SN74LS393

Dual 4-Stage Binary Counter

The SN74LS393 contains a pair of high-speed 4-stage ripple counters.

Each half of the LS393 operates as a Modulo-16 binary divider, with the last three stages triggered in a ripple fashion. In the LS393, the flip-flops are triggered by a HIGH-to-LOW transition of their CP inputs. Each half of each circuit type has a Master Reset input which responds to a HIGH signal by forcing all four outputs to the LOW state.

- Dual Versions
- Individual Asynchronous Clear for Each Counter
- Typical Max Count Frequency of 50 MHz
- Input Clamp Diodes Minimize High Speed Termination Effects

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	4.75	5.0	5.25	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	0	25	70	${ }^{\circ} \mathrm{C}$
$\mathrm{I} O H$	Output Current - High			-0.4	mA
IOL	Output Current - Low			8.0	mA

ON Semiconductor ${ }^{\text {w }}$
http://onsemi.com
LOW
POWER
SCHOTTKY

PLASTIC
N SUFFIX
CASE 646

SOIC
D SUFFIX CASE 751A

SOEIAJ M SUFFIX CASE 965

ORDERING INFORMATION

Device	Package	Shipping
SN74LS393N	14 Pin DIP	2000 Units/Box
SN74LS393D	SOIC-14	55 Units/Rail
SN74LS393DR2	SOIC-14	2500/Tape \& Reel
SN74LS393M	SOEIAJ-14	See Note 1
SN74LS393MEL	SOEIAJ-14	See Note 1

1. For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES		LOADING (Note a)	
		HIGH	LOW
$\overline{C P}$	Clock (Active LOW Going Edge)		
	Input to +16 (LS393)	0.5 U.L.	1.0 U.L.
CP_{0}	Clock (Active LOW Going Edge)		
	Input to $\div 2$ (LS390)	0.5 U.L.	1.0 U.L.
$\overline{C P}_{1}$	Clock (Active LOW Going Edge)		
	Input to $\div 5$ (LS390)	0.5 U.L.	1.5 U.L.
MR	Master Reset (Active HIGH) Input	0.5 U.L.	0.25 U.L.
$Q_{0}-Q_{3}$	Flip-Flop Outputs	10 U.L.	5 U.L.

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/ 1.6 mA LOW.

FUNCTIONAL DESCRIPTION

Each half of the SN74LS393 operates in the Modulo 16 binary sequence, as indicated in the $\div 16$ Truth Table. The first flip-flop is triggered by HIGH-to-LOW transitions of the CP input signal. Each of the other flip-flops is triggered by a HIGH-to-LOW transition of the Q output of the preceding flip-flop. Thus state changes of the Q outputs do
not occur simultaneously. This means that logic signals derived from combinations of these outputs will be subject to decoding spikes and, therefore, should not be used as clocks for other counters, registers or flip-flops. A HIGH signal on MR forces all outputs to the LOW state and prevents counting.

SN74LS393 LOGIC DIAGRAM (one half shown)

H = HIGH Voltage Level
L = LOW Voltage Level

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| Symbol | Parameter | | Limits | | | Test Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
${ }^{\text {f MAX }}$	Maximum Clock Frequency CP_{0} to Q_{0}	25	35		MHz	$C_{L}=15 \mathrm{pF}$
${ }^{\text {f MAX }}$	Maximum Clock Frequency $C P_{1}$ to Q_{1}	20			MHz	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, CP to Q_{0}		$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns	
tpLH tpHL	$C P$ to Q_{3}		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	ns	
tPHL	MR to Any Output		24	39	ns	

AC SETUP REQUIREMENTS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tw	Clock Pulse Width	20			ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
tw	MR Pulse Width	20			ns	
$\mathrm{trec}^{\text {c }}$	Recovery Time	25			ns	

AC WAVEFORMS

Figure 1.

Figure 2.
*The number of Clock Pulses required between $\mathrm{t}_{\text {PHL }}$ and $\mathrm{t}_{\text {PLH }}$ measurements can be determined from the appropriate Truth Table.

SN74LS393

PACKAGE DIMENSIONS

SN74LS393

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

M SUFFIX
SOEIAJ PACKAGE
CASE 965-01
ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI DIMENSION
Y14.5M, 1982
Y14.5M, 1982.
CONTROLING DIMENSION: MILLIMETER.

2. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
3. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
4. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 ((0.003) DAMBAR PROTRUSIONSHALLBE 0.08 (0) TOTAL IN EXCESS OF THE LEAD WIDTH
DIIMENSION AT MAXIMUM MATERIAL CONDITION DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER DAMBAR CANNOT BE LOCATED ON THE
RADIUS OR THE FOOT. MIIMUM SPACE RADUS OR THE FOOT. MINMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	---	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
HE_{E}	7.40	8.20	0.291	0.323
0.50	0.50	0.85	0.020	0.033
L_{E}	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	---	1.42	---	0.056

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

