}_{\text {IOCNTR }}=3.9 \mathrm{~V}$	2.05	2.42	2.70	V
		$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{i}}=-50 \mathrm{~mA} ; \text { active clamp; } \\ \mathrm{V}_{\text {IOCNTR }}=3.9 \mathrm{~V} \\ \hline \end{array}$	2.05	2.37	2.70	V
$\mathrm{I}_{\text {sink }}$	input sink current	$\mathrm{V}_{\mathrm{i}}=2 \mathrm{~V}$; passive clamp	0.5	1.6	3	$\mu \mathrm{A}$
$\left\|\mathrm{I}_{\text {clamp }}\right\|$	maximum absolute input clamping current	$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {clamp }}+0.5 \mathrm{~V}$ active clamp	200	-	-	$\mu \mathrm{A}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Video outputs (pins 10 to 12)						
R_{0}	output resistance		-	-	50	Ω
R_{oz}	output resistance	3-state output	0.1	-	-	$\mathrm{M} \Omega$
$\mathrm{C}_{\text {oZ }}$ (max)	maximum output capacitance	3-state output	-	3	-	pF
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$	-0.5	0	+0.5	dB
B	bandwidth	at $\pm 0.5 \mathrm{~dB}$	5	-	-	MHz
		at $\pm 1 \mathrm{~dB}$	10	-	-	MHz
		at $\pm 3 \mathrm{~dB}$	22	40	-	MHz
$\alpha_{c t}$	crosstalk attenuation between two video channels	$\mathrm{f}_{\mathrm{i}}=5 \mathrm{MHz}$; note 2	-60	-	-	dB
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz}$; note 2	-50	-	-	dB
		$\mathrm{f}_{\mathrm{i}}=22 \mathrm{MHz}$; note 2	-40	-	-	dB
$\alpha_{\text {off }}$	isolation of the 3-state configuration	$\mathrm{f}_{\mathrm{i}}=5 \mathrm{MHz}$; note 2	-60	-	-	dB
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz}$; note 2	-50	-	-	dB
		$\mathrm{f}_{\mathrm{i}}=22 \mathrm{MHz}$; note 2	-40	-	-	dB
SR	slew rate		100	120	-	V/ $\mu \mathrm{s}$
$\left\|\Delta G_{m}\right\|$	gain matching between two different signals of the same channel	$\mathrm{f}_{\mathrm{i}}=5 \mathrm{MHz}$	-	-	0.5	dB
$\mathrm{V}_{\text {O(b) }}$	output blanking level voltage		2.1	2.23	2.7	V
$\mathrm{V}_{\text {os(bl) }}$	output blanking offset voltage	$\begin{aligned} & \mathrm{V}_{i(\text { ch1 })}=0.7 \mathrm{~V}(\mathrm{p}-\mathrm{p})(\text { white }) ; \\ & \mathrm{V}_{\mathrm{i}(\mathrm{ch} 2)}=0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \text { (black); } \\ & \text { active clamp; note } 3 \end{aligned}$	-	-	5	mV
		$\begin{aligned} & \mathrm{V}_{\mathrm{i}(\mathrm{ch} 1)}=0.7 \mathrm{~V}(\mathrm{p}-\mathrm{p})(\mathrm{white}) ; \\ & \mathrm{V}_{\mathrm{i}(\mathrm{ch} 2)}=0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \text { (black) } ; \\ & \text { passive clamp; note } 3 \end{aligned}$	-	-	15	mV
$\Delta \mathrm{V}_{\text {os(bl) }}$	matching of output blanking offset voltage	$\begin{array}{\|l} \left.\hline \mathrm{V}_{i(\text { ch1 })}=0.7 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \text { (white }\right) ; \\ \mathrm{V}_{\mathrm{i}}(\mathrm{ch} 2)=0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \text { (black) } ; \\ \text { active clamp; note } 3 \\ \hline \end{array}$	-	-	5	mV
		$\begin{aligned} & \mathrm{V}_{\mathrm{i}(\text { (ch1) }}=0.7 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \text { (white); } \\ & \mathrm{V}_{\mathrm{i}(\text { ch2 } 2)}=0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \text { (black); } \\ & \text { passive clamp; note } 3 \end{aligned}$	-	-	5	mV

Fast blanking inputs (pins 14 and 15)

Z_{i}	input impedance		10	-	-	$\mathrm{k} \Omega$
Fast blanking output (pin 13)						
V_{OH}	HIGH level output voltage		2	2.35	3	V
$\mathrm{V}_{\text {OL }}$	LOW level output voltage		0	0.15	0.3	V
Z_{0}	output impedance		-	-	50	Ω
SEL input (pin 5)						
Z_{i}	input impedance		10	-	-	$\mathrm{k} \Omega$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Timing						
$\mathrm{t}_{\text {dSEL }}$ VVID	delay time between SEL input and video output	note 4	-	12	20	ns
$\mathrm{t}_{\mathrm{dSEL}}$;FBO	delay time between SEL input and fast blanking output	note 5	-	15	40	ns
$\mathrm{t}_{\text {SWVID }}$	switching time of video output	note 4	-	8.5	15	ns
tswfbo	switching time of fast blanking output	note 5	-	8.5	15	ns
$\mathrm{t}_{\text {dFB }}$	fast blanking level delay between input and output	note 6	-	13	20	ns
$\mathrm{t}_{\mathrm{dVID}}$	video delay between input and output	note 7	-	4	20	ns
$\Delta \mathrm{t}_{\mathrm{dVID}}$	delay difference between two video signals at the output	note 7	-	0.5	10	ns
$\Delta \mathrm{t}_{\mathrm{dFB}}$;VID	delay difference between fast blanking level and video at the output	note 7	-	5	10	ns

Notes

1. The supply voltage rejection ratio is measured at the video outputs (pins 10 to 12) when a sine wave is applied on the power supply pin (pin 1); where: $\mathrm{V}_{\mathrm{DC}}=8 \mathrm{~V} ; \mathrm{V}_{\mathrm{i}}=100 \mathrm{mV}(\mathrm{p}-\mathrm{p})$. This additional sine wave on the power supply pin is guaranteed not to cause extraneous oscillations on the video control and fast blanking signals.
2. The 6 video inputs will contain the same signal. The source impedance is 50Ω.
3. The blanking offset is the level difference between the two channels when they are selected separately and, also, on one video output. This value is measured on each video signal.
4. The delay between the SEL input and the video output together with the switching time of the video output is illustrated in Fig.3. The amplitude of the video signal is $1.9 \mathrm{~V}(p-p)$ when the clamp is active and $1.0 \mathrm{~V}(p-p)$ when the clamp is passive.
5. The delay between the SEL input and fast blanking output together with the switching time of fast blanking output is illustrated in Fig. 4.
6. The fast blanking delay between input and output is illustrated in Fig.5.
7. The video delay between input and output and delay differences are illustrated in Fig.6. Inputs 1 and 2 are either fast blanking input plus a video signal or two video signals. The amplitude of the video signal is 0.5 V ($\mathrm{p}-\mathrm{p}$). The video signal levels ($\mathrm{i} 1, \mathrm{i} 2,01$ and o) are 50% of the video amplitude. The fast blanking signal levels (i 1 and 01) are 0.95 V when the signal rises and 0.5 V when the signal falls.

MKA734

Fig. 3 Timing definition: SEL and VIDO.

Fig. 4 Timing definition: SEL and FBO.

Fig. 5 Timing definition: fast blanking delay.

Fig. 7 Internal pin configuration.

APPLICATION INFORMATION

Fig. 8 Application diagram.

Fig. 9 Schematic diagram of two TDA8601s operating four channels.

PACKAGE OUTLINES

DIP16: plastic dual in-line package; 16 leads (300 mil); long body
SOT38-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1} min.	$\begin{gathered} \mathbf{A}_{2} \\ \max . \end{gathered}$	b	b_{1}	C	$D^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	M_{H}	W	$Z_{\max }^{(1)}$
mm	4.7	0.51	3.7	$\begin{aligned} & 1.40 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 21.8 \\ & 21.4 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.3 \end{aligned}$	0.254	2.2
inches	0.19	0.020	0.15	$\begin{aligned} & 0.055 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.33 \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0100 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT109-1	076E07S	MS-012AC		\bigcirc	$\begin{aligned} & 95-01-23 \\ & 97-05-22 \end{aligned}$

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

DIP

Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

SO

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

NOTES

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 160 101, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689 211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800234 7381, Fax. +1 7082968556
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 3288 2636, Fax. +45 31571949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 615 800, Fax. +358 61580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402352 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. +30 14894 339/911, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 224938 541, Fax. +91 224938722

Indonesia: see Singapore

Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36481007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +1 800234 7381, Fax. +1 7082968556
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 402783749 , Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095926 5361, Fax. +7 0955648323
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978 ,
TAIPEI 100, Tel. +886 2382 4443, Fax. +886 23824444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 2A Akademika Koroleva str., Office 165, 252148 KIEV, Tel. +38044476 0297/1642, Fax. +380444766991
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800234 7381, Fax. +1 7082968556
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11825 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1996
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

PHILIPS

